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We develop a theory of thermal transport of weakly interacting electrons in quantum wires. Unlike
higher dimensional systems, energy relaxation of one-dimensional electron gas requires three-particle
collisions. The fastest relaxation is provided by the intra-branch scattering of co-moving electrons
which establishes a partially-equilibrated form of the distribution function. Thermal conductance
is governed by the slower inter-branch processes which enable energy exchange between counter-
propagating particles. We derive an analytic expression for the thermal conductance of interacting
electrons valid at arbitrary relation between the wire length and electron thermalization length. We
find that in sufficiently long wires interaction-induced correction to thermal conductance saturates
to an interaction-independent value.
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I. INTRODUCTION

The classical Drude theory of electronic transport pro-
vides universal relation between electric and thermal
transport coefficients known as the Wiedemann-Franz
law1

K =
π2T

3e2
G . (1)

HereK and G are, respectively, thermal and electric con-
ductances, T is the temperature in energy units (kB = 1)
and e is the electron charge. The relation represented by
Eq. (1) is natural one since for the noninteracting parti-
cles both charge and energy are carried by the electronic
excitations. Furthermore, as long as elastic collisions gov-
ern the transport, the validity of the Wiedemann-Franz
law has been confirmed in the case of arbitrary impurity
scattering.2 However, an account of the electron-electron
interaction effects within the Fermi-liquid theory gives
corrections to both G and K.3,4 These lead to a devi-
ation from the Wiedemann-Fraz law [Eq. (1)], which is
associated with the inelastic forward scattering of elec-
trons. In general, violation of the Wiedemann-Franz law
is a hallmark of electron interaction effects and thus of
conceptual interest.
In one-dimensional conductors, such as quantum wires

or quantum Hall edge states, the electron system can no
longer be described as a Fermi liquid but instead, is ex-
pected to form a Luttinger liquid.5 It has been shown
that for the perfect Luttinger liquid conductor, such as
impurity free single channel quantum wire, neither inter-
actions inside the wire affect conductance quantization6

G0 =
2e2

h
, (2)

nor they change thermal conductance of the system7

K0 =
2π2T

3h
. (3)

Since both G and K remain the same as in the case of
noninteracting electrons, Wiedemann-Franz law (1) holds
for an ideal Luttinger liquid conductor.

There are two important exceptions known in the lit-
erature. The first one is Luttinger liquid with impu-
rity studied by Kane and Fisher.8 In that case electron
backscattering takes place which strongly renormalizes
both G and K, such that Wiedemann-Franz law is vio-
lated. The second case is the Luttinger liquid with long-
range inhomogeneities studied by Fazio et al.7 If the spa-
tial variations related to these inhomogeneities occur on a
length scale much larger than the Fermi wavelength, elec-
trons will not suffer any backscattering. The electric con-
ductance will, therefore, be given by its noninteracting
value [Eq. (2)]. At the same time thermal conductance
K will be altered by interactions. The reason for this is as
follows. For the system with broken translational invari-
ance momentum is not conserved. As a result, there are
allowed certain pair-collisions which conserve the num-
ber of right- and left-movers independently but provide
energy exchange between them. These are precisely the
scattering processes that thermalize electrons and thus
lead to the violation of the Wiedemann-Franz law.

Recent advances in the fabrication of tunable con-
strictions in high mobility two-dimensional electron gases
have allowed precise and sensitive thermal measurements
in clean one-dimensional systems. These include exper-
iments on the thermal transport of the single channel
quantum wires, where lower value of the thermal con-
ductance, than that predicted by the Wiedemann-Franz
law, was observed at the plateau of the electrical conduc-
tance.9,10 Another set of experiments reported enhanced
thermopower in the low density quantum wires11,12 and
quantum Hall edges.13 Remarkable experiments based on
the momentum-resolved tunneling spectroscopy provided
direct evidence for the electronic thermalization in one-
dimensional systems.14–16 Clearly interaction effects are
responsible for the observed features, however, Luttinger
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liquid theory does not provide adequate description for
these observations.
Ongoing theoretical efforts in studying of one-

dimensional electron systems focus on the nonequilib-
rium dynamics17,18 and consequences of the nonlinear
dispersion in transport19–25 that lie beyond the scope of
conventional Luttinger liquid paradigm. Kinetics of one-
dimensional electrons with nonlinear dispersion is pecu-
liar one. Indeed, constraints imposed by the momentum
and energy conservations allow either zero-momentum
transfer or exchange of the momenta for pair-collisions.
Both processes do not change the electronic distribution
function and as a result have no effect on transport coeffi-
cients and relaxation. Therefore, three-particle collisions
play a central role.26

