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Abstract

Thermal conductivity data for rough surface silicon nanowires suggest the breakdown of the

Casimir limit which assumes completely diffuse phonon boundary scattering. We show that coher-

ent effects in phonon transport at room temperature indeed lead to such breakdown. Correlated

multiple scattering of phonons off the rough surface lead to a reduced thermal conductivity that

is dependent not just on the roughness amplitude but more importantly on the roughness corre-

lation length. A correlation length less than diameter of wire is typically necessary for lowering

the thermal conductivity below the Casimir limit. Our model explains seeming anomalies in data

reported for electrolessly etched and electron beam lithography defined nanowires.
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I. INTRODUCTION

Recent measurements of the thermal conductivity of electrolessly etched silicon nanowires1,2

claim a thermal conductivity as low as ∼ 3 W/mK at room temperature for a 50 nm di-

ameter wire. This intriguing fifty-folds reduction from the value for the bulk is well below

the Casimir limit3 and close to the amorphous limit of ∼1 W/mK for silicon. What is even

more puzzling is that measurements on wires fabricated using electron-beam lithography

and roughened using reactive-ion etching 2 do not exhibit the anomalously low thermal

conductivities as the electrolessly etched wires even though their surface roughness exceeds

that of the electrolessly etched wires. While further measurements are still needed to verify

these results, these initial experiments draw attention to a deeper examination of the validity

of the Casimir limit in nanostructures. The Casimir limit3 of phonon boundary scattering,

based on complete thermalization of incident phonons at the boundaries of a crystal, yields

a phonon mean free path comparable with the crystal dimensions. For a wire geometry,

the theory yields a phonon mean free path equal to the wire diameter. A 50 nm diameter

single-crystal silicon wire is expected to have a thermal conductivity of ∼20 W/mK at room

temperature at the Casimir limit of boundary scattering, much higher than that reported

for electrolessly etched wires.

Existing theoretical work4–8 explain the reduction in thermal conductivity using different

approaches. Atomistic simulations4 show that the low thermal conductivity arises due to

non-propagating vibrational modes. The computations are restricted to diameters of 4 nm

and do not facilitate a direct comparison with experimental data. Monte Carlo modeling of

phonon transport5 using frequency dependent surface scattering matches reasonably with

data but predicts a continuously decreasing thermal conductivity with increasing roughness

amplitude and contradicts the measurements on the electron-beam defined wires2. A subtle

issue in the formulation is the use of a scattering cross-section9 that is valid for bulk disorder.

The wires, especially at a low doping, do not appear to possess any bulk disorder according

to the available TEM evidence. The model also counts surface scattering twice by including

the frequency independent Casimir limit along with the frequency dependent scattering.

Thus, it is difficult to ascertain if the fit to experimental data is fortuitous rather than

physical.

A third model6–8 approaches the problem through an examination of coherent effects.
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This applies Morse’s results10 for a disordered linear chain to obtain a mean free path for

surface scattering and uses it along the lines of the DMPK theory13. The results explain

low temperature data satisfactorily but do not address the room temperature behavior.

In this paper, we build on such coherent transport theory6,8 to consider roughness depen-

dent multiple scattering in conjunction with Umklapp scattering. The consideration of

Umklapp scattering is necessary for predicting room temperature behavior but introduces

the complexity of treating coherent and incoherent scattering simultaneously. Our model

handles this by separating transport into distinct frequency dependent regimes where co-

herent or incoherent scattering dominate. We find that the multiple scattering of phonons

from correlated points on the wire surface lead to strong attenuation. The mean free path

from multiple scattering is shorter than that from Umklapp scattering across a range of

frequencies, even at room temperature. Such scattering leads to conductivity well below the

Casimir limit for high frequency phonons. However, it is not just the roughness amplitude

but also the roughness correlation that decides the overall conductivity.

