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Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310

We show that very long range repulsive interactions of a generalized Coulomb-like form V (R) ∼
R−α, with α < d (d-dimensionality), typically introduce very strong frustration, resulting in extreme
fragility of the charge-ordered state. An "almost frozen" liquid then survives in a broad dynamical
range above the (very low) melting temperature Tc which is proportional to α. This "pseudogap"
phase is characterized by unusual insulating-like, but very weakly temperature dependent transport,
similar to experimental findings in certain low carrier density systems.

PACS numbers: 71.30.+h,71.27.+a

I. INTRODUCTION

In designing novel materials, lightly doping a parent
insulator is typically the method of choice. An espe-
cially intriguing situation is found in ultra-clean samples
at finite doping, where neither the Anderson1 (disorder-
driven) nor the Mott2 (magnetism-driven) route for lo-
calization can straightforwardly succeed in trapping the
electrons. The tendency for charge ordering (CO) then
emerges as the dominant mechanism that limits the
electronic mobility. As first noted in early works by
Wigner3 and Mott2, this is precisely where the incipi-
ent breakdown of screening reveals the long-range na-
ture of the Coulomb interactions. The corresponding CO
states proved to be of extraordinary fragility, restrict-
ing the insulating behavior to extremely low densities
and/or temperatures4. A broad range of parameters then
emerges where puzzling “bad insulator” transport char-
acterizes such nearly-frozen Coulomb liquids.

Unusual “bad-insulator” transport behavior has
been observed in many systems. Examples range
from high mobility two-dimensional electron sys-
tems in semiconductors5, to lightly-doped cuprates6,7,
manganites8, and even the behavior of lodestone (mag-
netite) above the Verwey transition9. In all these cases,
a broad range of temperatures has been observed, where
the resistivity rises at low temperatures, but it does so
with surprisingly weak temperature dependence. In con-
trast to conventional insulators, where the familiar acti-
vated transport reflects a gap for charge excitations, the
“bad insulator” behavior has been interpreted9 as a pre-

cursor to charge ordering, leading to very gradual open-
ing of a soft pseudogap in the excitation spectrum.

The physical picture of a nearly-frozen Coulomb liq-

uid has been proposed - on a heuristic level - by several
authors9–11, providing a plausible and appealing inter-
pretation of many experiments. The interplay of spins
and charge degrees of freedom in pseudogap formation is
still a controversial and unresolved problem. Therefore,
to focus on the corresponding role of charge fluctuations,
we deliberately ignore any spin effects, and consider a
class of models of spinless electrons interacting through
long-range interactions.

We present the simplest consistent theory of this

Figure 1: (Color online) Phase diagram of the half-filled clas-
sical d = 3 lattice model with interactions V (R) = R−α. The
charge ordering temperature Tc(α) ∼ α, as obtained from
EDMFT theory (full line) and Monte Carlo simulations (open
symbols). The pseudogap temperature T ∗(dashed line) re-
mains finite as α → 0; a broad pseudogap phase emerges at
α ≤ d. We also show TSR

c ≈ 1 for the same model with
short-range interactions (dotted line), and TRPA

c (dot-dashed
line) from the classical limit of RPA. The inset shows the cor-
responding plasmon mode spectral density, which assumes a
scaling form for α ≪ 1. The fluctuations of these very soft
“sheer plasmons” lead to the dramatic decrease of Tc.

strongly coupled liquid state. We demonstrate that the
existence of such an intermediate liquid regime ,which
emerges at kBTc < kBT ≪ Ec (see below), is a very gen-
eral phenomenon reflecting strong frustration produced
by long-range interactions. It holds for any interaction
of the form V (R) ∼ R−α, both in continuum and lattice
models at any dimension d ≥ 2, with α ≪ d. Ours
is the first microscopic theory that substantiates this
physical picture9,11, based on quantitative and controlled
model calculations. We present a physically transparent
analytical description using extended dynamical mean-
field theory (EDMFT) to accurately describe the collec-
tive charge fluctuations, and benchmark our result using
Monte Carlo (MC) simulations.



