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We present a joint time-dependent density-functional theory for the description of solute-solvent
systems in time-dependent external potentials. Starting with the exact quantum-mechanical action
functional for both electrons and nuclei, we systematically eliminate solvent degrees of freedom and
thus arrive at coarse-grained action functionals which retain the highly accurate ab initio description
for the solute and are, in principle, exact. This procedure allows us to examine approximations un-
derlying popular embedding theories for excited states. Finally, we introduce an approximate action
functional for the solute-water system and compute the solvato-chromic shift of the lowest singlet
excited state of formaldehyde in aqueous solution, which is in good agreement with experimental
findings.
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I. INTRODUCTION

Electronic excited states are important in many ar-
eas of physics, chemistry and biology. They are probed
in spectroscopic experiments, such as absorption, reflec-
tivity or photoluminescence measurements. In addition,
they are important in many technical applications, such
as photovoltaics1,2, laser technology3 or light-emitting
diodes4,5. However, in most situations the excited system
is not in isolation, but in contact with an environment.
For example, dyes in Grätzel cells6,7 are in contact with
an electrolyte and spectra of DNA molecules are typically
obtained in an aqueous solution8,9.
Various methods for the theoretical modelling of elec-

tronic excited states have been developed. For ex-
tended systems, such as periodic solids or surfaces, ex-
citation energies are typically extracted from the single-
particle and two-particle Green’s functions by solving the
quasiparticle10 and the Bethe-Salpeter equation11 in the
GW approximation. Quantum chemistry methods, such
as configuration interaction12 or coupled cluster theory13,
yield highly accurate excitation energies for atoms and
small molecules. In contrast to the aforementioned meth-
ods, which scale unfavorably with the system size, in re-
cent years time-dependent density-functional theory14,15

emerged as an economical yet accurate theory for larger
molecules and clusters6,16,17.
However, despite its good scaling properties, the

application of time-dependent density-functional the-
ory to electronic systems, which are not in isolation,
but in contact with an environment, remains numeri-
cally challenging. To capture solvent effects on excited
states, a number of embedding approaches have been
developed18–25. These methods either model the solvent
atomistically, for example by using the molecular dynam-
ics technique19,21,24, or via a continuum approach18,20,22.

Due to its simplicity, the latter approach has enjoyed
great popularity. In particular, many calculations em-
ployed time-dependent density-functional theory in con-
junction with the “polarizable continuum model”6,7,18,26,
where the molecule is placed inside a cavity in a lin-
ear dielectric medium. The solute-solvent interactions
are then separated into equilibrium and non-equilibrium
contributions accounting for the fact that the electronic
excitations on the molecule are screened by the high-
frequency dielectric constant, which in many systems is
much smaller than the static dielectric constant.
Despite the success of these continuum models, it is

important to recall that their construction is purely phe-
nomenological. To improve upon these theories and un-
derstand their limitations, it is necessary to understand
their origin from first principles. In this paper, we derive
different levels of continuum embedding theory starting
from the exact quantum-mechanical action functional for
the full solute-solvent system (Sections II). Next, as a
demonstration that the approach can lead to practical
calculations, we introduce a time-dependent continuum
model (Section III), which takes into account the devi-
ation from bulk behavior of the solvent response in the
first solvation shells and also retains the full frequency de-
pendence of the dielectric response, and then apply this
functional to the excitations of a formaldehyde molecule
in aqueous solution (Section IV). Finally, in Section V
we discuss our conclusions and describe possible future
developments and applications.

II. JOINT TIME-DEPENDENT

DENSITY-FUNCTIONAL THEORY

In this section, we consider a physical system com-
posed of an explicit subsystem (solute), in contact with
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an environment (solvent). Both solute and solvent con-
sist of electrons and nuclei of various species. Examples
of such solute-solvent systems are a molecule dissolved
in water or a defect in a host crystal. To investigate the
behavior of a solute-solvent system in a time-dependent
external potential, we employ time-dependent density-
functional theory14. Here, we begin with the straight-
forward generalization of the standard, fully causal ex-
pression for the action of a single-component system at
zero temperature27 to multi-component systems at finite
temperature. This generalization is similar to the the-
ory of Li and Tong28. Those authors, however, worked
only at zero temperature and employed the Frenkel-Dirac
action functional, which violates the causality require-
ment of van Leeuwen27. Generalizing the approach of
van Leeuwen to the present situation yields for the ac-
tion functional S of the full solute-solvent system,

S[n, {Nα}] =A[n, {Nα}]−
∫

Ω

dr

∫

C

dτn(r, τ)v(r, τ)

−
∑

α

∫

Ω

dr

∫

C

dτNα(r, τ)Vα(r, τ), (1)

where n(r) and Nα(r) denote the density of electrons
and the various nuclear species, while v(r) and Vα(r) de-
note the respective external potentials. Also, Ω denotes
an open volume as required when working in the grand
canonical ensemble and τ denotes the Keldysh time29,
which is defined on the contour C ranging from 0 to ∞
just above the real time axis and then back from ∞ to 0
just under the real time axis, and finally from 0 to −iβ
on the imaginary time axis, with β = 1/(kBT ) being
the inverse thermal energy. Finally, in (1), the intrinsic
action A is the Legendre transform, with respect to the
potentials v and Vα

27, of

Ã[v, {Vα}] =

i logTr

{

exp

(

β

[

µelN̂el +
∑

α

µαN̂α

])

Û(−iβ; 0)
}

,

(2)

where µel and µα are the chemical potentials of the
electrons and nuclei, while N̂el and N̂α denote the re-
spective particle number operators. In the above, Û =
TC exp(−i

