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Topological insulators are noninteracting, gapped fermionic systems which have gapless boundary
excitations. They are characterized by topological invariants, which can be written in many different
ways, including in terms of Green’s functions. Here we show that the existence of the edge states
directly follows from the existence of the topological invariant written in terms of the Green’s
functions, for all ten classes of topological insulators in all spatial dimensions. We also show that
the resulting edge states are characterized by their own topological invariant, whose value is equal
to the topological invariant of the bulk insulator. This can be used to test whether a given model
Hamiltonian can describe an edge of a topological insulator. Finally, we observe that the results
discussed here apply equally well to interacting topological insulators, with certain modifications.

PACS numbers: 05.30.Fk, 03.75.Kk, 03.75.Ss

I. INTRODUCTION

The time-reversal invariant topological insulators of
recent interest, and the integer quantum Hall systems
of longstanding interest (for recent reviews at a variety
of levels, please see Ref. 1), are now known to be just
two elements in a classification table of all noninteract-
ing fermionic systems,2,3 which identifies ten symmetry
classes of topological insulators. All of these systems are
gapped in the bulk and possess a bulk topological invari-
ant. They are also supposed to have topologically pro-
tected gapless excitations at the boundary. These gapless
excitations are often taken as the most significant, even
the defining, property of topological insulators.

A variety of arguments can be given supporting the
existence of gapless edge states based on bulk properties,
some more detailed (such as Laughlin’s original argument
designed for the integer quantum Hall effect4) and some
more qualitative. For example, consider the case of a
model of noninteracting fermions that supports both a
topologically trivial phase and a nontrivial phase, with
the phase transition driven by varying a parameter in the
system’s Hamiltonian. At the transition, corresponding
to a special value of the parameter, the excitation gap
must close. A boundary between two samples in the two
phases can then be seen as a domain wall across which
the parameter varies spatially through its special value.
This “spatial phase transition” should then also result in
gapless excitations, which form in the vicinity of the spe-
cial value. Such arguments, while correct, tell us nothing
about what kind of gapless edge excitations might form
at the boundary of the topological insulator.

Here we rely on the method of Green’s functions to
give a general, quantitative argument that proves the ex-
istence of the edge states for all topological insulators.
Moreover, our argument shows that the edge states are
described by their own topological invariant, analogous
to the winding number of a vortex in a superfluid or to
the charge of a particle as measured by Gauss’ law (and
similar to the defect invariants of Teo and Kane5), whose
value must be equal to the invariant of the bulk insula-

tor. This edge invariant vanishes if the edge states are
gapped, giving a simple way to see why they must be
gapless. The existence of this invariant gives us a tool
to test whether a particular Hamiltonian can describe an
edge theory, as it is straightforwardly calculable for any
Hamiltonian under consideration.

Before we derive this argument later in this article,
let us describe the edge topological invariant. A d-
dimensional topological insulator that is translationally
invariant, so that the d-dimensional momentum pd is a
good quantum number, possesses a d-dimensional (bulk)
topological invariant Nd.

3 If the topological insulator has
an edge, translation invariance in the direction perpen-
dicular to the edge is lost, and the good quantum number
is the (d−1)-dimensional momentum pd−1 parallel to the
edge. Let us take one of the components of this momen-
tum, say pd−1, and fix it at some large value Λ. Although
we expect the edge to have gapless excitations at some
momentum (and so is not an insulator), the Hamiltonian
at fixed pd−1 = Λ is gapped if Λ is sufficiently large (as
a function of the remaining d − 2 momenta), and so de-
scribes a (d−2)-dimensional insulator. We will show that
this insulator is a topological insulator, with the topolog-
ical invariant Nd−2(Λ). Finally, we will show that

Nd = Nd−2(Λ)−Nd−2(−Λ), (1)

which constitutes the main result of this article.
As an example, consider the three-dimensional edge of

a four-dimensional time-reversal invariant topological in-
sulator with spin-orbit coupling. Suppose the excitations
localized at the boundary are described by the Hamilto-
nian

H = v
∑

α=x,y,z

pασα − µ, (2)

where σα are the Pauli matrices and v is Fermi velocity,
which satisfies the appropriate symmetry (time-reversal
invariance) H(p) = σyH

∗(−p)σy. Its single-particle ex-
citation spectrum is

ε±(p) = ±v
√
p2
x + p2

y + p2
z − µ, (3)
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and its zero energy excitations occur on a sphere of radius
µ/v, as shown in Fig. 1. Let us see that this is indeed
the edge of a topological insulator. We fix pz = ±Λ to
obtain the two-dimensional Hamiltonian

H± = v (pxσx + pyσy ± Λσz)− µ, (4)

again as illustrated in Fig. 1. This Hamiltonian, un-
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FIG. 1. The Fermi surface of radius µ/v of the topological
insulator discussed in the text, and the surfaces pz = ±Λ on
which the edge topological invariant is computed.

derstood as describing a two-dimensional system, is well
known. For example, it has been studied as a model of
quantum Hall transitions.6,7 The two-dimensional topo-
logical invariant of this Hamiltonian is known to be equal
to its Hall conductance in units of e2/h (note that Eq. (4),
unlike Eq. (2), breaks time reversal invariance), and, as-
suming Λ > µ/v, evaluates to

N2(Λ)−N2(−Λ) = 1. (5)

Therefore we conclude that this H is a valid model of
the boundary of a four-dimensional topological insulator.
This illustrates the usefulness of Eq. (1).