2

II. OUR MODEL AND THE EDMFT

APPROACH

It has long been appreciated4,12 that in Coulomb sys-
tems, the CO temperature scale Tc is generally very small
as compared to the Coulomb energy Ec = e2/a (a being
typical inter-particle spacing), which we use as our energy
unit. For example, for classical particles on a half-filled
hypercubic lattice Tc ≈ 0.112, while in the continuum
and classical Wigner crystal Tc ≈ 0.014; similar results
are obtained both in d = 2 and in d = 3. Such large
values of the “Ramirez index”13 f = Ec/Tc suggest that
geometric frustration plays a significant role, reflecting
the long-range nature of the Coulomb force.

To clarify this behavior, we control the amount of frus-
tration by introducing generalized Coulomb interactions
of the form V (R)/Ec = (R/a)−α. We consider a lattice
model of spinless electrons given by the Hamiltonian

H = −
∑

ij

tijc
†
icj+

1

2

∑

ij

V (Rij)(ni−〈n〉)(nj−〈n〉). (1)

Here c†i and ci are the electron creation and annihilation

operators, tij are the hopping matrix elements, ni = c†i ci,
and Rij is the distance between lattice sites i and j ex-
pressed in the units of the lattice spacing. The origin of
frustration is then easily understood by noting that in
the classical limit our lattice gas model (ni = 0, 1) maps
onto an Ising antiferromagnet (Si = ±1) with long range
interactions. Here, the maximum level of frustration is
achieved for infinite range interactions (α → 0), and any
finite temperature ordering is completely suppressed.

A controlled theoretical approach to our problem is
available for very long range interactions (α ≪ 1), which
effectively corresponds to a very large coordination num-
ber. In this limit the spatial correlations assume a sim-
plified form

Gk(iωn) =
〈
c†kc−k

〉
=

1

iωn − ǫk − Σ(iωn)
,

Πk(iΩn) = 〈nkn−k〉 =
Π̃(iΩn)

Π̃(iΩn) + Vk

, (2)

where the momentum dependence of the (fermionic) self-
energy Σ(iωn) and the irreducible polarization operator

Π̃(iΩn) can be ignored25. A conserving approximation
that formally sums all the corresponding Feynman dia-
grams is given by the so-called EDMFT formulation14–16,
where the relevant (local) quantities are computed from
an auxiliary local effective action

Seff = −
ˆ

dτdτ ′c†(τ)G−1
0 (τ − τ ′)c(τ ′)

+
1

2

ˆ

dτdτ ′δn(τ)Π−1
0 (τ − τ ′)δn(τ ′), (3)

where G−1
0 (iω) = iω − ∆(iω) and δn(τ) = n(τ) − 〈n〉.

The dynamical effective-medium (EM) functions ∆ and
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Figure 2: (Color online) (a) Shows density of states ρ(ω,T )
obtained with three different methods: EDMFT (full line),
MC (dashed line) and SCGA (dot-dashed line). Results are
shown for the d = 3 half-filled cubic lattice with t = 0, a = 0.3,
and two temperatures: T = 0.03 ≈ Tc and T = 0.25 ≈

T ∗. ρ(ω,T ) obtained from EDMFT (full line) agree well with
MC results (dashed line), while SCGA (dot-dashed line) does
not account for the pseudogap formation. (b) Both EDMFT
(full line) and MC results (open symbols) ρ(ω = 0, T ) show
pseudogap opening (dramatic DOS decrease) at T < T ∗ in
contrast to SCGA results (dot-dashed line).

Π−1
0 represent the respective fermionic and bosonic baths

coupled to the given lattice site. For a given bath, the
(local) Dyson’s equations stipulate that Σ = G−1

0 −G−1
loc

and Π̃−1 = Π−1
loc−Π−1

o , where Gloc and Πloc are calculated
directly from Seff.The self-consistency loop is then closed
by relating the local and the EM correlators, viz. Gloc =∑

k Gk(Σ) and Πloc =
∑

k Πk(Π̃).