∫

dτĤ(τ)) denotes the quantum-mechanical
evolution operator27 with TC being the Keldysh time-
ordering operator and Ĥ(τ) denotes the standard many-
body Hamiltonian for the electrons and nuclei of the
solute-solvent system.
We note that, relatively recently, Butriy et al. have

also considered multicomponent time-dependent density-
functional theory30, but chose as the variational variables
the electron density in body-fixed coordinates and the di-
agonal of the nuclear N-body density matrix, whereas we
here employ as the variables the much more tractable
densities n(r, τ) and Nα(r, τ). Butriy et al. employed
their formalism to study correlated electron-nuclear ex-
citations in isolated molecules. By contrast, we here are

interested in electronic excitations of the system while
treating the solute nuclei in the Born-Oppenheimer ap-
proximation, holding them fixed in place, so that they
present a simple fixed external potential in which the elec-
trons and solvent nuclei evolve. With the solute nuclear
coordinates fixed, there is no need to work in body-fixed
coordinates and a simple density description is sufficient
for us to extract the density fluctuations of interest.

We do, however, find it mathematically convenient as
a matter of bookkeeping to treat the solute and environ-
ment nuclear densities on an equal footing for as long as
possible; therefore, we treat the solute nuclear densities
as time-dependent in our derivation and only fix the loca-
tions of the solute nuclei in the final step. Consequently,
the index α in (1) and (2) ranges over all nuclear species
in both the solvent and the solute.

Because of the many environment degrees of freedom,
finding the time-dependent densities which make the ac-
tion in (1) stationary is numerically challenging. More-
over, the explicit details of the density fields describing
the solvent are often irrelevant, because one is typically
interested in properties of the solute. We therefore seek
a fundamental description which treats the solute explic-
itly and the solvent either at a simplified level or im-
plicitly. Petrosyan and coworkers31,32 have developed
just such a rigorous “joint” density-functional theory for
the static, equilibrium case. Specifically, Petrosyan et

al. first minimize the full solute-solvent free-energy func-
tional over the solvent electron density to arrive at a
free-energy functional in terms of the solute electron and
the solvent nuclear densities. The resulting theory treats
both solute and solvent explicitly, but the solvent at a
more coarse-grained level. Ultimately, for specific solute-
solvent systems the coarse-grained free-energy functional
is minimized over all solute electron and solvent nuclear
densities to obtain the free energy of the overall system
and its equilibrium properties. Petrosyan et al. devel-
oped accurate and numerically tractable approximations
to the coarse-grained functional and employed them to
study surfaces and small molecules in aqueous solution
with encouraging results31,32. We note that Fattebert
and Gygi33 have developed a computationally similar ap-
proach for carrying out electronic structure calculations
in aqueous environments, but without the underlying ex-
act framework of joint density-functional theory.

To generalize the theory of Petrosyan and coworkers
to the present non-equilibrium context, we split the total
electron density in (1) into solute (ns) and environment
(ne) contributions, n(r, τ) = ns(r, τ) + ne(r, τ). Fun-
damentally, a rigorous partitioning of electrons into so-
lute and environment electrons is, of course, impossible
because of the their quantum-mechanical indistinguisha-
bility. Nonetheless, making S stationary with respect
to all physically allowed environment electron densities
and subsequently with respect to all physically allowed
solute electron densities is guaranteed to recover the cor-
rect total electron density. There are, of course, many
ways to express the total electron density as a sum of two
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subsystem densities. Thus, instead of a unique solution,
there exists, in principle, a vast degenerate set of solu-
tions in joint time-dependent density-functional theory
consisting of all solute and environment electron densi-
ties which sum up to the correct total electron density. In
practice, however, we find that practical approximations
break this degeneracy and pick out a sensible particu-
lar solution. This is reminiscent of the equilibrium case,
where Petrosyan et al.32 observed that the use of molec-
ular pseudopotentials34 leads to sensible non-degenerate

solutions.

A. Explicit solvent functionals

Making the action stationary with respect to the en-
vironment electron density while holding the solute elec-
tron and environment nuclear densities fixed, we obtain
the coarse-grained explicit-solvent functional Sex,

Sex[ns, {Nα}] =statne

{

A[ns + ne, {Nα}]−
∫

Ω

dr

∫

C

dτ

[

ne(r, τ)v(r, τ) +
∑

α

Nα(r, τ)Vα(r, τ)

]}

−
∫

Ω

dr

∫

C

dτns(r, τ)v(r, τ)

≡ A(v,{Vα})[ns, {Nα}]−
∫

Ω

dr

∫

C

dτns(r, τ)v(r, τ), (3)

where statne
indicates that the expression in curly brack-

ets is made stationary with respect to variations of ne

and the superscript of A makes explicit the additional
dependence of this functional on the external potentials.
Note that we include the coupling term for the nuclear
densities (

∑

NαVα) in A: this partitioning is not func-
tionally necessary, because the coupling term does not
depend on ne and therefore maintains its simple form.
This choice, however, ensures that A describes a neu-
tral system: Maintaining charge neutrality is important

both formally to ensure the existence of the thermody-
namic limit35 and also practically to mitigate the need
to capture long-range couplings within an approximate
functional. We stress that our partitioning does not fun-
damentally complicate the functional dependence of the
new functional A because the coupling to Vα will retain
its simple form in terms of Nα.