This example assumes an unphysically large bulk di-
mension, and the reader may doubt that it has any rele-
vance for real-world physics. However, it is known8 that
the experimentally realized time-reversal-invariant topo-
logical insulators in 2 and 3 dimensions can be viewed
as descending from a four-dimensional parent, simply by
setting one or two of the momenta to zero. Similarly, the
three-dimensional boundary just discussed can be seen as
the parent of the boundary theories of those real systems.
In particular, it follows from Eq. (2) that the boundary
theory for the two dimensional time-reversal invariant
topological insulator is H = v σxpx − µ, while that of
the three dimensional time-reversal invariant insulator is
H = v (σxpx + σypy)−µ. We will return to this “dimen-
sional reduction” later in this article.

The Green’s function formalism we use is quite pow-
erful: it remains applicable even when interactions are
added to the system, since Green’s functions exist for in-
teracting as well as for noninteracting systems. Here one

must comment that the power of topological invariants
often lies in the fact that they represent the response of
noninteracting systems to external electromagnetic field.
Once the interactions are turned on, the topological in-
variant written in terms of interacting Green’s functions
may or may not represent the response, and this could be
considered an impediment to using the Green’s function
formalism to describe interacting topological insulators.
However, the main result, Eq. (1), is correct regardless
of the presence of interactions as will be clear from its
derivation. If one takes as the most physically relevant
property of topological insulators is the existence of edge
states, then since the relation Eq. (1) relates the topo-
logical invariant to the property of the edge, this rela-
tion, and not the response, can in principle be taken as a
starting point of the application of this formalism to the
interacting topological insulators.

Yet the interpretation of Eq. (1) may change once the
interactions are turned on. As discussed in a recent pa-
per by one of us,9 in the presence of interactions the
(eigenvalues of the) Green’s functions may have zeroes
localized at the edge, in addition to the poles that indi-
cate the usual edge states. From the point of view of the
topological invariants, zeroes are similar to poles, and can
result in a nonzero edge invariant even in the absence of
zero-energy edge states.10 In fact, it can be shown that
the recent result of Ref. 11, where a model topological
insulator loses its edge states in the presence of inter-
actions, is due to the replacement of the edge states by
the zeros of the Green’s function.12 The study of the ef-
fects of interactions using the formalism developed here
appears to be a useful direction of further research, but
goes beyond the scope of this article. In what follows
we mostly assume that the fermions do not interact, al-
though throughout this article we point out what exactly
changes if interactions are taken into account.

To connect this article to previous publications, we re-
mark that the relation Eq. (1) was discussed for d = 2
in Ref. 13. Subsequently, it was extended for d = 1 and
discussed in the presence of interactions in Ref. 9. Here
we extend it for all topological insulators, in any number
of dimensions.

We proceed as follows: in section II we derive Eq. (1)
for systems with no symmetry other than translational
(class A in the Altand-Zirnbauer classification14,15),
which only have integer-valued topological invariants in
even spacial dimensions. Then in section III we describe
the effects of discrete symmetries on the invariants; and
then describe how these results imply the relation be-
tween bulk and surface physics for Z2 topological sys-
tems. Finally in section IV we discuss systems with chi-
ral symmetry. Appendix A contains the derivation of a
key step in our derivation of Eq. (1), and Appendix B
presents a more complete discussion of 1D topological
insulators.
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II. TOPOLOGICAL INSULATORS WITHOUT
ANY SYMMETRIES

We start with a translationally invariant topological in-
sulator with a single particle Green’s function Gαβ(ω,p).
If interactions are absent, the insulator can be described
by the Hamiltonian

H =
∑
p

Hαβ(p) â†αpâβp. (6)

Here â†αp creates a fermion with momentum p in d dimen-
sions, and the species label α runs over the spin, bands,
as well as particle/hole space for a superconductor (sum-
mation on indices should be always understood). In that
case, the Green’s function is simply given by

G(ω,p) = [iω −H(p)]−1. (7)

Once interactions are switched on, simple expressions of
this kind are no longer available, but Green’s function
can still be defined in a standard way (see, for example,
16).

The bulk topological invariant is

Nd = Cd εa0...ad

∫
dωddp trG−1∂a0G . . .G

−1∂adG, (8)

where a runs over (ω,p) , and ε is fully antisymmetric
tensor, with εωp1...pd = +1 (the other nonvanishing com-
ponents are obtained by permutation). The constant Cd
is given by3

Cd = −(2πi)−(d/2)−1(d/2)!/(d+ 1)! (9)

The spatial dimension d is even, as Nd vanishes when d
is odd (by antisymmetry of ε and cyclicity of the trace
tr); we will later introduce a different expression, valid
for chiral systems in odd dimensions, that we denote by
the same symbol.

This topological invariant always evaluates to an inte-
ger, and gives the Hall conductance in two-dimensional
space,17 at least in the absence of interactions — it re-
mains a topological quantity (an integer) even with in-
teractions. This is true simply because it measures the
winding of the map from a (d + 1)-dimensional space
(ω,pd) to a space of matrices G; it is known that such a
map can be topologically nontrivial if d is even. More-
over, it is clear that in the absence of interactions, to
change the value topological invariant one needs to de-
form the Green’s function in such a way that either G or
G−1 becomes singular. For noninteracting systems, this
is only possible if ω = 0 and H has zero energy states as
follows from Eq. (7); this results in infinite G at ω = 0
and the closing of the gap in the spectrum. For inter-
acting systems G itself can acquire zero eigenvalues at
ω = 0,9 so that G−1 is singular; thus interacting systems
can change the value of their invariant Eq. (8) without
ever closing the gap. All of this matches known results.

