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Abstract:  We have measured the dependence of the hysteretic voltage-induced torsional 

strain (VITS) in crystals of orthorhombic tantalum trisulfide on temperature and applied 

torque.  In particular, applying square-wave voltages above the charge-density-wave 

(CDW) threshold, so as to abruptly switch the strain across its hysteresis loop, we have 

found that the time constant for the VITS to switch (at different temperatures and 

voltages) varied as the CDW current.  Application of torque to the crystal could also 

change the VITS time constant, magnitude, and sign, suggesting that, at least in part, the 

VITS is a consequence of residual torsional strain in the sample which twists the CDW.  

Application of voltage changes the pitch of these CDW twists, which then act back on the 

lattice.  However, it remains difficult to understand the sluggishness of the response. 
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I.  INTRODUCTION 

 

     Quasi-one-dimensional conductors with sliding charge-density-waves (CDWs) are 

best known for their many unusual electronic properties, associated with polarization and 

motion of the CDW for applied voltages V ≥  VT, the CDW depinning threshold 

voltage.1,2  CDW depinning can also affect the crystal’s mechanical properties, e.g. lattice 

strains3,4 and drops in some elastic moduli.5-9  For example, in orthorhombic tantalum 

trisulfide (o-TaS3),10 the best studied material, the Young’s modulus and shear modulus 

decrease by ~ 2 % and ~ 25%, respectively,5,6 and there are hysteretic changes in sample 

length (ΔL/L ~ 10-6).3  The elastic anomalies have been understood as resulting from 

changing strain in the crystal causing relaxational changes of CDW phase domains,7,9 

while the length changes are associated with CDW polarization (i.e. rarefaction and 

compression on the two sides of the crystal)11 coupling to and straining the lattice.3,12  For 

an o-TaS3 crystal a few mm long at temperature T ~ 80 K, the elastic relaxation time is ~ 

1 sec near threshold9 while the relaxation time for longitudinal deformations of the CDW, 

measured electro-optically, is at least two orders of magnitude shorter.13 

      In 2007, Pokrovskii et al reported that crystals of o-TaS3 also exhibit small (Δφ ~ 1o) 

hysteretic twists when the CDW is depinned, with voltage dependences similar to that of 

the length changes and the CDW compressions/rarefactions.4 (Examples of the hysteresis 

loops are shown in Figure 4, below.) While these hysteretic twists are very sluggish, as 

discussed below, they also observed much smaller and faster, reversible twists, which 

grew continuously with voltage with no change at threshold.14  Similar effects were 

observed in other CDW conductors.14  Since these materials and CDWs have no known 

polar axes, there was no clear explanation for this unique “voltage-induced torsional 

strain” (VITS).  (We note that recently chiral structure, associated with three equivalent 

CDW wave vectors, has been observed in the CDW in TiSe2,15 but the CDW remains 

pinned at high electric fields in TiSe2, so the various anomalous electronic and 

electromechanical properties associated with depinning have not been studied.  In 

contrast, o-TaS3
 has a single CDW wave vector16 and no known chirality.) 

      In our earlier work, we verified the hysteretic VITS effect in o-TaS3 and studied its 

voltage, frequency, and time dependence (at T = 78 K).17,18  We found that near threshold, 
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the time constant for the VITS to jump across the hysteresis loop (i.e. when switching the 

applied voltage between +VT and –VT) is ~ 1 s, but it decreases rapidly with increasing 

voltage.18  Complete evolution of the hysteresis loops was even slower, as would be 

expected for voltage dependent relaxation times and strengths.  We suggested that the 

hysteretic VITS effect was due to CDW wave fronts being twisted, even without applied 

voltage, e.g. due to contacts or defects.18 

     To test this hypothesis, we sought to twist the sample with an additional applied 

torque.  Our measurements are done by placing the sample in an RF cavity19 with a small 

magnetized steel wire glued to its center.   When the sample twists, it moves the wire, 

modulating the resonant frequency of the cavity.  By applying a dc magnetic field, we 

could also add an external torque to the sample.  In addition, by simultaneously applying 

a small ac magnetic field, we could use the cavity response to (roughly) normalize our 

VITS signal.  (In References 17 and 18, the VITS signals were all presented as relative 

values.)  Our techniques are discussed in detail in Section II. 