To find practical approximations, we partition A into
various physically meaningful contributions according to

A =Ael,s[ns] +Anuc,s[{Ns,α}]−A
({Vs,α})

nuc/ext,s[{Ns,α}]−Anuc/el,s[ns, {Ns,α}]

+Ae[{Ne,α}]−∆A(v,{Ve,α})
ext,e [{Ne,α}]−∆A(v,{Ve,α},{Vs,α})

s,e [ns, {Ns,α}, {Ne,α}], (4)

where the first four terms describe the solute: The first
term, Ael,s, denotes the intrinsic action of the solute elec-
trons and is typically27 written as

Ael,s = AKS −AH −AXC , (5)

where AKS denotes the action of non-interacting elec-
trons, AH = 1/2

∫

dr
∫

dr′
∫

dτns(r, τ)ns(r
′, τ)/|r − r

′|
is the Hartree contribution and AXC the exchange-
correlation term. The second and third terms in (4),
respectively, are the intrinsic action of the solute nuclei
(with densities Ns,α) and their coupling to the exter-
nal potentials. The fourth term captures the interac-
tion between solute electrons and solute nuclei. In our
actual calculations, we hold the solute nuclei fixed in

space, finding Anuc/el,s =
∫

dr
∫

dτns(r, τ)vst(r), with
vst being the static potential created by the solute nu-
clei. Under these conditions, the second and third term
in (4) become independent of all time-dependent degrees
of freedom (though, not of time-dependent potentials)
and can be dropped for the purpose of the variational
calculations. However, for later convenience we retain
Anuc,s =

∫

dτ
∑

I<J ZIZJ/|RI − RJ | with RI and ZI

denoting the positions and charges of the solute nuclei.

The fifth term in (4) describes the isolated neutral en-
vironment in terms of its nuclear densities, Ne,α. Ac-
curate approximations for this action functional are less
well known than for electrons. However, there has been
much progress recently in the construction of such action
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functionals for classical liquids36,37, which constitute an
important and technologically relevant class of solvents.
Finally, having identified all interactions between

charged species, we expect the remaining two contri-
butions in (4) to be relatively small. The sixth term,
∆Aext,e, describes the interaction between the neutral

solvent and the external potentials. The final, seventh
term, ∆As,e, maintains the full functional dependence
and captures by definition all remaining interactions. We
find that the coupling between the neutral solute and the
neutral solvent constitutes the most important contribu-
tion to this term.
To find approximations to ∆Aext,e, we observe that the

best form for this term depends on the physical system
under consideration, because the solvent electrons screen
the bare nuclear charges in qualitatively different ways
depending on the physical nature of the solvent. If the
solvent consists of ions of charge Z̄α, the corresponding
action would be

∑

α

∫

dτ
∫

dr[Ne,αVα +(Zα− Z̄α)Ne,αv]

with Zα being the true charge of the nucleus. If, how-
ever, the solvent is composed of neutral polar molecules,
where each “effective” nucleus carries a partial charge
qα and all partial charges in a molecule add up to
zero, one should replace Z̄α in the above expression by
qα. Finally, if the solvent consists of apolar molecules
or neutral atoms, we can approximate the coupling by
∑

α

∫

dτ
∫

drπαNe,α|∇v|2 with πα being the polarizabil-
ity of the “effective” nucleus α.
The final term, ∆As,e, has the full functional depen-

dence and thus can capture all remaining interactions.
In typical density-functional theory fashion, because we
have separated out by various approximations all other
possible interactions and ensured that this term repre-
sents a charge-neutral interaction, we expect this term
to be relatively small with mild functional dependencies
and thus amenable to simple approximations. Accord-
ingly, we expand ∆As,e as a Taylor series in the various
densities, keeping only the lowest-order coupling terms,

∆As,e =

∫

Ω

dr

∫

Ω

dr′

∫

C

dτ

∫

C

dτ ′
∑

α

Ne,α(r
′, τ ′)



wα(r, r
′, τ, τ ′)ns(r, τ) +

∑

β

wαβ(r, r
′, τ, τ ′)Ns,β(r

′, τ ′)



 , (6)

where wα(r, r
′, τ, τ ′) = δ2∆As,e/δns(r, τ)δNe,α(r

′, τ ′)
and wαβ(r, r

′, τ, τ ′) = δ2∆As,e/δNe,α(r, τ)δNs,β(r
′, τ ′)

denote effective time-dependent interaction potentials
between solvent nuclei and solute electrons or solute
nuclei. Note that, in principle, the Taylor series con-
tains various other coupling terms: for example, a term
quadratic in the solute electron density can occur. How-
ever, such a term only renormalizes the Hartree contri-
bution in Ael,s and is therefore neglected in (6).

Table I summarizes all of the above considerations, list-
ing all of the various contributions to Sex and the terms
which capture them.

Recently, Kaminski and coworkers25 have constructed
a time-dependent embedding theory similar to the ex-
plicit solvent approach described in this section. In par-
ticular, these authors first use the theory of classical
molecular liquids25 to obtain averaged nuclear solvent
densities which they then ”dress up” with electrons to
obtain the total equilibrium potential created by the sol-
vent. Next, they compute orbital wave functions and
energies of the embedded solute which are used as in-
put into time-dependent density-functional theory cal-
culations. This approach is very promising and may be
viewed as an approximate implementation of the formally
exact explicit solvent approach presented in this section.