Now we introduce some technology, inspired by
Volovik.13 Consider a d-dimensional system with a do-
main wall of dimension d − 1; the Hamiltonian varies in
the direction perpendicular to the domain wall in such a
way that far from the domain wall the Hamiltonian de-
scribes a topological insulator with the invariant NR

d or
NL
d , on the right or left side of the domain wall (what

this means precisely will be defined below). Since there
are only d−1 good momenta, it is described by the mixed
Green’s function G̃(ω,pd−1; s, s′), where s is the coordi-
nate normal to the boundary and is effectively another
matrix index. A Fourier transform with respect to s− s′
produces the Wigner (-Weyl) transform G(ω,pd, s̄),18,19

with s̄ = (s + s′)/2 and pd the momentum conjugate
to s − s′. Far from the domain wall, this will become
s̄-independent and coincide with the bulk Green’s func-
tion (that is, with translation invariance the Wigner and
Fourier transforms are the same).

Importantly, two objects exist which can be interpreted
as the inverse of G. The “true” inverse satisfies∑

β

∫
ds′K̃αβ(s, s′) G̃βγ(s′, s′′) = δαγδ(s− s′′) (10)

(in this expression the ω and pd−1 dependence of K̃ and

G̃ was suppressed for brevity). For noninteracting sys-
tems

K̃(ω,pd−1; s, s′) = iω −H(ω,pd−1; s, s′), (11)

but for interacting systems one should rely solely on
Eq. (10) to calculate K̃. At the same time, matrix (or
local) inverse G−1 satisfies

G−1
αβ(ω,pd, s̄)Gβγ(ω,pd, s̄) = δαγ . (12)

With translation invariance along s, K = G−1, but in the
presence of a domain wall K 6= G−1 [here K(ω,pd, s̄) is

the Wigner transform of K̃(ω,pd−1; s, s′)].
With these tools, we define the (d + 2)-dimensional

vector

na0 = Cd εa0a1...ad+1
trG−1∂a1G . . .G

−1∂adG (13)

in the space (ω,pd, s̄). Remarkably, the divergence of
this vector is zero except where G (or G−1 if interactions
are present) is singular, as can be checked by direct dif-
ferentiation. This is completely analogous to the electric
field in electrostatics with point charges or charged sur-
faces. Here, the sources of n are singularities (or zeros)
of G. The analogy to electrostatics is productive; we
will essentially measure the charge of a singularity with
Gauss’ law, integrating the flux of n over a surface that
surrounds the charge.

For the rest of this section, for simplicity we will always
refer to these as “singularities” having in mind that in the
absence of interactions G cannot have zeros. We will also
keep in mind that if interactions are present, singularities
will imply either infinite or zero G.
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The singularities of G may occur at multiple points of
the d + 2 dimensional space or on surfaces in the space
spanned by (ω,pd, s̄). We denote these fi.

Because G(ω,pd, s̄) reduces to the bulk Green’s func-
tion far from the boundary (domain wall), the definitions
Eqs. (8) and (13) mean that we can compute Nd as the
flux of n through the surface s̄ = L for large L. That
is, the difference between topological invariants on either
side (right NR

d and left NL
d , say) of the boundary,

NR
d −NL

d =

∫
dωddp [ns̄(s̄ = L)− ns̄(s̄ = −L)], (14)

is just the flux of n through the combined surface
(ω,pd,±L), shown in Fig. 2. On the other hand, and

s

Ω

pd

n

FIG. 2. The surfaces s̄ = ±L on which Nd is computed as
the flux of n.

this is the crucial point, because ∂ana = 0 we can use
any surface we like to compute NR

d − NL
d so long as it

encloses the singular surfaces of G. Denoting by Sfi any
(d + 1)-dimensional “Gaussian” surface (for example, a
sphere) surrounding fi we find

NR
d −NL

d =
∑
i

∫
dSfi · n. (15)

Eq. (15) constitutes the first half of our argument.20

To relate the flux of n to the edge properties of the
system, we construct a d-dimensional vector r out of the
mixed Green’s function G̃(ω,pd−1; s, s′), which allows us
to define a topological invariant that directly captures
the behavior of the edge states. We define

ra0 = Cd−2 εa0...ad−1
Tr K̃ ◦ ∂a0G̃ ◦ · · · ◦ K̃ ◦ ∂ad−1

G̃. (16)

The convolution (Ã ◦ B̃)(s, s′′) =
∫
ds′Ã(s, s′)B̃(s′, s′′)

that appears here is really a generalization of matrix mul-
tiplication to functions of two coordinates s, s′. That is,
the coordinates s, s′ are treated as matrix indices of the
functions Ã and B̃, and G̃; of course, these functions also
carry the ordinary matrix indices α, β that label fermion
species, etc, and which are being summed over in the
usual way. Then Tr Ã ≡

∫
ds trÃ(s, s) is just the trace

for these generalized matrices. The index a here runs
over (ω,pd−1), the space of the vector r.

The vector r, just like the vector n above, is divergence-
free, except at singularities of the mixed Green’s function
G̃. These singularities can also be interpreted as “elec-
trostatic” sources for the vector r emanating from them.