    In carrying out these measurements, we observed that external torque could have a 

strong effect not only on the magnitude of the hysteretic VITS, as anticipated, but also on 

its time constant,   Most surprisingly, the external torque was even observed to reverse 

the sign of the voltage-induced torsional strain. These results and their implications are 

discussed in Section III.  Finally, in Section IV we discuss temperature dependent 

measurements carried out to try to determine the origin of the very long hysteretic VITS 

time constants.   

 

 

II.  EXPERIMENTAL TECHNIQUES 

 

      The techniques we used to study the hysteretic VITS effect were similar to those used 

in Reference 18.  Electrical contacts were glued, with silver paint, to the ends of an o-

TaS3 crystal, with typical dimensions ~ 4 mm x 10 μm x 2 μm.  A thin gold film was 

evaporated along half the length of the sample, electrically shorting this half of the 

sample (see Figure 1 in Ref. 20) and keeping the CDW pinned there, while the CDW 

could be depinned by applied voltage on the other half.1,10  A magnetized steel wire (1-3 
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mm) was glued to the center of the sample (at the edge of the gold film).  The sample was 

placed in a helical resonator RF cavity (with resonant frequency ~ 430 MHz and Q ~ 

300),19 with the end of the magnetic wire about ~ ¼ mm from the tip of the helix, as 

shown in the lower inset to Figure 1.  When the sample twisted, it changed the helix-wire 

separation and hence the resonant frequency of the cavity.  When driving the cavity at or 

near resonance, the transmitted signal would be modulated by the motion of the wire.  

The cavity was placed in a Helmholtz coil, so that a small magnetic field, parallel to the 

helix tip, could be applied by coil current IB (B/IB = 80 Gauss/Amp). 

      Three different types of experiments were performed:  i)  An ac-magnetic field was 

applied so that the sample would oscillate, with amplitude proportional to its shear 

compliance (J), allowing the voltage dependence of the shear compliance to be 

measured.8,9  The cavity was driven at resonance, so that the oscillating sample phase- 

modulated the output of the cavity at the magnetic field frequency, giving an ac signal 

(VJ) which was measured with a lock-in amplifier.19  As mentioned above, the 

compliance increases (by over 20% at low frequencies) for |V| > VT, so the threshold 

field was determined by this experiment.8,9  ii) A symmetric square wave voltage at 

frequency ω was applied to the sample, twisting the sample through the VITS effect, and 

the phase- modulated response of the cavity at ω measured as a function of square-wave 

voltage and frequency.17,18  As in Ref. (18), we denote this complex, frequency dependent 

torsional strain εω.  iii)  A symmetric-triangle wave voltage was applied to the sample, 

sweeping the sample through a hysteresis loop.  To measure the time-dependent VITS 

signal, the cavity was driven slightly off-resonance with an FM signal,8 and the response 

at the FM frequency measured and averaged with a digital oscilloscope.18  (Applying 

gold to half the sample effectively puts a voltage independent spring in parallel with the 

uncoated half of the sample, roughly halving the measured elastic and VITS anomalies.)   

       For the experiments discussed in Section III, the steel wire was ~ 3 mm long, a few 

times longer than that used in References 17 and 18, decreasing the torsional resonant 

frequency of the sample to ~ 100 Hz, but allowing us to twist the sample several degrees 

by an applied dc magnetic field.  Since the response of the cavity to sample motion 

should be (approximately) inversely proportional to the helix/wire separation, we expect 

1/VJ0 to vary linearly with magnet current, where VJ0 is the “pinned” (i.e. V=0) 
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compliance signal.  (Because sample strains can become frozen in the sample for |V| < 

VT, it is necessary to first depin the sample, applying V>VT at each magnetic field, before 

measuring VJ0.8)  Typical results are shown in the upper inset to Figure 1, where 1/VJ0 is 

plotted as a function of magnet current.  The hysteresis shows that the sample tended to 

stick slightly and undershoot its “equilibrium” position.  Using the measured length of the 

wire and (room temperature, IB = 0) helix/wire separation, the field dependence of the 

twist angle could be determined: for sample E, ∂φ/∂IB ~ 12o/amp.  Then, comparing the 

square-wave signals (experiment ii) at each magnetic field with VJ0, the voltage-induced 

twist angles (εω) could be calculated.  Finally, these magnetic field dependent values of εω 

could be used to normalize the FM signals of experiment iii.  Note that all these 

normalizations are only approximate (~ factor of 2), in view of estimates in the sample 

geometry and the assumption that the helix-wire separation does not change significantly 

with temperature. 