B. Implicit solvent functionals

1. General considerations

Rather than follow the above route of dealing explic-
itly with the solvent nuclei, for this initial work, we take
a simpler tack that allows us to make contact with stan-
dard continuum solvent models. For this purpose, we
eliminate the environment nuclei from Sex and introduce
a new action functional Sim which depends on the solute
densities only and treats the solvent implicitly as follows,

Sim[ns, {Ns,α}] = stat{Ne,α}A(v,{Vα})[ns, {Ns,α}, {Ne,α}]

−
∫

Ω

dr

∫

C

dτns(r, τ)v(r, τ)

≡ G(v,{Vα})[ns, {Ns,α}]−
∫

Ω

dr

∫

C

dτns(r, τ)v(r, τ).

(7)

Again, we partition G into meaningful contributions ac-
cording to

G = Ael,s[ns] +Anuc,s[{Ns,α}]−A
({Vs,α})

nuc/ext,s[{Ns,α}]
−Anuc/el,s[ns, {Ns,α}]−∆G(v,{Ve,α})[ns, {Ns,α}] (8)

with ∆G = −stat{Ne,α}[Ae −∆Aext,e −∆As,e] and Ael,s

is given by (5). Note that ∆G depends on the solute
densities of electrons and nuclei, but also on the time-

dependent external potential. To understand the conse-
quences of the additional functional dependency, we now
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TABLE I: The Table shows the various contributions to
Sex due to interactions between solute nuclei (Ns), solute
electrons (ns), solvent nuclei (Ne), solvent electrons (ne)
and the external potentials (v and V ). Note that in Sex the
solvent electrons are treated implicitly.

contribution contained in

Ns/Ns Anuc,s

Ns/ns Anuc/el,s

Ns/Ne ∆As,e

Ns/ne ∆As,e

NS/V Anuc/ext,s

ns/ns Ael,s

ns/Ne ∆As,e

ns/ne ∆As,e

ns/v last term in (3)
Ne/Ne Ae

Ne/ne Ae

Ne/V ∆Aext,e

ne/ne Ae

ne/v ∆Aext,e

investigate the linear response behavior of Sim in greater
detail (assuming fixed solute nuclei).
The time-dependent solute electron density corre-

sponding to v makes Sim stationary, δSim = 0, which
implies δG/δns = v. Using (8) we thus have (assuming
fixed solute nuclei)

v(r, τ) =vKS(r, τ) − vH(r, τ)− vXC(r, τ)

− vst(r)− v(v,{Ve,α})
e (r, τ), (9)

where vKS = δAKS/δns denotes the Kohn-Sham po-
tential, vH = δAH/δns, vXC = δAXC/δns and vst
is the static potential due to the solute nuclei. Also,
ve = δ∆G/δns denotes the additional potential due to the
presence of the environment. Note that ∆G and there-
fore also ve depend both on the solute density ns and the
external potential separately.
A small change δv in the external potential causes a

change δns in the solute electron density. In the linear
response regime, these quantities are related via the re-
sponse function χ

δns(r, τ) =

∫

Ω

dr′

∫

C

dτ ′χ(r, r′, τ, τ ′)δv(r′, τ ′). (10)

To compute χ, which is the observable in spectroscopic
experiments on the solute-solvent system, we first deter-
mine the change in the Kohn-Sham potential δvKS cor-
responding to δv. (Strictly speaking, only the total re-
sponse function χtot = δn/δv = δns/δv+ δne/δv is mea-
sured. However, for solute-solvent systems where the re-
sponse of the solute occurs in a different frequency range
than the response of the solvent one can determine ex-
perimentally the solute response function χ. This is the

case for the lowest singlet excitation of formaldehyde in
water, which we study in the Section IV.) Using (9), we
find

δvKS(r, τ) = δv(r, τ) +

∫

Ω

dr′ δns(r
′, τ)

|r − r′|

+

∫

Ω

dr′

∫

C

dτ ′fXC(r, r
′, τ, τ ′)δns(r

′, τ ′)

+

∫

Ω

dr′

∫

C

dτ ′fA
e (r, r′, τ, τ ′)δns(r

′, τ ′)

+

∫

Ω

dr′

∫

C

dτ ′fB
e (r, r′, τ, τ ′)δv(r′, τ ′)

+
∑

α

∫

Ω

dr′

∫

C

dτ ′fC
e,α(r, r

′, τ, τ ′)δVe,α(r
′, τ ′),

(11)

where fA
e = δve/δns, f

B
e = δve/δv and fC

e,α = δve/δVe,α
denote additional contributions to δvKS caused by the
environment. In an actual experiment, where the whole
solute-solvent system is probed, for example by an elec-
tromagnetic wave, we expect δVe,α to be related to δv.
In this case, we can express the last term in (11) as fD

e δv
with fD

e =
∑

α f
C
e,αδVe,α/δv.

The change in the Kohn-Sham potential is related to
δns via

δns(r, τ) =

∫

Ω

dr′

∫

C

dτ ′χKS(r, r
′, τ, τ ′)δvKS(r

′, τ ′),

(12)
where χKS denotes the response function of non-
interacting electrons. Combining (12), (11) and (10) and
adopting a matrix formulation for the space and Keldysh-
time variables then yields

χ−1 = [1 + fB
e + fD

e ]−1
{

χ−1
KS − [K + fXC + fA

e ]
}

,

(13)

where K denotes the matrix corresponding to the
Coulomb interactionK(r, r′, τ, τ ′) = δ(τ, τ ′)/|r−r

′| with
δ(τ, τ ′) denoting the Delta-function on the Keldysh con-
tour.