III. CLASSICAL LIMIT

The most stringent test for the accuracy of EDMFT
is provided by examining the classical limit (t = 0),
where pseudogap formation is most pronounced. Here,
the EDMFT equations can be solved in closed form16,
since the “memory kernel” Π−1

0 (τ − τ ′) becomes a time-
independent constant, Π−1

0 = D/β2, and the corre-
sponding mode-coupling term in Eq. (3) can be de-
coupled by a static Hubbard-Stratonovich transforma-
tion. The density correlator then assumes the form
Πk = (4+D+βVk)

−1, and the self-consistency condition
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reduces to

1

4
=

ˆ

dε ν(ε) (4 +D + βε)
−1

, (4)

where we introduced the (classical) plasmon-mode spec-
tral density ν(ε) =

∑
k δ(ε − Vk). The CO critical tem-

perature Tc(α) is identified by the vanishing of Π−1
k at

the corresponding ordering wave vector k = Q . The
mechanism for Tc depression is then easily understood
by noting that for α ≪ 1 the spectral density ν(ε) as-

sumes the scaling form ν(ε) = α−1ν̃((ε − ε0)/α), where
ε0 ≈ −1; the explicit form of the scaling function ν̃(ε−ε0)
corresponding to the half-filled cubic lattice is shown in
the inset of Fig. 1. It features a sharp low-energy spec-
tral peak of the usual dispersive form ν(ε) ∼ ε(d−2)/2

only at (ε − εo) < ε∗(α), i.e below a characteristic en-
ergy scale ε∗(α) ∼ α and a long high-energy tail of the
form ν(ε) ∼ ε−2. Physically, these low energy excitations
correspond to “sheer” plasmon modes with wavevector
k ≈ Q; the scale ε∗(α) ∼ α thus plays a role of an effec-
tive Debye temperature. Its smallness sets the scale for

the ordering temperature Tc(α) = α
´

dε ν̃(ε)/ǫ ∼ ǫ∗(α),
in agreement with an estimate based on a Lindemann
criterion applied to the sheer mode26.

In the classical limit, the single particle density of
states (DOS) ρ(ω, T ) ≡ −ImG(ω + i0+)/π assumes a
simple bimodal form:

ρ(ω, T ) =
β√
8πD

{
exp

[
− β2

2D

(
ω +

D

2β

)2
]

+exp

[
− β2

2D

(
ω − D

2β

)2
]}

, (5)

with the self-consistently determined parameter D(T )
setting the scale of the Coulomb pseudogap (“plasma
dip”) Egap = D/β, which starts to open at the crossover
temperature T ∗ = D/4β. We stress that, in contrast to
the ordering temperature Tc ∼ α, both Egap and T ∗ re-
main finite for α ≪ 1, since D(T ) ≈ β in this limit. This
leads to the emergence of a broad pseudogap regime for
α . d, independent of the precise form or the filling of the
lattice. Remarkably, since D(T ) remains finite as α → 0,
both the density of states ρ(ω, T ) and the conductivity
σ(T ) (see below) display only very weak α-dependence,
in contrast to Tc(α) ∼ α.

We benchmark these analytical predictions against
(MC) simulations, which used careful finite-size scaling
analysis and (generalized) Ewald summation techniques
to account for long-range interactions. It was found that
EDMFT captures all qualitative and even quantitative
features of the pseudogap regime for several different val-
ues of the exponent α, both in dimensions d = 2 and in
d = 3. The detailed comparison of EDMFT and MC re-
sults will be presented elsewhere; here we illustrate these
findings for a d = 3 half-filled cubic lattice. Fig. 1 shows
how EDMFT accurately captures the α-dependence of

Figure 3: (Color online) (a) EDMFT phase diagram for a
half-filled cubic lattice with α = 0.3 as a function of tem-
perature T and the electron’s Fermi energy EF ∼ t. Our
semi-classical solution is valid above the CO freezing temper-
ature Tc(EF ) (full line), and the Fermi liquid coherence tem-
perature Tcoh(EF ) (dot-dashed line). At intermediate tem-
peratures Tc < T < T ∗ we find well developed pseudogap
behavior, where transport assumes insulating-like but very
weak temperature dependence (as shown in (b)); in the CO
phase (T < Tc) transport assumes the conventional activated
form (not shown). (b) Temperature dependence of the con-
ductivity in the semiclassical regime ( EF ≪ 1), where only

the prefactor σo = π

3

e
2
t
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~a
displays significant t-dependence;

EDMFT results (full line) again show remarkable agreement
with results obtained by calculating ρ(ε, ω) in the classical
limit using MC simulations (symbols).