     In Section III, we show the magnetic field dependence of the compliance, square-

wave response, and hysteresis loops for two samples at T = 78 K.  The general features 

discussed for these samples were observed for a few other samples.   However, for most 

samples studied, the VITS responses were more complicated functions of voltage and/or 

frequency than for these, in some cases changing sign with increasing voltage.  Possible 

reasons for such complex behavior include a) the presence of more than one threshold 

voltage, e.g. due to imperfect screening by the gold film, b) complicated residual twists in 

the sample, as discussed below, and c) larger than usual reversible, non-hysteretic 

voltage-induced twists.14  As mentioned above, the latter grow continuously with voltage, 

with no threshold behavior, and could overwhelm the hysteretic VITS signal, especially 

for samples with large threshold voltages.  These samples were rejected, as the hysteretic 

VITS effect is the subject of our study. 

     In Section IV, we discuss the temperature dependence of εω.  Since the hysteretic 

response gets faster at higher temperature, a short (~ 1 mm) wire was attached to the 

sample to keep its resonant frequency high (730 Hz).  Therefore, the magnetic field 

response of this sample was weak and, although εω could still be normalized to VJ0 at 

each temperature, the corresponding twist angles were not calculated. 
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   To avoid confusion with the four samples discussed in References 17 and 18, the 

samples discussed in this paper are named E, F, and G. 

 

 

 

III. APPLIED TORQUE DEPENDENCE 

 

     Figure 1 shows the dc voltage dependence  of the resistance and change in shear 

compliance, with a 10 Hz oscillating magnetic field, for Sample E at T = 78 K, for two 

different dc magnetic fields which twist the sample.  Note the following: 

a) The resistance is independent of magnetic field. 

b) There is no clear sign of the threshold voltage in the resistance data, as the resistance 

appears to change continuously with voltage at all voltages.  This is a common problem 

for o-TaS3 at low temperatures, where CDW creep commences at a second threshold 

below VT.2,10,21  Identifying the threshold from the resistance curve is further complicated 

in a two-probe measurement, because CDW phase-slip affects the I-V curve.2 

c) The threshold field is clearly observed in the shear compliance data as the voltage at 

which J starts increasing.8.9  VT ~ 180 mV is independent of magnetic field within our 

sensitivity. 

d) The change in compliance with voltage appears to be slightly magnetic field 

dependent.  It is not yet clear if this is a real effect (for example, longitudinal strains are 

known to affect the change in shear compliance22) or a consequence of a nonlinear 

dependence of the measurement sensitivity on changes in sample position.  However, if 

the latter, the small changes in sensitivity (~ 1%) will not have a significant effect on the 

square-wave results, as the relative scatter in εω is > 1%. 

     Figure 2a shows the dependence of εω on square-wave amplitude at two different 

magnetic fields (for ω/2π = 10 Hz); the response both in-phase with the square-wave 

(solid symbols) and in quadrature (open symbols) is shown.  The magnitude of the VITS 

is much smaller for IB = - 0.6 A than for IB = + 0.3 A, but the most striking feature is that 

εω has opposite signs at the two magnetic fields.  In addition, the peak in the quadrature 

signal, for which the average relaxation time (defined below) τ0 ~ 1/ω, occurs closer to 
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threshold for IB = - 0.6 A than for IB = + 0.3 A, implying that, at each voltage, the 

response is faster for IB = - 0.6 A. 

     Figure 2b shows the frequency dependence of εω for two square wave voltages and 

magnet currents (for which εω is positive).  The curves show fits to the modified 

relaxation expression23 

εω = εω0/[1+ (-iωτ 0)γ],      (1), 

 

where τ0 is the average relaxation time and a value of the exponent γ < 1 allows for a distribution 

in relaxation times; the distribution of relaxation times is given by18,23 

 

a(τ) = (εω0/π) (τ/τ0)γsin (γπ) / [1 + 2(τ/τ0)γ cos(γπ) + (τ/τ0)2γ].       (2). 

 

The magnetic field dependence of the fitting parameters for these two square-wave voltages is 

shown in Figure 3.  For both square-wave voltages, the relaxation strength and average relaxation 

time have strong dependences on magnetic field, but whereas the relaxation strength falls 

monotonically with IB , the dependence of τ0 differs at the two voltages.  We will discuss a 

consequence of these dependences later.  (In these fits, the exponent γ varies from 1 to 0.65, 

which corresponds to a distribution of relaxation times over a decade wide.)   