Compared to the familiar equation for χ without sol-

vent, given by χ−1 = χ−1
KS − [K+ fXC ], we find that (13)

contains three extra terms due to the presence of the sol-
vent: fA

e describes the change of the solvent potential
due to a change in the solute electron density, while fB

e

and fD
e describe changes induced by a variation in the ex-

ternal potential. Without justification, “polarizable con-
tinuum model” approaches typically18 approximate the
potential due to the solvent as a functional of the so-
lute density only, which means they only include fA

e and
neglect fB

e and fD
e . This insight into the assumptions un-

derlying popular embedding approaches underscores the
value of following the density-functional approach rigor-
ously, so as to identify all potentially relevant functional
dependencies.
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2. Practical approximations

To develop practical approximations, we separate ∆G
into a contribution ∆Gs,e[ns, {Ns,α}], which describes the

interaction among solute particles mediated by the envi-

ronment, and a remainder ∆G(v,{Ve,α})
ext [ns, {Ns,α}]. Tay-

lor expanding ∆Gs,e yields

∆Gs,e =

∫

Ω

dr

∫

Ω

dr′

∫

C

dτ

∫

C

dτ ′
[

1

2
ns(r, τ)W (r, r′, τ, τ ′)ns(r

′, τ ′)

+
∑

α

Ns,α(r, τ)



Wα(r, r
′, τ, τ ′)ns(r

′, τ ′) +
1

2

∑

β

Wαβ(r, r
′, τ, τ ′)Ns,β(r

′, τ ′)







 , (14)

whereW (r, r′, τ, τ ′),Wα(r, r
′, τ, τ ′) andWαβ(r, r

′, τ, τ ′)
denote effective interaction potentials between the vari-
ous solute particles. In the next section, we approxi-
mate these interaction potentials by screened Coulomb
interactions, which results in a simple, yet accurate joint
density-functional theory for solute-water systems.
Approximating ∆Gext is more difficult: a possible route

to finding explicit functionals is to express the environ-
ment nuclear densities in terms of solute densities ac-
cording to Ne,α(r) = gα[ns, {Ns,β}](r) and insert this
relation into the various forms for ∆Aext,e discussed in
the last section. We expect that gα has a similar form
as the dielectric function employed in the next section
[Equation (18)], where we employ a local ansatz to de-
scribe the crossover from bulk screening to vacuum.
However, for our first implementation of joint time-

dependent density-functional theory for solute-water sys-
tems presented in the next section we neglect ∆Gext. We
expect, however, that the additional solvent response due
to this term can be included by “renormalizing” the di-
electric function describing the environment (see Section
III). Future work should explore the consequences and
importance of this term.

III. AN IMPLICIT ACTION FUNCTIONAL FOR

THE WATER-SOLUTE SYSTEM

To allow us to explore and test the potential of the
above ideas in an actual application, in this section, we

introduce a relatively simple, approximate joint time-
dependent density-functional for the solute-water system.
In particular, we assume that all solvent effects can be
described via a position and frequency-dependent local
dielectric function, which depends on the electronic struc-
ture of the solute. Inclusion of the spatial dependence of
screening effects is crucial, because the dielectric response
of water in the first solvation shells differs notably from
the bulk response. Also, in contrast to “polarizable con-
tinuum model” approaches18,38, where a particular value
for the high-frequency dielectric constant is chosen, we
employ the full frequency-dependent dielectric function.
Specifically, the assumption of dielectric screening im-

plies that all effective interactions introduced in (14) are

proportional to the screened interaction W̃ between two
unit charges and only rescaled by the charges of the inter-
acting species. In particular, we approximate W = W̃ ,
Wα = −ZαW̃ and Wαβ = ZαZβW̃ . The resulting action
functional for the solute-water system is then given by

G = AKS −AXC −∆Vps −
1

2

∫

Ω

dr

∫

Ω

dr′

∫

C

dτ

∫

C

dτ ′ρs(r, τ)K̃(r, r′, τ, τ ′)ρs(r
′, τ ′), (15)

with ρs(r, τ) = −ns(r, τ)+
∑

I ZIδ(r−RI) denoting the

solute charge density and K̃ = K + W̃ , where K is the
bare Coulomb interaction defined as above. Also, ∆Vps

reflects the fact that, in practical calculations, we em-
ploy the pseudopotential approximation39, in which the
nuclei are replaced with ionic cores of charge ZI , whose
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potentials at large distances (when not screened by the
environment) go as ZI/|r − RI | but which differ from
this by a localized function ∆Vps(r−RI) within a small
“core radius” that represents a distance much smaller
than where we would expect screening from the environ-
ment to occur. Within our framework, the long-range
parts enter through the solution of (16) and thus are
properly screened, and the short-range parts contained
in ∆Vps enter directly as they require no such screening.
The screened potential corresponding to a physical

charge density ρs(r, t), which is equal on both vertical

branches of the Keldysh contour, is given by φ̃s ≡ K̃Rρs,
where K̃R denotes the retarded interaction27. In actual
calculations, we obtain φ̃s by solving the screened Pois-
son equation

∇ · ǫ(r, ω)∇φ̃(r, ω) = −4πρs(r, ω). (16)

All information about the environment is contained in
the dielectric function ǫ(r, ω). In principle, both the ionic
and the electronic degrees of freedom of the solvent con-
tribute to the dielectric response. We demonstrate below
that for the frequencies of interest, we can safely ignore
the motion of the ions and only deal with the electronic
response corresponding to a fixed nuclear solvent density.
We make the natural assumptions that the system is in
equilibrium before the excitation and that the equilib-
rium nuclear solvent density is determined locally by the
equilibrium solute electron density n0(r). This suggests
the following local ansatz for the dielectric function,