It is clear that the singular surfaces fi — the sources
of n — become the sources of r as well when projected
from the (d + 2)-dimensional space (ω,pd, s̄) onto the
d-dimensional edge space (ω,pd−1). Since the Green’s

function G̃ = [iω −H]
−1

can only be singular where ω =
0 and H has zero energy eigenstates, these sources are
confined to ω = 0 and form surfaces (or points) in the (d−
1)-dimensional space spanned by pd−1, which we identify
with the edge Fermi surfaces and Dirac points and denote
Fi (having in mind that in the presence of interactions

surfaces and points of zero G̃ play an equivalent role).
Remarkably, we can prove the following statement:∑

i

∫
dSfi · n =

∑
i

∫
dSFi · r. (17)

Here SFi is the (d − 2)-dimensional surface surrounding
the Fermi surface (or Dirac point) Fi. The proof of this
statement is given in Appendix A and is quite involved
(although for d = 2 the proof is significantly simpler; it
is given in Ref. 13). It relies on the approximation of
the domain wall being smooth. However, the corrections
to this equation form a series expansion in powers of the
gradient ∂s̄G. Since both sides of this equation are inte-
gers due to Eq. (15), small corrections to it must vanish.

It follows from Eqs. (15) and (17) that

NR
d −NL

d =
∑
i

∫
dSFi · r. (18)

In words, this says that the Fermi surfaces (and Dirac
points) on the edge are characterized by “topological
charges,” or fluxes of r emanating from these surfaces
and points. This charge is equal to the difference in the
bulk topological invariants on either side of the bound-
ary. Eq. (18) is the quantitative statement of the fact
that gapless excitations are required at a boundary be-
tween bulk insulators with different values of the topo-
logical invariant Nd (in the presence of interactions, there
can be zeroes instead9). Indeed, in the absence of such
excitations, r is divergence-free everywhere and its flux
is always zero.

What remains is to interpret this charge as a difference
of topological invariants, as discussed in the beginning
of this article. So long as the Fermi surface does not
traverse the Brillouin zone in the pd−1 direction, we can
choose SF to be the surfaces (ω,pd−2,±Λ) for suitable
Λ, instead of the spheres closely surrounding the Fermi
surface(s) that we assumed until this point [see Fig. 3].

The flux through SF is then the difference of the fluxes
of r through these two surfaces. In turn, those fluxes can
be reinterpreted as the difference Nd−2(Λ)−Nd−2(−Λ),



5

pd-1

Ω

pd-2

r

FIG. 3. The surfaces pd−1 = ±Λ on which Nd−2 is computed
as the flux of r.

where

Nd−2(pd−1) =

∫
dω dd−2p rpd−1

(19)

is a (d − 2)-dimensional topological invariant calculated
in the space (ω,pd−2) with pd−1 fixed, as can be verified
with Eq. (16). The main result of this article Eq. (1)
(where NL

d is assumed to be 0 for simplicity) immediately
follows.

In the simplest case d = 2 this result was derived in
Ref. 13, where N0(Λ) − N0(−Λ) was interpreted as a
number of energy levels crossing zero as the momentum
along the one-dimensional edge changes from −Λ to Λ,
corresponding to the standard picture of edge states in
the integer quantum Hall effect. In higher number of
even dimensions d, this result’s interpretation is more
complicated, but the result is nonetheless useful, as in
the example given in the Introduction.

This concludes the discussion of topological insulators
without symmetries (systems of class A).

III. TOPOLOGICAL INSULATORS WITH
TIME-REVERSAL OR PARTICLE-HOLE

SYMMETRY

Now let us apply this formalism to systems in the nine
remaining classes of topological insulators with symme-
try, beginning from non-chiral insulators. Nonchiral insu-
lators, termed classes AI, AII, C and D, are those which
possess either time-reversal or particle-hole symmetry (it
can be helpful to refer to the “periodic table” of topolog-
ical insulators in Refs. 2 and 3 for the discussion of this
section and the next). We have seen that with no symme-
try (class A), bulk insulators are classified by an integer
in even dimensions. The same invariants describe the
other nonchiral classes in even dimensions. However the
presence of discrete symmetries can force them to vanish

in some dimensions, as follows. Classes AI and AII repre-
sent time-reversal (T ) invariant systems with integer and
half-integer spin respectively, and the Green’s function
satisfies the constraint

G(ω,p, s̄) = U†T G
T (ω,−p, s̄)UT , (20)

where UT is a unitary matrix such that U∗TUT = εT = +1
for AI and εT = −1 for AII (GT is the transposed Green’s

function). The same constraint holds for G̃. Putting this
into Nd, relabeling p→ −p, taking the transpose, using
cyclicity, and relabeling indices, we see that this forces
Nd = 0 when d = 4n + 2 (an anticyclic permutation is
odd in d = 4n + 2). Similarly, classes C and D have
particle-hole (C) symmetry

G(ω,p, s̄) = −U†C G
T (−ω,−p, s̄)UC , (21)

where U∗CUC = εC = +1 for class D and εC = −1 for class
C. An additional minus sign in the integrals is generated
by ω → −ω, so that Nd is nonzero only in spaces of
dimension d = 4n + 2. All of this matches what was
established elsewhere using a different language.3

The conclusion here is that if we are in a spatial di-
mension where the topological invariant can be nonzero,
the bulk-boundary correspondence Eq. (1) applies just
as it does for systems without any symmetry. One might
worry that the relation Eq. (1) involves not only Nd but
also Nd−2; as we just saw, in systems with symmetries
if Nd is nonzero, Nd−2 appears to be zero. However, in
Eq. (1) Nd−2 is calculated with pd−1 fixed at some value
Λ, so the Green’s function no longer satisfies Eq. (20) or
(21). Thus both sides of Eq. (1) can be nonzero, as they
should.