Tc, which is found to decrease in a roughly linear fashion
as α → 0, while the T ∗ ≈ 0.25 remains finite, producing
a large separation of energy scales and a well-developed
pseudogap regime. Note that the familiar Coulomb in-
teraction (α = 1) lies well within the small-α regime.
This observation makes it clear why our EDMFT the-
ory remains very accurate (as noted in previous work16)
not only for α ≪ 1, but also for the physically relevant
Coulomb case α = 1.

IV. GAUSSIAN THEORIES DO NOT CAPTURE

PSEUDOGAP FORMATION

The excellent comparison between EDMFT and MC
results for the DOS is shown for α = 0.3 in Fig. 2 (top).
In contrast, the conventional approaches17, which typi-
cally assume Gaussian statistics for the collective charge
fluctuations, fail to capture the pseudogap opening at
T > Tc. For example, the familiar self-consistent Gaus-
sian approximation (“spherical model”), while predicting
the exact same Tc as EDMFT, produces Gaussian-shaped
DOS at any T > Tc, in contrast with MC findings;
these shortcomings are especially dramatic for α ≪ d
(see Fig. 2). The popular “random-phase approxima-
tion” (RPA)18, which amounts to a non-self-consistent
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Gaussian approximation (SCGA), proves even less reli-
able in this regime. It grossly overestimates the freez-
ing temperature Tc, which is found (dash line in Fig. 2
(b)) to remain finite even as α → 0, completely missing
the pseudogap regime (shaded area in Fig. 1). Physi-
cally, the RPA (Stoner-like) freezing criterion reduces to
the simplistic Hartree (static mean-field) approximation,
which ignores the dramatic fluctuation effects of the soft
collective (sheer plasmon) modes.

V. BAD-INSULATOR TRANSPORT IN THE

SEMICLASSICAL REGIME

We expect the “bad insulator” transport to be best
pronounced in the semi-classical regime t ≪ 1, where
the Coulomb energy represents the largest energy scale
in the problem. Here, the pseudogap phase is reached
by thermally melting the CO state at T > Tc(t). While
our EDMFT equations are difficult to solve in general,
in this incoherent regime it is well justified to utilize an
adiabatic (“static”) approximation17, which ignores the
time dependence of the collective mode. The EDMFT
equations can then be solved in a manner similar to that
in the strict classical limit (see above), and we find

G(iω) =

ˆ

dφGφ(iω)P (φ),

Π(iΩ) = T
∑

iω

ˆ

dφGφ(iω + iΩ)Gφ(iω)P (φ),

P (φ) =
1

Z
exp

(
−D

2
φ(φ + 1)−

∑

ω

ln (Gφ(iω))

)
,

G−1
φ (iω) = G−1

0 (iω) + φTD. (6)

Physically, the electrons travel in the presence of a static,
but spatially fluctuating random field representing the
collective mode. Its probability distribution P (φ) as-
sumes a strongly non-Gaussian character, reflecting the
charge discreteness captured by EDMFT, but ignored by
conventional Gaussian theories such as RPA.

The semi-classical approximation remains valid17 as
long as the time-dependence of the density correlator
Π(τ) can be ignored, corresponding to

|(Π(0)−Π(β/2))/Π(0)| ≪ 1. (7)

This criterion provides an estimate for the crossover tem-
perature Tcoh, below which we expect (at large t) a grad-
ual crossover towards Fermi liquid behavior. The result-
ing phase diagram is shown on Fig. 3 (a).

To calculate transport, we use the Kubo formula for
the resistivity, which within the EDMFT theory assumes
the form19:

σ =
π

3

e2t2

~a

ˆ +∞

−∞

dε

ˆ +∞

−∞

dωρo(ε)
A2(ε, ω)

4T cosh2 ω
2T

(8)

where ρo(ε) is the bare single-electron density of states

and A(ε, ω) = − 1
π Im(ω + i0+ − ε− Σ(ω + i0+))

−1
. In

this adiabatic approximation, we calculate conductivity
in the leading order of t2, in terms of quantities for t = 0
(ρ(ε) and A(ε, ω)).