ǫ(r, ω) = ǫ(n0(r), ω). (17)

This ansatz is physically reasonable in that it interpo-
lates smoothly between the dielectric response of vacuum
and the bulk liquid and thus avoids the need to specify
a cavity shape. If we further assume that the frequency
dependence of ǫ(n0(r), ω) enters only through the fre-
quency dependence of the bulk dielectric function ǫb(ω),
we can generalize the form employed by Petrosyan and
co-workers31 to

ǫ(r, ω) = 1 +
ǫb(ω)− 1

2
erfc

(

log(n0(r)/nc)√
2σ

)

, (18)

where the parameters nc and σ determine the location
and width, respectively, of the crossover from the vacuum
to the bulk liquid dielectric response. Petrosyan et al.31

determined the numerical values nc = 4.73 × 10−3Å−3

and σ = 0.6 for these parameters by fitting solvation
energies of small molecules obtained by their equilibrium
joint density-functional theory to experimental data. We
choose to work with these values as well.
To complete the theory, we need an expression for the

frequency-dependent bulk dielectric constant ǫb(ω). At
frequencies corresponding to electronic excitations, we
may ignore the complicated low-frequency dielectric re-
sponse of water and employ a model which describes
the high-frequency range reliably. For this, we use the

Clausius-Mossotti form40

ǫb(ω)− 1

ǫb(ω) + 2
=

4π

3
nbᾱ(ω), (19)

where nb denotes the bulk molecular particle density of
water and ᾱ(ω) =

∑

j Fj/(E
2
j −ω2) denotes the mean po-

larizability of an isolated water molecule, with Fj and Ej

being the oscillator strength and excitation frequencies,
respectively, for excited state j. In the next section, we
compute ᾱ(ω) using time-dependent density-functional
theory and demonstrate that (19), which neglects the
contribution from the permanent dipole moments, indeed
reliably describes the bulk screening response of water to
low-lying electronic excitations. To obtain excitation en-
ergies of the solute, we analyze the linear response of (15)
resulting in

χ−1 = χ−1
KS − [K̃ + fXC ], (20)

which lacks the subtleties appearing in Section II B be-
cause the present model lacks any explicit environment
dependence on the external potential. Our final work-
ing equation is obtained by expressing (20) in transition-
space notation15, where the fused index κ = (k, j) de-
notes a transition between two equilibrium Kohn-Sham
orbitals ψj(r) and ψk(r). We arrive at a self-consistent
eigenvalue problem15 for excitation energies Ej of the so-
lute,

∑

ν

[

δκν∆ǫ
2
ν + 4

√

∆ǫκ∆ǫνM̃κν(Ej)
]

C(j)
ν = E2

jC
(j)
κ ,

(21)
where ∆ǫκ = ǫj − ǫk with ǫk denoting the equilibrium

orbital energies and the eigenvector C
(j)
κ determines the

oscillator strength of the transition15. The coupling ma-
trix is given by

M̃κν(ω) =
∫

Ω

dr

∫

Ω

dr′Φ∗
κ(r)

[

K̃R(r, r′, ω) + fR
XC(r, r

′, ω)
]

Φν(r
′)

(22)

with Φκ(r) = ψ∗
k(r)ψj(r) and fR

XC denotes the re-
tarded exchange-correlation kernel. Note that even for a
frequency-independent exchange-correlation kernel, the
solvent response makes M̃ frequency-dependent. Equa-
tion (21) is solved iteratively: setting K̃R(Ej) = K

yields an initial estimate E
(1)
j for the excitation energy.

Next, we solve (21) using K̃R(E
(1)
j ) and iterate until self-

consistency is achieved.

IV. APPLICATION TO FORMALDEHYDE IN

AQUEOUS SOLUTION

As a test case, we study the lowest singlet excited
state of a formaldehyde molecule in aqueous solution.
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A number of theoretical approaches have been ap-
plied to study solvato-chromic shifts of formaldehyde in
water18,19,38,41–44. However, the agreement with experi-
mental findings has generally been unsatisfactory.
In this section, we first compute the mean polarizabil-

ity of an isolated water molecule from time-dependent
density-functional theory and obtain the frequency-
dependent bulk dielectric function of liquid water using
the Clausius-Mossotti equation. Next, we explore the ex-
citations of formaldehyde in the gas phase and in solution
using the joint time-dependent density-functional theory
described in the last section.
All calculations are carried out in a plane wave ba-

sis with a cutoff of 40 hartree. We use Kleinman-
Bylander pseudopotentials45 and a cubic supercell of
length 20 bohr. For the ground state calculations we
employ the local density approximation46,47 and for the
excitations the adiabatic local density approximation15.

A. Dielectric function of liquid water

To compute excitation energies of a formaldehyde
molecule in aqueous solution, we need the frequency-
dependent dielectric response of water. According to
(19), this requires the mean polarizability of an isolated
water molecule. We first carry out ground-state calcula-
tions and fully relax the electronic and ionic structure.
Then, we employ time-dependent density-functional the-
ory to obtain excitation energies and oscillator strengths
using all 4 occupied Kohn-Sham orbitals, plus an addi-
tional 220 unoccupied orbitals. Table II shows our re-
sults for the three lowest singlet excitation energies of an
isolated water molecule, and compares them to previous
theoretical work48 and also to experiment48. The dis-
crepancy between theory and experiment is around 1 eV
or larger for all excited states. The poor performance of
time-dependent density-functional theory for the water
molecule can be traced to the Rydberg character of the
excitations, which cannot be described in the adiabatic
local density approximation due to the incorrect asymp-
totic behavior of the exchange-correlation potential at
large distances48,49.
Despite these problems, the adiabatic local density

approximation gives good results for the static polariz-
ability and for the low-frequency dielectric constant of
liquid water: Table III compares our results for these
quantities with previous calculations50 and also with
experiment50–52. We observe that the Clausius-Mossotti
formula (19) describes the dielectric response of liquid
water very well in the frequency range corresponding to
low-lying electronic excitations.