II. GENERAL FORMALISM

A. Model

In order to consider coherent phonons, we start with a wave treatment of phonon trans-

port. The interaction of phonons with the randomly rough walls of the nanowire leads to an

attenuation of the mean intensity. To estimate the mode dependent attenuation, we derive

the phase shift induced by the surface roughness. We consider a wire of length L along the

x-direction. Rough walls are present along the y- and z-directions such that 0 ≤ y ≤ a;

0 ≤ z ≤ b define the wire dimensions. We note that experimental nanowires are typically

not cylindrical. When comparing with diameter dependent experimental data, we define the

characteristic diameter, d =
√
4ab/π. We use individual scalar wave equations to describe

polarizations of phonons in the wire, implicitly ignoring coupling between polarizations en-

abled by the disorder. By comparison with experimental data later, we show that this

simplifying assumption is still adequate in illustrating the basic physics.

To obtain the phase shift, we need the Green function, G, for phonons in the rough wire.
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This modified Green function can be obtained from the Green function of a smooth wire

G0 as described below. The Green function G0 for a smooth square wire is a solution of

Helmoltz equation with a stress free boundary condition over its smooth walls S given as

(
∇2 +K2)G0(R,R0

)
= −4πδ(R −R0) (1)

∂G0/∂n|S = 0 , (2)

where the outward normal to S is −→n , K is the total wave number, R and R0 are the point

of observation and the source respectively.

In defining the boundary condition, we hypothesize that the surface responsible for scat-

tering phonons is the interface between the crystal and the surface oxide and not the outer

surface. Our hypothesis follows from existing transmission electron micrographs of the

rough nanowires 1. While an impedance boundary condition is more appropriate here, the

transmission coefficient of phonons between silicon and its native oxide remains unknown

theoretically and experimentally. Thus, we choose to use a stress free condition for math-

ematical convenience. We have performed computations with frozen boundary condition

(G0 = 0 at surface S) and do not find a significant impact of the choice of boundary condi-

tion. We note that the oxide thickness is ∼ 2 nm and we do not expect the thin oxide itself

to play a dominant role in surface scattering.

The solution for Eq (2) for a three dimensional waveguide R = {x, y, z} can be expressed

as8

G0(R,R0) =

∫
∞

−∞

dκ

2π
eiκ(x−x0)

∑

m

∑

n

φmn(y, z)φmn(y0, z0)

k2 + (nπ/a)2 + (mπ/b)2 −K2
(3)

where a and b are cross sectional dimensions of the square wire and the transverse eigen-

functions φmn(R) are given by

φmn(x, y, z) =
2ǫmn

(ab)1/2
cos

(nπy
a

)
cos

(mπz

b

)
exp(iκmnx) (4)

where κ2
mn = K2− (nπ/a)2− (mπ/b)2 is the longitudinal wavevector; ǫ = 1/2 for m = n = 0

and is unity otherwise.

To obtain the modified Green function in the same volume with random perturbation in the

surface profile S, we solve Eq. (1) with the boundary condition in Eq. (2) applied over the
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random rough surface ℜ instead of S. If the rough boundary at the bottom of the square

nanowire is assumed z = ζ(x) where ζ(x) represents the random surface height along the

wire length, we can enforce the stress free condition as ∂G/∂n|ℜ = 0. We then project the

boundary conditions on the rough surface, ℜ onto the smooth boundaries S by expressing

the surface normal on ℜ as −→n = −−→z + ζ ′(x)−→x where ζ ′(x) = dζ/dx is the random slope of

ℜ. Hence the boundary condition for the rough wire becomes

∂G

∂n

∣∣∣
ℜ

=

(
−∂G

∂z
+ ζ ′(x)

∂G

∂x

) ∣∣∣
z=ζ(x)

= 0. (5)

Expanding Eq. (5) about the smooth boundary z = 0 in terms of ζ and ζ ′, retaining only

first order derivates, we obtain

(
∂G

∂z
+ ζ

∂2G

∂z2
− ζ ′

∂G

∂x

)

z=0

= 0 (6)

By using Green theorem, we can express the Green function in rough wires as

G(R,R0) = G0(R,R0) +
1

4π

∫

S

(
G(R, r)

∂G0(r, R0)

∂n
−G0(R, r)

∂G(r, R0)