In this paper we study the fate of the Wiedemann-
Franz law and origin of the electron energy relaxation in
clean single channel quantum wires accounting for the
scattering processes that involve three particle collisions.
The paper is organized as follows. In the next section,
Sec. II, we place our work into the context of recent stud-
ies on equilibration in quantum wires and explain the
concept of partially equilibrated electron liquids, which
is central for our study. We then develop in Sec. III
theory of the thermal transport in one-dimensional elec-
tron liquids based on the Boltzmann equation with three-
particle collisions included via corresponding collision in-
tegral and scattering rate. We elucidate on the scattering
processes involved, discuss role of the spin, limitations of
our theory, and summarize our findings in Sec. IV. Ad-
ditional comments and directions for the future work are
presented in Sec. V. Various technical aspects of our cal-
culations are delegated to Appendices A-C.

II. PARTIALLY EQUILIBRATED

ONE-DIMENSIONAL ELECTRONS

A. Noninteracting electrons

Noninteracting electrons propagate ballistically
through the wire. They keep memory of the lead they
originated from and remain in equilibrium with the
corresponding lead electrons. In case voltage (V ) and/or
temperature differences (∆T ) are applied across the
wire, right- and left-moving particles are at different
equilibria, and the distribution function takes the form

fp =
θ(p)

e
εp−µl

Tl + 1
+

θ(−p)
e

εp−µr
Tr + 1

, (4)

where εp = p2/2m is the energy of an electron with
momentum p and θ(p) is the unit step function. Tl =
T + ∆T/2, Tr = T − ∆T/2, and µl = µ + eV/2,
µr = µ− eV/2 are the different temperatures and chem-
ical potentials of left and right lead, respectively, (see
Fig. 1). Employing the distribution function from Eq. (4)
to the linear order in V and ∆T one readily finds electric

Tl Tr

ml mr

L

N
R

.
QR
.

FIG. 1: [Color online] Schematic picture of the quantum wire
of length L. Electrons in the left and right lead are described
by the Fermi distribution functions characterized by tempera-
tures Tl(r) and chemical potentials µl(r). Due to three-particle
collisions electrons may backscatter and also exchange energy
between subsystems of warmer right-movers and colder left-
movers.

and heat currents, I = G0V |∆T=0 and IQ = K0∆T |I=0,
with conductances G0 and K0, which coincide with the
earlier stated noninteracting values, Eqs. (2) and (3).27

In the presence of weak interactions the distribution
(4) describes an out-of-equilibrium situation. Collisions
lead to electrons exchanging energy and momentum, with
some particles experiencing backscattering. As a result,
net particle (ṄR) and heat (Q̇R) currents flow between
subsystems of right- and left-moving electrons, relaxing
V and ∆T (see Fig. 1 for the schematic illustration).
The effect of electron-electron collisions on the distribu-
tion function depends strongly on the length of the wire.
Short wires are traversed by the electrons relatively fast,
leaving interactions only little time to change the distri-
bution in Eq. (4) considerably. In the limit of a very long
wire, on the other hand, one should expect full equilibra-
tion of left- and right-moving electrons into a single dis-
tribution, even in the case of weak interactions. It turns
out that there exists a hierarchy of three-particle scatter-
ing processes, classified by the corresponding relaxation
rates or, equivalently, inelastic scattering lengths, which
have different effects on the electron distribution function
Eq. (4).