    Figure 4 shows the magnetic field dependence of hysteresis loops for sample F, for 

which ∂φ/∂IB ~ 5o/amp. All these loops were measured with 0.3 Hz, 0.75 V triangle 

waves, slow enough that the shapes/sizes of the loops are close to their static limits.18  

Note that, as discussed in Reference 18, the loops are not symmetric functions of voltage; 

for this sample, the loop closes more gradually at positive voltages than at negative.  The 

magnitude of the VITS, i.e. the height of the hysteresis loop, is again a strong function of 

torque on the sample.  As IB increases toward 0.8 A, the main loop closes, leaving a 

subsidiary loop at negative voltage.  For IB > 0.8 A, the main loop starts opening again, 

but has now reversed direction; this corresponds to the change in sign of εω for sample E 

shown in Figure 2a. 

     Note that one expects these hysteresis loops to change shape with changing applied 

torque due to the (~ symmetric in voltage) increases in shear compliance for |V| > VT.6,8,9  

Since the changes in J are not hysteretic, they would simply add a “∩” shape to the 

hysteresis loops, with amplitude increasing with increasing IB.  For sample F, J changed 
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by ~ 3% at V = 0.75 V, so a “∩” with amplitude comparable to the width of the largest 

hysteresis loop is expected at IB = 1 A.  Comparison of the shapes of the loops show that 

this is generally seen, although the curvature does not vary regularly with IB (e.g. the “∩” 

curvature is a maximum at IB ~ 0.7 A), perhaps because of IB dependent values of ΔJ(V). 

     That the sign of the hysteretic voltage-induced torsional strain, as well as its 

magnitude, depends on the magnetic field, and therefore applied torque and twisting of 

the sample, suggests that residual twisting of the sample, even with no applied torque, is 

responsible for the hysteretic VITS.  This residual twisting may be a consequence of how 

the sample is mounted on the contacts and how the magnetic wire is attached to the 

sample, but it may also be “built in” to the crystal; in particular the thin o-TaS3 crystals 

are notorious for their large number of defects which have prevented determination of the 

crystal structure.16   If a crystal has a local twist β = ∂φ/∂z, then, to first order, the local 

CDW wave vector will have an azimuthal component: 

 

q = q0 (z + βrφ),                          (3) 

 

where q0 is the local wave vector in the absence of twisting, z and φ are unit vectors in 

the longitudinal and azimuthal directions,  r is the radial distance from the center of the 

sample, and we have assumed a circular cross-section for simplicity.  With application of 

voltage, the CDW will become polarized, becoming compressed and rarefied on the two 

ends of the sample,11 changing the helical pitch: 

 

                                            q0(z) = q00 + Δq0(z).    (4) 

 

Δq0(z) consists of both reversible, small changes close to the contacts and a long-range 

hysteretic component.24,25  The latter is frozen in the sample if the voltage is removed and 

reverses sign when a voltage near threshold of opposite polarity is applied; i.e. it exhibits 

hysteresis similar to that of the voltage-induced torsional strain.  As mentioned above, 

this component of Δq0(z) can cause local, hysteretic longitudinal stresses in the crystal. 

We similarly assume that the hysteretic changes in the azimuthal component can put 

torsional stress on the sample and cause the VITS. 
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       However, the net changes in length caused by Δq0(z) are very small (ΔL/L ~ 10-6)3 

because, while the CDW deformations in o-TaS3 have been observed to be slightly larger 

on the negative side of the crystal than the positive,26  the asymmetry is small [i.e.    

Δq0(z) ~ -Δq0(L-z), where L is the length between contacts of the crystal], so the 

compressions and stretches on the two sides of the sample almost cancel.3,12  If the 

torsional stress was simply proportional to βΔq0(z), then (for constant β) the VITS would 

change sign in the center of the sample, with a net Δφ(L) ~ 0 at the free end.  On the other 

hand, if the torsional stress was proportional to ∂q/∂z, the VITS would grow continuously 

with the distance from the clamped end, as observed.4  

    One way to accomplish this dependence on ∂q/∂z is to assume that the torsional stress 

that results from βΔq0(z) acts as a local external torque, η, which is opposed by the 

torsional rigidity κ ~ GR4/z, where G = 1/J is the shear modulus,6 R is the effective radius 

of the sample, and we explicitly assume that the sample is clamped at z=0.  From Eqtns. 