∂n

)
dr (7)

where r ∈ S. Substituting the boundary conditions in Eq. (6) and Eq (2) into Eq. (7), we

obtain

G(R,R0) = G0(R,R0) +
1

4π

∫

S

G0(R, r)V̂ (r)G(r, R0) dr (8)

where the operator V̂ (r) with r ≡ {x, y, z} is given by

V̂ (r) = ζ
∂2

∂z2
− ζ ′

∂

∂x
(9)

Applying an iteration method, we substitute the Green function G(r, R0) on left hand side

of Eq. (8) with the Green function from ith iteration G(i)(R,R0) thus obtaining an infinite

series expansion for G(R,R0) as shown in Eq. (10)

G(R,R0) = G0(R,R0) +
1

4π

∫
G0(R, r)V̂ (r)G0(r, R0)

+
1

(4π)2

∫ ∫
G0(R, r1)V̂ (r1)G0(r1, r2)V̂ (r2)G(r2, R0) dr1dr2 + . . .

(10)

Thus the nth term in this series is a n-fold integral over the surface involving n functions

V̂ (ri) (i = 1, 2, 3 . . . n) and represents the nth order scattering field at a point R from the

roughness aspersions due to source at R0.
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The first statistical moment 〈G(R,R0)〉 represents the field intensity at point R coherent

with the source at R0. Hence the spatial decay of averaged Green function yields the length

over which coherence is lost due to the boundary scattering. We proceed with ensemble

averaging of the Green function from Eq. (8) over statistical realizations of ζ . To this

purpose, we assume the random function ζ is statistically uniform and varies only along the

wire length (x), we assign normal Gaussian statistics to ζ such that 〈ζ(x)〉=0, 〈ζ2(x)〉=0

and the spatial correlation function is

〈ζ(x1)ζ(x2)〉 = σ2exp(−|x1 − x2|2/L2
c) (11)

Here σ is root mean square height of surface ζ and Lc is its correlation length. Thus averaging

Eq. (10) and noting that all the odd-moments of the random operator V̂ (r) vanish, we finally

obtain

〈G(R,R0)〉 = G0(R,R0) +
1

(4π)2

∫ ∫

S

G0(R, r1)M̂(r1, r2)〈G(r2, R0)〉 dr1dr2 (12)

where the mass operator M̂(r1, r2) is the sum of infinite terms representing increasing order

of correlations in V̂ . The first term of the mass operator is 〈V̂ (r1)G0(r1, r2)V̂ (r2)〉 and

we retain only this term which is the so-called Born approximation in volume scattering

theory12. The solution of Eq. (12) which resembles Dyson equation can be solved using

spatial Fourier transform outlined in Ref. 11.

Finally we expand the averaged Green function in plane waves exp[iκrr] where κr is the

perturbed wavenumber due to roughness. The unperturbed wavenumber κmn (Eq. (4)) thus

shifts by δκmn=κmn−κmn. This shift is proportional to the mass operator and the derivative

of the unperturbed eigenfunctions φmn in Eq. (4) with respect to the Fourier variable κ.

The mean attenuation length of wave intensity is obtained from the imaginary part of

this wavenumber shift Im(δκmn) as l = [2Im(δκmn)]
−1 .For phonon mode with transverse

wavenumbers {m,n}, we obtain the mean attennuation length as

lmn(ω)
−1 =

(σ
d

)2 2ǫmn

κmn

∑

p

∑

q

∑

α=0,π

ǫpq(K
2 − κmnκpq cosα)

2

κpq
W̃ (|κmn − κpq|), (13)

where m, n, p and q are indices representing phonon modes, κ is the longitudinal wave

number, α is the angle between incident (mn) and scattered directions (pq). The Fourier
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transform of the wall roughness correlation function is given by W̃ =
√
πLcexp(−κ2L2

c/4);

K = ω/c is the wave number of the phonon propagating at speed c. The summation in

Eq. 13 represents the sum of scattering probabilities of the incident field mn into all pos-

sible incoherent channels where the probability for scattering into a particular channel pq

is proportional to the correlation function W̃ (κmn − κpq). The double summation runs over

all modes p, q that satisfy
√
p2 + q2 < ωd/c representing the total phonon modes N(ω) at

the frequency ω.