B. Partially equilibrated electrons

We start our discussion of the different scattering pro-
cesses involved in the electronic relaxation with the pro-
cess shown in Fig. 2(a). This three-particle collision pro-
vides intra-branch relaxation within the subsystem of
right-moving electrons. Similar relaxation process for the
left-movers is not shown in the figure but implicit. This
process can be described by the corresponding inelastic
scattering length, which we denote in the following as ℓa.
The precise form of ℓa and its temperature dependence
is model specific. It is determined by the scattering am-
plitude for the given interaction potential and the phase
space available for this scattering [Fig. 2(a)] to occur.
Quite generally one may argue that ℓa scales as a power of
T . Indeed, at low temperatures, T ≪ µ, all participating
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scattering states are located within the energy strip ∼ T
near the Fermi level. What is important for the present
discussion is that for wires with length L ≫ ℓa intra-
branch electron collisions [Fig. 2(a)] become so efficient
that initial distribution function Eq. (4) will be modified
by interactions. One can find resulting distribution by
employing the following observation. Intra-branch col-
lisions conserve independently six quantities. These are
the number of right- and left-movers, NR/L =

∑

p≷0 fp,

their momenta, PR/L =
∑

p≷0 pfp, and energies, ER/L =
∑

p≷0 εpfp. The form of the resulting electron distribu-

tion function fp can be obtained from the general statis-
tical mechanics argument by maximizing the entropy of
electrons, S = −

∑

p[fp ln fp + (1− fp) ln(1− fp)], under

the constraint of conserved quantities21

fp =
θ(p)

e
εp−puR−µR

T R + 1

+
θ(−p)

e
εp−puL−µL

T L + 1

. (5)

This distribution is characterized by six unknown pa-
rameters (Lagrange multipliers) which have transparent
physical interpretation. Indeed, in Eq. (5) T R/L are ef-
fective electron temperatures for right- and left-movers
different than those in the leads. Parameters uR/L have
dimension of velocity and account for the conservation of
momentum in electron collisions. Finally, µL/R are un-
equilibrated chemical potentials of left- and right-moving
particles. In principle, all these parameters may depend
on the position along the wire.
For longer wires inter -branch three-particle collisions,

see Fig. 2(b), become progressively more important. Un-
like intra-branch relaxation these processes allow en-
ergy and momentum exchange between the subsystems
of right- and left-movers, thus PR/L and ER/L are no
longer independently conserved. However, full momen-
tum, P = PR + PL, and energy, E = ER + EL, are
obviously conserved. Corresponding to Fig. 2(b) scat-
tering length, ℓb, is model specific and calculated in Ap-
pendix C. We note here that for all interaction potentials
we studied ℓb/ℓa ∼ µ/T ≫ 1. In view of this distinct
length scale separation, ℓb ≫ ℓa, electron distribution
in Eq. (5) establishes at the first stage of thermalization
process. However, for the longer wires, L ≫ ℓb, relax-
ation of counter-propagating electrons becomes so effi-
cient that temperatures T R/L and boost velocities uR/L

of right- and left-movers become equal T R = T L = T
and uR = uL = u due to energy and momentum ex-
change. At the same time, the chemical potentials µR/L

are still unequilibrated in this regime, ∆µ = µR−µL 6= 0,
since the numbers of right- and left-moving electrons are
still independently conserved. As a result, for wires with
length L ≫ ℓb the distribution function (5) transforms
into

fp =
θ(p)

e
εp−pu−µR

T + 1
+

θ(−p)
e

εp−pu−µL

T + 1
. (6)

Because ∆µ 6= 0 we refer to the states of electron system
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FIG. 2: [Color online] (a) Intra-branch relaxation of co-
moving electrons that establishes partially equilibrated form
of the distribution function in Eq. (5). (b) Dominant inter-

branch three-particle process for the energy exchange Q̇R be-
tween counter-propagating electrons that contributes to the
thermal conductance correction. (c) Leading three-particle

collision which results in a finite rate ṄR
∝ e−µ/T and thus

temperature dependent correction to the conductance of a
short wire.19 (d) Equilibration mechanism: multi-step diffu-
sion through the bottom of the band of an electron from the
right to the left Fermi point accompanied by the excitation of
many electron-hole pairs.20–22

described by the distributions in Eqs. (5) and (6) as the
states of partial equilibration.