These equations are easy to solve for arbitrary param-
eters of our model, but we illustrate our findings in Fig.
3, by showing explicit results for half-filled cubic lattice
with α = 0.3. Our semi-classical solution is found to be
valid in a broad pseudogap regime Tc < T < T ∗, which
spans almost a decade in temperature (for EF ≪ 1 we
find Tc ≈ 0.03 and T ∗ ≈ 0.25). Here the conductivity dis-
plays unusual, insulating-like (dσ(T )/dT > 0), but rather
weak (almost linear) temperature dependence (shown in
Fig. 3(b)), surprisingly similar to that observed in Mag-
netite above the Verwey transition. Our microscopic the-
ory confirms the heuristic picture first proposed in early
work of Mott9.

VI. CONCLUSIONS

We argued that pseudogap behavior in Coulomb sys-
tems directly reflects strong frustration found in any
system with very long-range repulsive interactions. We
demonstrated that a quantitatively accurate strong-
coupling description of this regime is possible using the
interaction power α as a small parameter in the theory.
The corresponding EDMFT equations were solved in the
semiclassical regime where the pseudogap phenomena are
most pronounced, explaining “weak-insulator” transport
found in many puzzling experiments. It should be noted
that, using appropriately formulated quantum impurity
solvers20, the same formulation could be extended to in-
vestigate low-temperature quantum critical behavior for
the same class of models. This fascinating direction re-
mains a challenge for future work.
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VIII. APPENDIX

A. Ewald Potential

In order to compute the effective potential of long
range interaction 1/|~rij |α in hypercubic lattice

V (~rij) =
∑

nǫZ

1

|~rij + L~n|α , (9)
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we use Ewald-type summation21with the help of the in-
tegral representation of22,23

1

|~r|α =
1

Γ(α/2)

ε
ˆ

0

t
α

2
−1e−r2tdt+

∞̂

ε

t
α

2
−1e−r2tdt. (10)

where Γ(α) is Gamma function. We switch the first term
of the integral to a momentum sum because the sum does
not converge rapidly in the real space. Next, we use the
representation24

ˆ

ddr
∑

~n

δ(~r − [L~n+ ~rij ])f(~r)

=

ˆ

ddr
∑

~Gl

[ei
~Gl.~r − δ(~r)]f(~r), (11)

where f(~r) is any arbitrary function and on the right-
hand side the summation is over the vectors of the re-
ciprocal lattice. We then integrate ~r out and change the
variable of the integration in the first term t → 1/t. The
final expression of the potential takes the form

V (−→r ) =
1

Γ(α2 )

∑

~n

εαφα

2
−1(ε

2|−→r +−→n L|2)

+
1

Γ(α2 )Ω

∑

~k 6=0

π
3

2 εα−3φ 1−α

2

(
|~k|2
4ε2

)e−i~k.~r

− 2εα

Γ(α2 )
, (12)

where in each component vector ki = 2πni and niǫZ. At
the maximum size of our Monte Carlo simulation L = 24,
the potential is accurate to the eighth decimal place with
only |ni| = 3 in each axis, and ǫ =

√
π .

B. Finite size effects

In the vicinity of Wigner crystallization, the finite size
effects are very strong. The size dependence of the single
particle density of states (DOS) obtained from Monte-
Carlo data for d = 3, α = 0.3, and T = 0.0554 is shown in
Fig. 1. To carry out a careful finite-size scaling analysis
of the DOS, we perform a two-Gaussian fit

ρ(ω) = h
(
e−((ω−d)/w)2 + e−((ω+d)/w)2

)
. (13)
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Figure 4: (Color online), Top: two Gaussian fit of the single
particle density of state from different size of MC simula-
tion. At this particular temperature, it fits perfectly with the
EDMFT results. The fit form is shown in the inset. Bot-
tom: the finite size scaling of the distance (left) and width-
squared (right) of two-Gaussian function for different sizes L
=8,10,12,16,18,20,24.

The nonlinear (two-Gaussian) fitting is done using Igor
6.01. The fitting parameters, i.e. the distance between
the Gaussian peaks and width squared as a function of
L−α is shown in the bottom panel of Fig. 4. This al-
lows us to perform an accurate extrapolation to L = ∞,
and the result is found to be in excellent agreement with
EDMFT prediction. Note how the finite-size result re-
mains very far from the L = ∞ extrapolant even for
our largest system size (L = 24). Accurate results, thus,
simply cannot be obtained without such finite size scaling
analysis.
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