(3) and (4),  

 

 η(z) ~ (μ/q00) ∫ dA r (βr Δq0) ~ (μR4 β/q00) Δq0        (5), 

 

where A is the cross-sectional area and μ is the torsional “trans-modulus” relating crystal 

stress to CDW strain.  The change in twist angle along the length of the sample will be: 

 

∂∆φ/∂z ~ ∂(η/κ)/∂z  ~ μ β (z ∂q/∂z + Δq0)/ Gq00 .     (6) 

            

Consider the case of a sample with a uniform residual twist, β = constant, and taking 

Δq0(z) ~ -Δq0(L-z), the integral of the second term in (6) will approximately vanish and 

the twist angle of  the wire at the “free” end of the sample will be given by:  

 

Δφ(L) ~ μ β L Δq0(L)/Gq00 .        (7) 

 

       For example, the hysteresis loop of Sample F closes at IB = 0.8 A, so we take βL ~ 

4o.  Taking G ~ 5 GPa,6 Δφ(L) ~ 0.1o, and μ ~ 40 GPa, the value of the longitudinal trans-
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modulus found in Reference 12 (where it is called gYc), we find Δq0(L)/q00  ~ 3 x 10-3.  

This is the same relative shift in q found from transport measurements in NbSe3.11   

     Of course, all these values should only be considered order of magnitude estimates.  

Most samples presumably have non-uniform residual twists (i.e. spatially dependent 

values of β), which can give rise to the complicated voltage dependences of the VITS as 

Δq0(z) varies with voltage, observed for some samples.  It should also be noted that our 

result, in which residual twist replaces the need for a fixed polar axis in the crystal, seems 

to contradict one experiment done in Reference (4), in which when a sample was cut and 

flipped over, its VITS direction also reversed. (Note that if β is caused by growth defects 

rather than sample mounting, it does not change sign when the sample is flipped over.)  

However, given the flexibility of the crystals, one cannot rule out that cutting and 

remounting the sample in these experiments may have changed the sign of β and the 

resulting VITS.  Alternatively, it is also possible that the β-dependent VITS only 

represents one possible mechanism, and that ο-TaS3 crystals do contain a polar axis (e.g. 

because of an undetected chirality15 or surface pinning of the CDW4,18) that also 

contribute.     

      Our model has interesting implications if a sample were mounted so that it was free to 

turn at both ends.  For an applied voltage above threshold, the two ends would turn in 

opposite directions, until stopped by its torsional rigidity, but for a uniform change in q 

caused by a change in temperature, both ends would turn in the same direction, with no 

internal restoring force.  Of course, the long time constants associated with the VITS 

indicate that there are large internal frictional forces, not addressed by our model, which 

will damp the motion.   

      Indeed, it is difficult to understand the long time constants associated with the VITS.  

Near threshold, the time constant for longitudinal changes in q (i.e. CDW polarization) is 

governed by diffusion, with a diffusion constant inversely proportional to the square of 

the phason velocity;27 at higher voltages, CDW phase-slip allows the local wave vector to 

change more quickly.11,28  A sample a few times shorter than those studied here was 

observed to have a polarization time constant ~ 1 ms near threshold.13 Even correcting for 

the L2 dependence of the diffusion time, we expect the CDW polarization in our samples 

to change two orders of magnitude faster than does the observed VITS.   
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IV. TEMPERATURE DEPENDENCE 

 

    To try to shed light on the slow torsional response, we studied the temperature 

dependence of the square-wave response of Sample G.  As mentioned above, this sample 

had a shorter magnetic wire to give it a higher resonant frequency (730 Hz) so that its 

dynamics could be studied over a wider range (0.1 Hz ≤ ω/2π ≤ 200  Hz).  Therefore, 

measurements of its dc magnetic field dependence were not done, although ac magnetic 

fields could still be used to study the voltage dependence of its shear compliance. 

     Figure 5a shows the dc voltage dependence of its resistance and shear compliance  

(with 10 Hz oscillating magnetic field) at temperatures between 90 K and 120 K.  At T = 

78 K (not shown), the voltage dependence of its resistance shows no threshold 

dependence, as discussed above for sample E.  However, at higher temperature, the 

voltage at which the resistance falls due to CDW current is clearer, although the 

“resistance threshold” typically seems slightly greater than VT, the threshold observed for 

the compliance, as discussed in Reference 9.   