B. Formaldehyde in the gas phase

Next, we explore the excitations of formaldehyde in the
gas phase. Table IV compares our results for the three

TABLE II: Comparison of the lowest singlet excitation ener-
gies of an isolated water molecule with previous theoretical
work by Bernasconi48 and experiment48. All results are given
in eV.

This work Ref.48 Expt.48

6.47 6.39 7.4
7.74 7.78 9.1
8.01 8.05 9.7

TABLE III: Comparison of our results for the static mean
polarizability of an isolated water molecule and for the
optical dielectric constant ǫopt ≡ ǫb(ω = 1 eV ) of liquid

water with previous theoretical work by Hu et al.50 and
experiment50–52.

Units This work Ref.50 Expt.50–52

ᾱ(ω = 0) bohr3 10.50 10.52 9.6-9.9
ǫopt 1.83 — 1.78

lowest singlet excited states with a previous calculation
by Bauernschmitt and Ahlrich53, who also employ the
adiabatic local density approximation, and also with ex-
perimental findings18,53. We observe that our excitation
energy for the lowest state is relatively close to the exper-
imental value, while the higher states deviate more than
1 eV from experiment. Again, the relatively large devia-
tion for the higher excited states is due to the incorrect
long-distance behavior of the exchange-correlation poten-
tial in the adiabatic local density approximation.

Comparison of Tables IV and II shows that the lowest
excitation energy of formaldehyde is several eV smaller
than the corresponding value for water. Therefore, in
our joint time-dependent density-functional calculations
we only evaluate the dielectric function at frequencies
smaller than its first pole. In this region, ǫb(ω) is close
to unity and can be approximated by a constant. This
is a common approximation in “polarizable continuum

TABLE IV: Comparison of the three lowest singlet exci-
tation energies of an isolated formaldehyde molecule with
previous theoretical work by Bauernschmitt et al.53 and
experiment18,53. All energies are given in eV.

This work Ref.53 Expt.18,53

3.66 3.64 3.8-4.2
5.68 5.93 7.13
6.78 6.79 8.14
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TABLE V: Comparison of our results for the equilibrium
dipole moment of formaldehyde in vacuum (pvac) and aqueous
solution (psolv) with experiment54 and previous theoretical
work42. Dipole moments are given in bohr.

This work Ref.42 Expt.54

pvac 0.91 0.90 0.91
psolv 1.32 1.32 —

TABLE VI: Lowest singlet excitation energy of formaldehyde
in vacuum (Evac) and aqueous solution (Esolv) obtained
from joint time-dependent density-functional theory. The
resulting solvato-chromic shift (Esolv − Evac) is shown in the
third column and compared to experiment19. All results are
given in eV.

Evac Esolv Shift Expt.19

3.66 3.83 0.17 0.21

model” approaches, which for the non-equilibrium re-
sponse employ a frequency-independent dielectric func-
tion derived from the index of refraction of water18.
However, this approximation breaks down for solutes

with higher-energy excited states that are comparable or
larger than the lowest excited state of water. In this case,
the full frequency dependence of the dielectric response
must be retained and a self-consistent solution of (21) is
necessary.

C. Formaldehyde in aqueous solution

We now apply joint time-dependent density-functional
theory to calculate excitations of a solvated formalde-
hyde molecule. We use the static joint density-functional
theory of Petrosyan et al.31 to determine the equilib-
rium electronic structure neglecting ionic relaxations in-
duced by the aqueous environment, which as was shown
by Kongsted et al. only lead to shifts in the excitation
energies of about 0.01 eV19. Table V shows that the equi-
librium dipole moment obtained in our calculation is in
excellent agreement with previous theoretical work42.

We then solve the linear response equation(21)
of joint time-dependent density-functional theory self-
consistently, as described in the last section. The lowest
excitation energy is converged to within 0.01 eV after two
iterations. Table VI summarizes our results for the exci-
tation energies in vacuum and solution and the resulting
solvato-chromic shift, which is in good agreement with
the experimental value19.
To physically understand the observed solvato-chromic

blue-shift, we express the excitation energy as

Evac/solv = ∆ǫvac/solv + γvac/solv, (23)

where ∆ǫvac/solv denotes orbital energy difference in vac-
uum or solution and γvac/solv denotes the correction from
(joint) time-dependent density-functional theory. For
gas-phase formaldehyde, ∆ǫvac = 3.34 eV already gives
a reasonable approximation to Evac = 3.66 eV with the
correction γvac = 0.32 eV being relatively small. In so-
lution, we find ∆ǫsolv = 3.56 eV and γsolv = 0.27 eV.
We conclude that the solvato-chromic shift is determined
mostly by the change of the orbital energy differences,
∆ǫvac −∆ǫsolv = 0.22 eV which is quite close to the to-
tal solvato-chromic shift of 0.17 eV, while the correction
term changes relatively little (only 0.05 eV).
The change of ∆ǫ upon solvation is caused by the dif-