C. Fully equilibrated electrons

Energy and momentum conservation allow for the scat-
tering process in which an electron at the bottom of the
band is backscattered by two other particles near the
Fermi level, see Fig. 2(c). This is the basic three-particle
process that changes the numbers of right- and left-
movers before and after collision. In particular, the expo-
nentially small discontinuity of the distributions Eqs. (5)
and (6) at p = 0 will be smeared by collisions of this type.
Complete equilibration of electrons, namely relaxation

of ∆µ, relies on the electron backscattering from the right
to the left Fermi point. One should notice here that it
is impossible to realize such scattering directly since it
requires momentum transfer of 2pF while Fermi blocking
restricts typical momentum exchange in the collision to
δp ∼ T/vF ≪ pF . As a consequence, complete electron
backscattering, and thus relaxation of the chemical po-
tential difference ∆µ, occurs via a large number of small
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steps δp in momentum space such that δp≪ pF .
20 In its

passage between the subsystems of right- and left-movers
the backscattered electron has to pass the bottleneck of
occupied states at the bottom of the band, see Fig. 2(d).
As a result, backscattering of electrons is exponentially
suppressed by the probability∼ e−µ/T to find an unoccu-
pied state at the bottom of the band, and thus equilibra-
tion length ℓeq for the relaxation of difference in chemical
potentials of left- and right-movers is exponentially large,
ℓeq ∝ eµ/T . For sufficiently long wires, L≫ ℓeq, the state
of full equilibration is achieved and described by the dis-
tribution20,21

fp =
1

e
εp−vdp−µeq

T + 1
, (7)

where the chemical potential µeq inside the equilibrated
wire is, in general, different from µl(r) in the leads. In
Eq. (7) vd = I/ne is electron drift velocity, where I is
the electric current and n is the electron density. Par-
tially equilibrated distribution function given by Eq. (6)
smoothly interpolates to the state of full equilibration
Eq. (7) when the length of the wire exceeds equilibration
length ℓeq. The fully equilibrated distribution Eq. (7) is
obtained from Eq. (6) by setting µR = µL = µeq, thus
∆µ = 0, and also u = vd.

D. Brief summary

The regime of partial equilibration described by the
distribution function in Eq. (6) covers a wide range of
lengths, ℓa ≪ L . ℓeq. It is more likely to be realized
in experiments than the fully equilibrated regime (7), as
the length scale ℓeq is exponentially large. Depending on
the wire length L a particular state of electron system
is characterized by the extent to which the difference in
chemical potentials ∆µ and temperatures ∆T of left- and
right-movers has relaxed. The recent works Refs. 21,22
addressed transport properties of wires with length in the
range

ℓa ≪ ℓb ≪ L ∼ ℓeq, (8)

which covers the crossover from the partially equilibrated
regime Eq. (6) to the fully equilibrated regime Eq. (7).
The major emphasis of these works was on the effect of
equilibration due to electron backscattering [Fig. 2(d)].
The main focus of the present paper is on the transport
properties of partially equilibrated wires with length

ℓa ≪ L ∼ ℓb ≪ ℓeq. (9)

In this regime the numbers NL and NR of the left- and
right-moving electrons are individually conserved up to
corrections small as e−µ/T , so that electrons with en-
ergies near the Fermi level pass through the wire with-
out backscattering [Fig. 2(c)]. This automatically implies
that conductance G remains intact by interactions and

is still given by Eq. (2). However, electrons will expe-
rience other multiple three-particle collisions [Fig. 2(b)],
which allow momentum and energy exchange within and
between the two branches of the spectrum, thus altering
thermal transport properties. The role of these processes
was not explored in the previous studies devoted to the
transport in partially equilibrated quantum wires.21,22

III. BOLTZMANN EQUATION FORMALISM

A. Three-particle collision integral

Consider a quantum wire of length L, connected by
ideal reflectionless contacts to noninteracting leads which
are biased by a temperature difference ∆T , see Fig. 1.
In the following, we are interested only in the thermal
transport properties of the wire, and assume that there
is no external voltage bias, V = 0. We describe weakly
interacting one-dimensional electrons in the framework
of the Boltzmann kinetic equation

vp∂xf(p, x) = I{f(p, x)} , (10)

where vp = p/m is the electron velocity and evolution of
the distribution function is governed by the collision in-
tegral I{f(p, x)}. We consider the steady-state setup in
which the distribution function does not depend explic-
itly on time. The collision integral, in general, is a nonlin-
ear functional of f(p, x), whose form is determined by the
scattering processes affecting the distribution function.
As discussed above, in our case the dominant processes
are three-particle collisions. Assuming that the collision
integral is local in space we have