B. Phonon transmission coefficient

We proceed with calculating the attenuation length of every eigenmode φmn of a square

wire using Eq. (13) with appropriate choice of roughness parameters σ and Lc. Figure 1(a)

plots the logarithm of inverse of the mean field attenuation length (log10 lmn) as a function

of phonon frequency and wave number. Three distinct transport regimes become evident:

Quasi-ballistic, weakly localized and diffusive. We now discuss each of the regimes indi-

vidually. The quasi-ballistic regime is restricted to the fundamental modes (ω ∼ k) with

long wavelengths. These modes see the surface corrugations as point-like imperfections and

propagate quasi-ballistically until scattered by Umklapp processes. Since the attenuation

length exceeds the length of wire, the transmission function is given by t(ω) = 1 − L/l. In

contrast, high frequency and long wavelength modes with large transverse wave vectors, k⊥

are strongly attenuated. Using the results of the DMPK theory13, the phonon localization

length is Nl, where N is the number of phonon modes at frequency ω. When Nl << L, the

transmission of these phonon modes t(ω) = exp(−L/Nl). Even though the model predicts

these to be localized, it is likely that these can still propagate particle-like between scat-

terers6,14. In any case, their contribution to thermal conductivity is small due to their low

group velocities. Overall, we do not expect a detectable localization behavior in thermal

conductivity. We confirm this assertion later with calculations.

All other modes are diffusive and fall into the third and most dominant regime. The

transmission function is t(ω) = l/L, where the frequency dependence of l yields the overall

frequency dependence of surface scattering. In the Casimir limit, this becomes frequency
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independent and l is replaced by the diameter of the wire. We note that the above arguments

apply only when the attenuation length, l is smaller than the Umklapp scattering mean free

path, Λu at the same frequency. In the absence of this condition, surface scattering remains

uncorrelated. The effective transmission at the frequency ω, is an average over the transmis-

sion coefficient of individual modes N(ω) in each regime such that Tb(ω) =
∑

m,n

tmn/N(ω)

where the subscript b represents boundary scattering.

Figure 1(b) compares the mode averaged transmission function Tb(ω) for the Casimir

limit with that for multiple scattering. We choose a 50 nm diameter wire and vary the

surface roughness to make this comparison. The strong frequency dependence of the low

frequency modes is consequential only at very low temperatures. At room temperature,

the dominant frequency range is ∼1-7 THz. In smooth wires, the transmission function

has contributions above and below the Casimir limit which effectively balances out the

frequency dependence. However, as surface roughness increases, the function increasingly

deviates below the Casimir limit for high frequency phonons. The sharp discontinuities in

the transmission are consequences of mode averaging. The discontinuity in N(ω) at ∼ 5 THz

and ∼ 9 − 10 is due to the sharp decline of transverse and longitudinal modes respectively

at these frequencies which shows up as apparent jump in Tb(ω) in Figure 1(b). We also plot

the transmission function for Umklapp scattering for comparison. The delay in the onset of

Umklapp scattering is evident in rougher nanowires.

III. THERMAL CONDUCTANCE IN ROUGH WIRES

We use the transmission function to calculate the thermal conductivity of a rough surface

nanowire. Following Mingo’s approach15,16, we write the Landauer formula for the thermal

conductance of the nanowire,

GTH =
3∑

i=1

1

2π

∫ ωi
c

0

Ni(ω)Ti(ω)h̄ω
d〈n〉
dT

dω (14)

where 〈n〉 is the Bose-Einstein distribution and i represents the polarization of a phonon

mode. The cut-off frequency, ωc for longitudinal modes (i = 1), ωL
c and transverse modes

(i = 2, 3), ωT
c are 10 THz and 3.6 THz in accordance with the bulk Si dispersion17. The
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speed of longitudinal and transverse modes are cL = 8400 m/s and cT = 5400 m/s re-

spectively. As temperature increases, the transmission function should include increasing

contributions from Umklapp and isotope scattering. The mean free path for isotope scat-

tering, Λm=〈c〉/Aω4 and that for Umklapp scattering, Λu=〈c〉/BTω2e−C/T where 〈c〉=6400

m/s are added to the transmission function using the Matthiessen’s rule. We use values fit

to bulk silicon data15,17: A = 1.32 × 10−45s3, B = 1.7 × 10−19 s/K and C = 140 K. The

overall transmission function is Ti(ω) =
(
Tb,i

−1
+ L/Λm + L/Λu

)−1

.