ferent coupling of ground and excited states to the aque-
ous environment: the ground state has a large dipole
moment (pvacgs = 0.91 bohr) and couples strongly to the
aqueous environment leading to a large negative solva-
tion energy, while the dipole moment of the excited state
(pvacex = 0.14 bohr) and the resulting solvation energy are
much smaller.
Table VII compares our result for the solvato-chromic

shift of the lowest singlet excitation with previous the-
oretical work18,38,41–44 and also with experiment19. In
contrast to our calculation, which gives very good agree-
ment with the experimental data, calculations employ-
ing the “polarizable continuum model” to describe the
solvent underestimate the shift18,38, while approaches,
which treat the solvent atomistically within a super-
molecular approach42,43, typically overestimate the shift.
We point out that both methods suffer from weaknesses
which are absent in our approach. In particular, the re-
sults of the “polarizable continuum model” approach de-
pend sensitively on the chosen cavity size and shape55.
This indicates that a more realistic description of the sol-
vent response in the vicinity of the solute is of great im-
portance. Atomistic solvent models, on the other hand,
offer a reliable description of the solvent structure close
to the solute, but to compute converged thermodynamic
averages the sampling of many solvent configurations is
required. In addition, supermolecular approaches which
model the solvent by a finite cluster surrounding the so-
lute do not capture the long-range dielectric response of
the solvent.
Our approach includes both long-range screening ef-

fects and a reliable description of the solvent response
close to the solute. Similarly, Naka et al.44, who em-
ploy the reference interaction-site model to describe the
solute, and Kongsted et al.41, who combine an atom-
istic treatment of the first solvation shells with the “po-
larizable continuum model,” also obtain solvato-chromic
shifts in good agreement with experiment. However, un-
like our action functional, these models are not derived
from first principles: instead they start out with a par-
tioning of the action and then approximate each con-
tribution typically with a different level of theory mak-
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TABLE VII: Comparison of our joint time-dependent
density-functional theory results, previous theoretical
work18,38,41–44 and experiment19 for the solvato-chromic shift
of the lowest singlet excited state of formaldehyde in aqueous
solution. The second column lists the solvent model: joint
time-dependent density-functional theory (JTDDFT), the
“polarizable continuum model” (PCM), the supermolecu-
lar approach (SM) or the reference interaction-site model
(RISM). All results are given in eV.

Method Shift

Ref.18 PCM 0.12
Ref.38 PCM 0.12
Ref.42 SM 0.33
Ref.43 SM 0.39
Ref.44 RISM 0.25
Ref.41 SM+PCM 0.23

This work JTDDFT 0.17
Expt.19 — 0.21

ing it difficult to judge the limits of their applicability
a priori and to systematically improve upon them. For
example, Naka et al. combine a CASSCF treatment of
the solute electrons with an electrostatic coupling scheme
between solute and solvent and the reference-interaction
site model for the solvent structure44.

Finally, we discuss the intensity of the transition from
the ground state of formaldehyde to the lowest singlet
excited state. In our calculations we employ the Franck-
Condon approximation56–58 keeping the ions fixed at
their equilibrium positions. Within this approximation,
we find that the transition is dipole-forbidden both in
vacuum and in solution. However, due vibronic cou-
plings the transition gains intensity and can be observed
in experiments59. In solution, particular solvent con-
figurations can also distort the solute orbitals making
the transition weakly dipole-allowed60. The effects of
the latter mechanism are contained in the exact im-
plicit functional (7), but the relatively simple dielectric
mean-field approximation presented in section III lacks
the correlation effects between the solvent and the so-
lute electrons needed to capture the intensity enhance-
ment. Future work should aim at improving the im-
plicit functional and in particular the effective inter-
action potential W (r, r′, τ, τ ′) to include the necessary
correlations, which would also allow for the study of
the inhomogeneous broadening of the absorption lines in
solution44. We also plan to study vibronic effects in solu-
tion by employing the Herzberg-Teller theory of vibronic
transitions61,62.

V. SUMMARY AND CONCLUSIONS

In sum, we describe the construction of a joint time-
dependent density-functional theory for the modelling of
solute-solvent systems. We derive coarse-grained action
functionals by eliminating environment degrees of free-
dom. This procedure enables us to examine the under-
lying assumptions and uncover previously ignored func-
tional dependencies in popular approaches such as the
time-dependent “polarizable continuum model” and to
explore their domains of validity. In particular, we find
additional contributions to the action functional which
are typically neglected in standard approaches. Also, in
order to replace the full frequency dependent solvent re-
sponse by a high-frequency dielectric constant, as is often
done in standard approaches, the excitation energy of the
solute has to be far from the poles of the solvent dielec-
tric function. Otherwise, a self-consistent solution of the
linear response equation is necessary.
We also introduce an explicit, approximate action func-

tional for the modelling of electronic systems in aque-
ous solution. Application of this functional to solvated
formaldehyde leads to good agreement with experiment
for the solvato-chromic shift of the lowest singlet excited
state. The implicit functional we introduced can now
be applied to more complicated systems, such as dyes in
Grätzel cells7 or solvated DNA molecules8,9.
The framework is now in place for future work to de-

velop approximate forms for the explicit solvent function-
als by making use of existing forms of time-dependent
functionals for classical liquids37 and to generalize time-
independent functionals for molecular liquids developed
by us63,64 to include time-dependent response of the sol-
vent electrons. The resulting theory would then allow
us to describe the nuclear dynamics of the environment
during the excitation and to compute solvation relaxation
functions which have been measured experimentally65,66.
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