     Figure 5b shows the 10 Hz square-wave response at the same temperatures.  Note that, 

at each temperature, the onset voltage for the square-wave response (Von) is slightly 

below VT, as discussed in Reference 17. The temperature dependences of VT and Von are 

plotted below in Figure 7b; VT and Von are weakly temperature dependent between 90 K 

and 120 K, and their difference is small (25 ± 5 mV), but VT grows rapidly at lower 

temperatures. 

      To compare the dynamic response at each temperature, one should choose appropriate 

voltage criteria, e.g. so that there would be a fixed driving potential on the CDW.  In 

particular, it wasn’t clear whether we should use VT or Von as the relevant “threshold” 

(although since VT-Von is approximately constant for T ≥ 90 K, the distinction isn’t very 

important here).  We therefore took measurements at the following square-wave voltages: 

VT,  Von + 50 mV,  VT + 50 mV,  Von+100 mV,  and VT +100 mV at  several temperatures 

between 78 K and 120 K; at higher temperatures, the response moves out of our 

frequency window.  Two examples, at Vsquare = Von+100 mV = 170 mV, are shown in 
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Figure 6, with fits to Eqtn. 1.  (Von = 70 mV at both 90 K and 110 K.)  The increase in the 

speed of the VITS with increasing temperature is evident, as the peak in the quadrature 

response of εω increases from ~ 1 Hz at 90 K to ~ 50 Hz at 110 K.  

     The parameters of the fits for all five voltages and temperatures 90 K < T < 120 K are 

plotted in Figure 7a.  (At T = 78 K, the average relaxation times, even for VT + 100 mV, 

were so slow that we could not do meaningful fits for data in our frequency window.)  

For each voltage criterion, the magnitude of the VITS does not vary much with 

temperature in this range, consistent with the results of Pokrovskii et al.14  The quadrature 

peaks broaden considerably at the lowest voltages, so the values of the exponents 

decrease from ~ 0.7 (corresponding to a one decade width in the time constant 

distribution), to 0.3 (corresponding to almost a five decade width). 

       For each voltage criterion, the average relaxation time falls by two decades between 

90 K and 120 K.  In contrast, the low-field (i.e. pinned CDW) resistance, R0 only falls by 

a factor of ~ 3.  The current carried by the CDW (ICDW = Itotal – V/R0), however, increases 

by two decades for each voltage above VT, as shown in Figure 7c, where we also plot the 

temperature dependence of ICDW τ0.  Within the ranges measured, ICDW τ0 is roughly 

independent of both temperature and voltage, suggesting that the time constant of the 

VITS is determined primarily by the CDW current.  (The temperature dependence of the 

relaxation time for longitudinal CDW deformations has not been measured for o-TaS3, 

but for quasi-one dimensional K0.3MoO3, “blue bronze”, it has been observed to have a 

much weaker dependence on both temperature and CDW current25 than that we are 

observing for the VITS in o-TaS3.) 

         As mentioned, at T = 78 K the VITS time constants18 are much longer than the time 

constants associated with longitudinal CDW deformations near threshold;13 comparison 

of the results in References 13 and 18 shows that this remains true for voltages at least up 

to 3VT.  Our present results therefore suggest that, as the CDW deforms under applied 

voltage, sample strain is held back until “released” by the flow of CDW current. This, in 

turn, suggests that it is not crystalline defects (e.g. dislocation lines) that are hindering the 

motion, as they are not expected to interact directly with CDW current, but CDW defects, 

e.g. local phase deformations,24 which are responsible.  Note that for a twisted sample, 

there will presumably be azimuthal CDW current, parallel to the local CDW wave vector 
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given by Eqtn. (1). If it was this azimuthal CDW current that released the strain, then one 

would expect that, as the sample was twisted by the applied magnetic field, the VITS 

relaxation time would vary inversely with its magnitude.  However, as shown in Figure 3, 

this is not so; e.g. at Vsquare = 400 mV, both τ0 and εω0 decrease with increasing IB.  

(Supporting the fact that azimuthal currents are not relevant is also the fact that 

longitudinal sample strains, as measured by the length of the crystal, also responded very 

sluggishly, with time constants > 1 sec, to changes in the polarity of applied voltage.3)  

Additional experiments on the temperature and current dependence of both the VITS and 

CDW deformations, especially transverse deformations, would be desirable to clarify 

their relationship, including measurements that compared their onset voltages, e.g. what 

limits the VITS dynamic response at voltages below the CDW current threshold.  