A. Effect of roughness scales

The two roughness parameters, the root mean square height, σ and the correlation length,

Lc affect transport differently. Under the Born approximation, the ratio (σ/d) has an inverse

quadratic relation with the attenuation length. Since the transmission function, Tb(ω) is

linear in the attenuation length in the dominant diffusive transport regime, the thermal

conductance becomes proportional to the inverse of (σ/d)2. Figure 2(a) plots the change in

room temperature thermal conductivity of a 50 nm silicon nanowire of 2 µm length as the

roughness height varies from atomically smooth (∼Ao) to 5 nm. The thermal conductivity

dips sharply till σ = 2 nm as the propagation of high frequency phonon modes near the zone

center becomes affected. These modes with σk⊥ >> 1 are strongly attenuated, consistent

with the Rayleigh criterion for destructive interference of the scattered wavefronts. The

calculations show that the effect of the roughness height reaches a plateau above σ=4 nm

similar to the trend reported in Ref5. The present calculations likely overestimate the ther-

mal conductivity at larger values (≈5nm) of σ where terms of order σ4 would likely increase

the attenuation coefficient. However, the trend in roughness height is strongly dependent

on the correlation length Lc with an increased sensitivity of the thermal conductivity to

roughness height at lower correlation lengths.

The other parameter, the correlation length Lc, affects transport in three ways. First,

the inverse of the correlation length controls the Gaussian width of the roughness Fourier

spectrum. Strong surface scattering requires the change in phonon wave number on scatter-

ing to lie within the Gaussian width. Thus, a short correlation length increases the phase
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space for effective multiple scattering, allowing more phonons to participate in the process.

A large correlation length reduces the roughness spectrum to a delta-like function. Such

roughness can only scatter very long wavelengths, which do not contribute significantly to

thermal transport. Second, the correlation length determines the angular spread of intensity

in the scattered field, given by ∆Φ ∝ (ωLc/c)
−1. If a phonon is incident at an angle θn from

the tangent to the scattering surface, the scattered field in a direction θm is proportional to

exp (−| cos θn − cos θm|2L2
c). Third, the correlation in relation to the wire diameter controls

the cut-off angle for phonons participating in correlated scattering. Phonons incident at

angles smaller than cot−1(Lc/2d) from the surface can not undergo multiple scattering.

Figure 2(b) shows the effect of the correlation length on the room temperature thermal con-

ductivity. Quantitatively, the effect of surface roughness on thermal conductivity diminishes

when Lc > 100 nm.

B. Comparison with data

We now compare the thermal conductivity calculated from the above model with experi-

mental data on electrolessly etched (EE) rough nanowires, electron beam lithography (EBL)

defined rough nanowires and vapor-liquid-solid (VLS) grown smooth nanowires respectively.

Figure 3 compares the predictions with data for EE wires and Figure 4 shows the thermal

conductivity temperature trend for EBL wires across different diameters. We find an excel-

lent agreement with the EE wire data from Ref 1 using the roughness scales, σ = 2.2 nm

and Lc/d = 0.5 − −0.7, close to the values reported for these wires from high resolution

transmission electron images. We find similar agreement with the data for EBL wires. The

thermal conductivity of EBL wires increases approximately four times when compared to

EE wires despite an increased roughness height compared to EE wires. This increase results

from the large increase in the roughness correlation length in EBL wires compared to EE

wires. A nominal rms height, σ =7.4 nm and a correlation length, Lc =400 nm provide a

good fit for EBL wires of different cross sections but similar characteristic diameter. Our

model also captures the delay in the onset of Umklapp scattering related dip in the thermal

conductivity between Wire-1 (120 × 41 µm2) and Wire-2 (86 × 62 µm2). The reason is

the higher boundary scattering rate in the former. As a check, we calculated the thermal
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conductivity of smooth VLS grown nanowires assuming small roughness scales. The calcu-

lations fit the data for VLS wires (d > 37 nm) from Ref 18 using σ =0.4 nm and Lc fixed at

100 nm. The thermal conductivity data for thinned nanowires7 which show a linear trend

in thermal conductivity till 200 K are fit using σ = 1.2 nm.