Let us now account for the appearance of Z2 invariants,
which in time-reversal-invariant insulators which belong
to class AII appear for example in d = 2 and d = 3.
To explain these, we appeal to the dimensional reduction
picture of Qi, Hughes, and Zhang,8 in which the physi-
cal system is considered as embedded within a space of
higher dimension, with one or two of the momenta being
fictitious additional parameters in the Green’s function.
The real physical system corresponds to the fictitious mo-
menta set to zero. Under T (or C) almost every point in
the momentum space has an image at the opposite mo-
mentum, the exceptions being the time-reversal-invariant
(TRI) points. As a result, if a Green’s function has a
point singularity at a non-TRI point, this contributes 2
to Eq. (18), since each point and its image contribute.
So, if NR

d − NL
d is odd and all singularities are points,

some of the singular points must be located at the TRI
points in the momentum space. Finally, it is possible to
make sure, by choosing the appropriate extension of G to
the unphysical momenta, that all singular TRI points are
in the physical space. This leads to the conclusion that if
the topological invariant in the extended space is an odd
integer, there must be singular points, or as we saw edge
states, in the physical (reduced-dimension) theory.

The same arguments apply if, instead of a Fermi point,
there is a Fermi surface surrounding a TRI point. The
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case of a surface is also crucial for showing that gener-
ally the dimensionality cannot be reduced by more than
2. Indeed, generalizing a result due to Hořava,21 generic
topological insulators characterized by integer invariants
have two-dimensional Fermi surfaces at the boundary. A
Fermi surface (spherical, for simplicity) centered on zero
is defined by the equation p2

x + p2
y + p2

z = p2
F , with the

remaining momenta, if any, being arbitrary. This can be
dimensionally reduced by one or two by setting pz = 0
or py = pz = 0. However, to reduce the dimensionality
by more than 2 requires setting px = py = pz = 0, which
eliminates gapless excitations.

An example of two-dimensional Fermi surfaces located
at the three-dimensional edge of a four-dimensional topo-
logical insulator with time-reversal invariance is shown
in Fig. 4. Three Fermi surfaces are depicted, giving

pz

px
py

FIG. 4. Example of an edge Brillouin zone containing a
time-reversal-invariant, multicomponent Fermi surface. The
two smaller spheres each contribute to the three-dimensional
edge topological invariant, but they do not intersect the time-
reversal invariant planes of the Brillouin zone and so do not
contribute to dimensionally reduced edges.

N4 = N2(Λ) − N2(−Λ) = 3. At the same time, two of
those Fermi surfaces located at opposite momenta play
no role if dimensions are reduced by setting, for example,
pz = 0. The remaining Fermi surface centered on the ori-
gin still yields zero energy excitations even if pz = 0, thus
in this example the edge state survives in lower dimen-
sions. On the other hand, if N4 were even, then the cen-
tral Fermi surface would necessarily be absent (or there
would be a pair that could be deformed off the pz = 0
plane), and there would be no edge excitations in lower
dimensions. Here, as everywhere else, in the presence of
interactions, the Fermi surfaces could be the surfaces of
zero energy excitations as well as surfaces of zeroes of
Green’s functions.

Note that if one breaks time reversal invariance by
adding appropriate terms in the Hamiltonian, the exci-
tations no longer have to be symmetric under reflection
of momenta. Then the central Fermi surface can move
off the center of the Brillouin zone and no longer con-
tribute to the lower dimensional edge excitations. This

is the mechanism by which breaking time reversal invari-
ance removes edge states in lower dimensions (but not
in the original 3-dimensional edge where edge excitations
survive even if time reversal invariance is broken).

Finally, the dimensional reduction gives a trivial result
in some dimensions because the bulk invariant Nd takes
only even values for the dimensionally extended system,
which washes out the Z2 structure.

These arguments conclude our discussions of topolog-
ical insulators in classes AI, AII, C and D.

IV. TOPOLOGICAL INSULATORS WITH
CHIRAL SYMMETRY

We also want to show that analogous results hold for
the classes with chiral, or sublattice (S), symmetry (AIII,
BDI, CII, CI and DIII). In these systems there is a matrix
Σ such that

G(ω,p, s̄) = −ΣG(−ω,p, s̄) Σ, Σ2 = 1. (22)

The bulk invariant for chiral systems, analogous to
Eq. (8), can be written as

Nd =
Cd−1

2
εa1...ad

∫
ddp tr ΣG−1∂a1G . . .G

−1∂adG, (23)

where G is evaluated at ω = 0, a runs over the compo-
nents of p, and the bulk dimension d is now odd.22 Unlike
the even-dimensional topological invariant Eq. (8), this
expression does not treat momenta and frequency in a
symmetric fashion and in fact is derived directly from the
topological invariant written in terms of the Hamiltonian
in Ref. 3 by replacing H → G−1

∣∣
ω=0

. An expression for
Nd with d odd which involves integration over frequency
and momenta is also possible,9 however for the purpose
of this article it is not needed.