Unfortunately, such detailed measurements of local CDW deformations (e.g. using 

electro-optic techniques13) would require samples a few times wider than those that have 

been grown to date. 

       In conclusion, we have found that twisting the sample by an applied torque can affect 

both the magnitude and sign of the voltage-induced torsional strain, and have suggested a 

model in which the hysteretic VITS is due to twists in the sample causing azimuthal 

deformations of the CDW, which in turn change under applied voltage and then feed back 

on the crystal, changing its torsional strain.  It is difficult, however, to account for the 

sluggishness of the VITS signal (e.g. at least two orders of magnitude slower than 

changes in CDW deformations at T = 78 K).  While our measurements on the temperature 

dependence of the VITS suggest that it is controlled by CDW current, the mechanism for 

this is unclear. 

       We thank R.E. Thorne of Cornell University for providing samples.  This research 

was supported by the National Science Foundation under Grants Nos. DMR-0800367  

and EPS-0814194. 
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FIG. 1. Resistance (R) and shear compliance (J) vs. dc voltage across sample E at T = 78 

K at two different magnetic fields.  The compliance was measured with a 10 Hz 

oscillating torque.  (Note that the symbols completely overlap for the resistance.) Upper 

inset: Reciprocal of VJ0, the shear compliance signal at V=0, vs. magnet current, used to 

find the resulting twist, ∂φ/∂IB ~ 12o/amp .  Lower inset: schematic of the sample 

configuration. 



 17

Vsquare (mV)
0 200 400 600 800

ε ω

~ 0.2o
IB = + 0.3 A

IB = - 0.6A

ω/2π   (Hz)
0.1 1 10

IB = + 0.3A
Vsquare = 400 mV

IB = + 0.9A
Vsquare = 700 mV

~ 0.1o

(a) (b)

ω/2π  = 10 Hz

 

 

FIG.2. (a) Dependence of the VITS, εω, on square-wave amplitude at two magnet currents 

for Sample E at T = 78 K (with twist angle ∂φ/∂IB ~ 12o/amp).  Solid symbols: response 

in-phase with the 10 Hz square-waves; open symbols: response in quadrature with the 

square-waves.  b) Square-wave frequency dependence of εω as function of frequency for 

two different square-wave amplitudes and magnet currents.  Solid symbols: in-phase 

response; open symbols: quadrature response.  The curves are fits to Eqtn.(1). 
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FIG. 3.  Dependence of fitting parameters of Eqtn. (1) on magnet current for Sample E at 

T = 78 K (with twist angle ∂φ/∂IB ~ 12o/amp).  Solid symbols: 700 mV square-waves; 

open symbols: 400 mV square-waves.  The curves are guides to the eye.  (Where not 

visible, error bars are smaller than the points.) 
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FIG, 4.  VITS hysteresis loops measured for Sample F with 0.75 V, 0.3 Hz triangle waves 

at several magnet currents (with twist angle ∂φ/∂IB ~ 5o/amp) at T = 78 K.  Curves for 

successive values of IB are offset for clarity.  Arrows show the directions of the loops.  

(Three loops are overlaid for each value of IB.)  
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FIG. 5.  (a)  Resistance and shear compliance (measured with 10 Hz oscillating torque) 

vs. dc voltage at a few temperatures, measured for Sample G.  (b)  10 Hz VITS response 

of Sample G vs. square-wave voltage at a few temperatures; the responses in-phase (top 

panel) and in quadrature (bottom panel) with the applied square-wave are shown. 
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FIG. 6.    Square-wave frequency dependence of εω as function of frequency with Vsquare = 

Von + 100 mV = 170 mV at two different temperatures for Sample G.  Solid symbols: in-

phase response; open symbols: quadrature response.  The curves are fits to Eqtn.(1). 
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FIG. 7.   (a) Fitting parameters to Eqtn. (1) for sample G vs. temperature for several 

voltages.   (b) Threshold and onset voltages vs. temperature for Sample G; curves are 

guides to the eye.  (c)  CDW current and ICDW τ0 vs. temperature at a few voltages.  

(When not shown, the error bars in ICDW are smaller than the symbols.)  