In summary, the model described above matches data from all three sets of measurements:

VLS smooth wires, EBL rough wires and EE rough wires. The parameters used in fitting,

the roughness height and correlation length compare well with experimentally determined

values. Despite the reasonable match, we would like to point out a few deficiencies that we

seek to address in future work as well as their implications. A major drawback is the use

of the Born approximation. The Born approximation essentially replaces the scattered field

inside the scattering integral with the incident field. This is valid as long as the scattering

is weak, which is expected at small roughness heights and long correlation lengths. While

it is difficult to exactly define weak and strong scattering in the present context, we do

anticipate that roughened EE wires may correspond to the strong scattering rather than the

weak scattering case. Thus, future work should carefully consider higher order scattering

terms while still focusing on wires of ∼50 nm diameter. Another subtle issue is that the

scattering cross-section depends on the second moment of the Green function and not the

first statistical moment that we have used in this work. Finally, the roughness statistics

in actual wires is likely to be non-Gaussian and may follow a power law. This requires

further experimental data but should be relatively easy to consider once such data becomes

available.

IV. CONCLUSION

In conclusion, the above quantitative comparisons with existing data lend credence to

the existence of coherent effects in phonon surface scattering close to room temperature.

We find non-propagating diffusive phonon modes to be the prime conductors of heat in

surface disordered nanowires, consistent with molecular dynamics calculations4 on atomistic

scale nanowires. There is no indication of localization in our calculations at the roughness

scales reported thus far. We do not observe any length dependence in thermal conductivity,

consistent with experimental reports2. We note that the model is not without assumptions

and the above discussion elaborates on how the assumptions may affect results. However,
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removing the assumptions remains challenging at present and will be a focus of future work.

Within the assumptions, our model provides insight into the success and failure of the

Casimir model. The Casimir model assumes the surface to act as a blackbody phonon emitter

and absorber. For a sufficiently smooth surface, the relatively weak frequency dependence in

surface scattering leads to the same conductivity as the Casimir limit. Here, “sufficiently”

smooth must be carefully defined not just in terms of the roughness height alone, but

in terms of the ratio of the roughness height to the characteristic dimension as well as

the correlation length. Unlike bulk crystals, the boundary in a nanostructure cannot be

considered a blackbody phonon emitter in general. The Casimir limit in this case, should

be viewed as a special case rather than the typical behavior.
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FIG. 1. (a) The logarithm of attenuation length plotted on phonon dispersion plot shows (A)

quasi-ballistic transport for modes near fundamental branches (B) diffuse modes and (C) non-

conducting modes near the zone center with high transverse wavenumbers. (b) The boundary

scattering transmission coefficient for longitudinal modes averaged over number of modes is shown

for wire 1 (σ=0.8 nm, Lc=300 nm), wire 2 (σ=2.5 nm, Lc=90 nm) and wire 3 (σ=2.5 nm, Lc=30

nm) for a 50 nm wire representing transition from smooth to very rough surface. The Casimir

transmission (=d/L) and the Umklapp transmission(=Λu/L) are also shown.
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FIG. 2. Dependence of thermal conductivity at 300 K on (a) roughness height at different cor-

relation lengths (b) correlation length at different roughness heights for a 50 nm wire, 2µm in

length

.
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FIG. 3. Temperature trend of thermal conductivity of EE SiNW for 50 nm (σ = 2.2 nm, Lc = 21

nm), 98 nm (σ = 2.2 nm, Lc = 70 nm) and 115 nm (σ = 2 nm, Lc = 86 nm) diameter wires. The

experimental data is from Ref1.
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FIG. 4. Temperature trend of thermal conductivity of EBL wires using σ = 7.4 nm and Lc = 400

nm for Wire-1 (120× 41 nm2 and L = 4µm) and Wire-2 (86×62 nm2 and L = 7µm). The data

is from Ref 2. (Inset: Temperature trend of thin VLS wires compared against data from Ref 7)

using σ = 1 nm, Lc = 80 nm).
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