Expressions strictly analogous to Eqs. (13), (15), and
(16) can be formulated for the chiral case, leading to
a relation just like the bulk-boundary correspondence
Eq. (18). In particular,

na0 =
Cd−1

2
εa0...adtr ΣG−1∂a1G . . .G

−1∂adG, (24)

where a runs over (pd, s), is a (d + 1)-dimensional
divergence-free vector, while

ra0 =
Cd−3

2
εa0...ad−2

Tr Σ K̃ ◦∂a1G̃ ◦ · · · ◦ K̃∂ad−2
G̃ (25)

(a runs over pd−1) is a (d−1)-dimensional divergence-free
vector. Here everything is evaluated at ω = 0.

Class AIII, without T or C symmetry, is potentially
nontrivial in any odd dimension. Classes BDI, CII, CI,
and DIII are characterized by the presence of both T
and C symmetries, with εT εC = η equal to +1 in the
first two classes and −1 in the other two. The invariant
Eq. (23) vanishes if η = 1 and d = 3 + 4n, or if η =
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−1 and d = 1 + 4n, because Σ and G anticommute at

ω = 0 as a consequence of S-symmetry and UTΣU†T =
ηΣT . Arguments similar to the ones employed above in
nonchiral classes can now be used to see the emergence
of the chiral Z2 invariant in appropriate dimensions.

For example if d = 1, the vector r reduces to a scalar
r = −Tr Σ. As is well known, zero-energy states are
eigenstates of Σ, with the eigenvalue +1 (right zero
modes) or −1 (left). Tr Σ, the difference of the number
of right and left eigenstates, is then equal to the differ-
ence of the bulk invariants on both sides of this zero-
dimensional boundary. A reader may worry that the for-
malism reported earlier in this article becomes somewhat
degenerate at d = 1, therefore we present a slightly more
detailed derivation of this result in Appendix B.

This concludes the derivation of Eq. (1) for all classes
of topological insulators in all spacial dimensions.

V. CONCLUSIONS

In this article we presented a derivation of the rela-
tionship Eq. (1) between the bulk and the boundary of
topological insulators. Even when there are no interac-
tions and no disorder, this relation is quite useful and
allows to test whether a particular proposed boundary
theory can indeed be at the edge of a topological in-
sulator. When interactions are present, the relationship
Eq. (1) remains true and still allows to relate the the bulk
to the edge, although the edge states may get replaced by
zeroes.9 In addition to the extension to interacting sys-
tems already described, the method described here can
also be extended to disordered topological insulators, by
periodically repeating the finite size system. The results
obtained in this way will be reported elsewhere.
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Appendix A: Derivation of Eq. (17).

Given a matrix Ã(s, s′) which is also a function of two
variables s and s′, one can introduce its Wigner (or Weyl)

transform

A (pd, s̄) =

∫
dr eipdrÃ

(
s̄+

r

2
, s̄− r

2

)
. (A1)

The technical tool we need in the following calculation is
the Moyal product expansion, which allows us to write
the Wigner transform of C̃ = Ã ◦ B̃ (this stands for

C̃(s, s′′) =
∫
ds′A(s, s′)B(s′, s′′)) as

C = AB +
1

2i
εµν ∂µA∂νB + . . . , (A2)

where µ, ν stand for s̄, pd. In particular, this means that

K = G−1+
1

2i
εµνχµχνG

−1+. . . , χµ ≡ G−1∂µG. (A3)

This can be checked by demanding that K̃ ◦ G̃ = 1, ap-
plying Wigner transform and using Eq. (A2).

The Moyal product expansion is a formal expansion in
powers of the gradient of G, and the omitted terms in-
volve higher gradients of G. As mentioned in the text,
this does not limit the applicability of our results to slow
domain walls; since we are deriving a relation between
integer-valued quantities, any corrections from higher
powers of the gradient must vanish (unless they also eval-
uate to integers, in which case they would indicate extra
topological structure).

We would like to relate the vector r to the vector
n. The former involves Green’s functions in real space,
while the latter involves Wigner-transformed Green’s
functions. Therefore, we need to apply the gradient ex-
pansion to

ra0 = Cd−2εa0...ad−1
TrXa1◦· · ·◦Xad−1

, Xa ≡ G̃−1◦∂µG̃.
(A4)

First, consider the trace of a product:

Tr Ã ◦ B̃ =

∫
dsds′ tr Ã(s, s′)B̃(s′, s)

=

∫
dsds′dpddp

′
d

(2π)2
e−ipd(s−s′)−ip′d(s′−s)

tr A

(
pd,

s+ s′

2

)
B

(
p′d,

s+ s′

2

)
=

∫
ds̄dpd

2π
tr A(pd, s̄)B(pd, s̄). (A5)

This states that the trace is invariant upon changing to
the Wigner-Weyl basis. The expansion we need is there-
fore

Tr K̃ ◦ ∂a1G̃ ◦ · · · ◦ K̃ ◦ ∂ad−1
G̃ =

∫
ds̄dpd

2π
tr KM, (A6)

whereM is the Wigner transform of ∂a1G̃◦K̃ · · ·◦∂ad−2
G̃◦

K̃ ◦ ∂ad−1
G̃:
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M =
[(
∂a1G+

εµ1ν1

2i
∂µ1,a1G∂ν1

)(
K +

εµ′1ν′1
2i

∂µ′1K∂ν′1

)]
. . .

[(
∂ad−2

G+
εµd−2νd−2

2i
∂µd−2,ad−2

G∂νd−2

)(
K +

εµ′d−2ν
′
d−2

2i
∂µ′d−2

K∂ν′d−2

)]
∂ad−1

G+ . . .

=
[
∂a1GK +

εµ1ν1

2i
∂µ1,a1G∂ν1(K ·) +

εµ1ν1

2i
∂µ1K∂ν1

]
. . .
[
∂ad−2

GK +
εµd−2νd−2

2i
∂µd−2,ad−2

G∂νd−2
(K ·) +

εµd−2νd−2

2i
∂ad−2

G∂µd−2
K∂νd−2

]
∂ad−1

G+ . . . . (A7)

Eq. (A7) comes from applying the Moyal product expan-
sion, Eq. (A2), to every ◦-product.

The notation is quite unwieldy, so we make the follow-
ing notational simplifications. First, we suppress all εµν ;
since we will only be keeping terms of first order in the
gradient, there should be no confusion about how indices
are contracted. Second, the factor εa0...ad−1

is suppressed
as well, and every other symbol that carries an index ai is
written in bold face, with the index suppressed: χai → χ
and ∂ai → d. It must be remembered that these symbols

form a completely antisymmetric tensor. In more for-
mal language, these are one-forms. We can also rewrite
products (and ◦ products)

Aa1 . . . Aaj → Aj . (A8)

Finally, we will write d−1 = n (which is odd by assump-
tion).

Then the quantity to be computed, up to the overall
constant, is

TrXn =

∫
ds̄dpd

2π
tr K

[
dGK +

1

2i
∂µdG∂ν(K ·) +

1

2i
dG∂µK∂ν

]n−1

dG+ . . . . (A9)

The bracket expands to

(dGK)n−1 +
1

2i

n−2∑
j=0

(dGG−1)n−2−j [∂µdG∂ν(G−1 ·) + dG∂µG
−1∂ν

]
(dGG−1)j + . . . , (A10)

where K → G−1 in the sum because we keep only first order in the gradient. Then

TrXn =

∫
ds̄dpd

2π
tr

{
(KdG)n

+
1

2i

n−2∑
j=0

(G−1dG)n−2−jG−1
[
∂µdG∂ν(G−1 ·) + dG∂µG

−1∂ν
]
dG(G−1dG)j

}
+ . . .

=

∫
ds̄dpd

2π

{
tr χn +

1

2i

n∑
j=1

tr χn−jχµχνχ
j

+
1

2i

n−2∑
j=0

tr χn−2−j [G−1∂µdG∂ν(χj+1)− χχµG
−1∂ν(Gχj+1)

]}
+ . . . , (A11)

where we have expanded K in the first term according
to Eq. (A3) and replaced χ = G−1dG and ∂µG

−1 =
−χµG−1.

Note that the the zeroth-order term in the expansion,∫
ds̄dpd

2π
tr χn, (A12)

produces what is often termed a “weak” topological in-
variant, that is, a topological invariant of lower dimension AE: refs

than the bulk system; we will ignore this term from now
on.

Because n is odd, no sign is picked up under cyclic
relabeling of the indices hidden in the bold-face notation,
so we can use cyclicity of the trace. Therefore, we can
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combine terms to obtain the first order quantity

T ≡
n∑
j=1

tr χn−jχµχνχ
j +

n−2∑
j=0

tr χn−2−j

×
[
G−1∂µdG∂ν(χj+1)− χχµG

−1∂ν(Gχj+1)
]

= tr χnχµχν

+

n−2∑
j=0

tr χn−2−j [G−1∂µdG− χχµ
]
∂ν(χj+1).

The combination in square brackets is simply dχµ so,
shifting the summation index,

= tr χnχµχν +

n−1∑
j=1

tr χn−1−j(dχµ)∂ν(χj). (A13)

The factor dχµ contains double derivatives of G, which
do not appear in our desired result. Therefore, we will
separate out total derivatives in d, which produce no
flux on the (closed) Gaussian surfaces SF on which the
topological invariant is built [see Eq. (17)]. To do this,
note that d2 = 0 and that, when using the product rule
to expand these derivatives, a sign appears every time d
moves past a χ. This gives

d(χj) =

j−1∑
j′=0

(−1)j
′
χj
′
(dχ)χj−1−j′

=

j−1∑
j′=0

(−1)j
′+1χj+1 =

{
0 j even

−χj+1 j odd
, (A14)

which implies

tr χn−j−1(dχµ)∂ν(χj) =

{
d tr χn−j−1χµ∂ν(χj) j even

−d tr χn−j−1χµ∂ν(χj)− tr χn−jχµ∂ν(χj) + tr χn−j−1χµ∂ν(χj+1) j odd
(A15)

since n is odd. Then

T = tr χnχµχν + d

n−1∑
j=1

(−1)jtr χn−j−1χµ∂ν(χj)

+

n−1∑
j=1
j odd

[
tr χn−j−1χµ∂ν(χj+1)− tr χn−jχµ∂ν(χj)

]

= d

n−1∑
j=1

(−1)jtr χn−j−1χµ∂ν(χj) + tr χnχµχν

+

n−1∑
j=1

(−1)jtr χn−jχµ∂ν(χj), (A16)

where we have shifted the summation index in the last
term. The total derivative is of no further interest, so
we set D1 = d

∑n−1
j=1 (−1)jtr χn−j−1χµ∂ν(χj). In the

last term, expanding the derivative ∂ν and using cyclicity

gives

T = D1 + tr χnχµχν

+

n−1∑
j=1

j∑
m=1

(−1)jtr χn−mχµχ
m−1∂νχ

= D1 + tr χnχµχν

+

n−1∑
m=1

n−1∑
j=m

(−1)j

 tr χn−mχµχ
m−1∂νχ

= D1 + tr χnχµχν +

n−1∑
m=2
m even

tr χn−mχµχ
m−1∂νχ.

With ∂νχ = dχν + χχν − χνχ,

= D1 + tr χnχµχν +

n−1∑
m=2
m even

tr χn−mχµχ
m−1dχν

+

n−1∑
m=2
m even

[
trχn−mχµχ

mχν − trχn−m+1χµχ
m−1χν

]
.

(A17)
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Now, because n is odd and m is even,

n−1∑
m=2
m even

d tr χn−mχµχ
m−1χν

=

n−1∑
m=2
m even

[
− tr χn−m+1χµχ

m−1χν

− tr χn−m(dχµ)χm−1χν

+ tr χn−mχµχ
mχν + tr χn−mχµχ

m−1dχν
]

=

n−1∑
m=2
m even

[
2 tr χn−mχµχ

m−1dχν + tr χn−mχµχ
mχν

− tr χn−m+1χµχ
m−1χν

]
, (A18)

where the second equality follows from antisymmetry in
µ and ν after a relabeling of the summation index in the
second term of the first equality. This means

T = D1 + tr χnχµχν

+
1

2

n−1∑
m=2
m even

{d tr χn−mχµχ
m−1χν

+ tr χn−mχµχ
mχν

− tr χn−m+1χµχ
m−1χν}. (A19)

We can collect the total derivatives as D2, shift the sum-
mation index in the last term, and rewrite 2 tr χnχµχν =
tr χnχµχν − tr χµχ

nχν to obtain

T = D2 +
1

2

n∑
m=0

(−1)m tr χn−mχµχ
mχν . (A20)

Including D2 with the suppressed terms and restoring
εµν , this means that

TrXn =

∫
ds̄dpd
8πi

n∑
m=0

(−1)mεµνtr χn−mχµχ
mχν + . . . .

(A21)
This expression is sufficiently simple that we can return

to the original, more explict notation:

εa0a1...anTrXa1 ◦ · · · ◦Xan

=

∫
ds̄dpd
8πi

n∑
m=0

(−1)mεµνεa0a1...an

× tr χa1 . . . χan−m
χµχan−m+1

. . . χanχν + . . . .
(A22)

The right-hand side has 2n!(n + 1) = 2(n + 1)! terms
and is totally antisymmetric, while using the Levi-Civita
symbol gives (n+ 2)! terms. Therefore,

εa0a1...anTrXa1 ◦ · · · ◦Xan

=
1

4πi(n+ 2)

∫
ds̄dpd εa0a1...an+2

tr χa1 . . . χan+2
+ . . . ,

(A23)

assuming that we choose to order the new indices appro-
priately.

Finally, it is important that the constant be correct:

Cd = −(2πi)−
d
2−1 (d/2)!

(d+ 1)!

= (2πi)−1 d/2

d(d+ 1)

[
−(2πi)−

d
2

(d/2− 1)!

(d− 1)!

]
=

1

4πi(d+ 1)
Cd−2, (A24)

so (substituting back d = n+ 1)

Cd−2εa0a1...ad−1
TrXa1 ◦ · · · ◦Xad−1

=
1

4πi(d+ 1)
Cd−2

∫
ds̄dpd εa0a1...ad+1

trχa1 . . . χad+1

+ . . .

= Cd

∫
ds̄dpd εa0a1...ad+1

tr χa1 . . . χad+1
+ . . . , (A25)

or

ra =

∫
ds̄dpd na + . . . . (A26)

This is valid for values of a in (ω,pd−1), but does not
make sense for a = s̄ or a = pd since r does not have
such components.

We would like to calculate∫
dSd+1

f · n. (A27)

We deform the sphere Sf to the space SF ×M where SF
is the sphere in the space (ω,pd−1) and M is the entire
space (R2) spanned by pd and s̄. This can be termed
a “hypercylinder,” since a cylinder is the product of a
circle (analogous to our sphere SF ) and a straight line
(analogous to the flat space M = R2).

The flux of n through such a surface can be computed
with only the components of n for which the relation
Eq. (A26) holds. Part of that flux involves integration
over dsdpd, which then naturally leads to∫

dSd+1
f ·n =

∫
dSd−1

F ·
∫
ds̄dpd n =

∫
dSd−1

f ·r, (A28)

where Eq. (A26) was used. This is the result asserted in
the text as Eq. (17).

Appendix B: Chiral systems in one dimensional
space

We start by writing Tr Σ as

Tr Σ = Tr Σ K̃ ◦ G̃. (B1)
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Notice that this is true at arbitrary ω. We then take
advantage of Eqs. (A3) and (A5) to rewrite this as

1

4πi
tr Σ

∫
ds̄dp

(
G−1∂s̄GG

−1∂pG−G−1∂pGG
−1∂s̄G

)
.

(B2)
The expression to be integrated is a total derivative and
results, upon integrating, in

Tr Σ = N1(s = −L)−N1(s = L), (B3)

where N1, defined in Eq. (23), is evaluated at s̄ = −L
and s̄ = L. This is indeed what is claimed in section IV.
What remains is to remark that while these expressions
are written at arbitrary ω, the limit ω → 0 is conve-
nient as only in this limit Tr Σ counts zero energy states
(and zeroes of Green’s functions if there are interactions)
localized at the boundary. This derivation can be used
instead of the much more involved procedure reported in
Ref. 9.
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