I{f1} = −
∑

p2,p3
p
1′

,p
2′

,p
3′

W 1′2′3′

123

× [f1f2f3(1 − f1′)(1 − f2′)(1− f3′)

−f1′f2′f3′(1− f1)(1 − f2)(1 − f3)] , (11)

where W 1′2′3′

123 is the scattering rate from the incoming
states {p1, p2, p3} into the outgoing states {p1′ , p2′ , p3′},
and we used short-hand notation fi = f(pi, x). The
Boltzmann equation [Eq. (10)] is supplemented by the
boundary conditions stating that the distribution f(p, 0)
of right-moving electrons (p > 0) at the left end of the
wire and f(p, L) of left-moving electrons (p < 0) at the
right end coincide with the distribution function in the
leads, Eq. (4). We note here that although Eq. (11)
is written for the spinless case our subsequent analy-
sis and solution of the Boltzmann equation presented in
Sec. III B–IIID is applicable to the spinful electrons as
well.
An exact analytical solution of the Boltzmann equa-

tion [Eq. (10)] is, in general, very difficult to find due
to the nonlinearity of the collision integral Eq. (11). A
simplification is, however, possible in the case of a linear
response analysis in the externally applied perturbation
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(in our case, the temperature difference ∆T ). Then the
collision integral can be linearized near its unperturbed
value. It is convenient to present f(p, x) as

f(p, x) = f0
p + f0

p (1− f0
p )ψ(p, x) , (12)

where f0
p = (e(εp−µ)/T + 1)−1 is the equilibrium Fermi

distribution function and ψ(p, x) ∝ ∆T . When lineariz-
ing Eq. (11) with respect to ψ(p, x) the factor f0

p (1− f0
p )

in Eq. (12) makes it convenient to use the detailed bal-
ance condition

f0
p1
f0
p2
f0
p3
(1− f0

p1′
)(1 − f0

p2′
)(1− f0

p3′
) =

f0
p1′
f0
p2′
f0
p3′

(1− f0
p1
)(1− f0

p2
)(1− f0

p3
) , (13)

valid at εp1
+ εp2

+ εp3
= εp1′

+ εp2′
+ εp3′

. Substituting
Eq. (12) into the collision integral and using Eq. (13) one
arrives at the linearized version of Eq. (11)

I{ψ(p1, x)} = −
∑

p2,p3
p
1′

,p
2′

,p
3′

K
1′2′3′

123

× [ψ(p1, x) + ψ(p2, x) + ψ(p3, x)

−ψ(p1′ , x)− ψ(p2′ , x)− ψ(p3′ , x)] ,(14)

with the kernel K defined as

K
1′2′3′

123 = W 1′2′3′

123 f0
p1
f0
p2
f0
p3

×(1− f0
p1′

)(1− f0
p2′

)(1 − f0
p3′

) . (15)

The explicit form of the scattering rate W 1′2′3′

123 is not
important for the following discussion. It is discussed in
detail in Appendix B.

B. Solution strategy

Even after linearization the solution of the integral
Boltzmann equation that satisfies given boundary con-
ditions is still a complicated problem. However, our task
is simplified greatly since we already know the structure
of the distribution function f(p, x). Indeed, we have dis-
cussed in Sec. II that for wires with length ℓa ≪ L ∼ ℓb
the electron system is in the regime of partial equili-
bration with the distribution function given by Eq. (5).
Thus, the class of functions we need to consider to solve
our boundary problem is, in fact, rather narrow. The
solution we are seeking is conveniently parameterzied by
six unknowns: µR(L)(x), uR(L)(x) and T R(L)(x). Instead
of solving one integro-differential equation for f(p, x) we
will reduce our task to solving a system of six linear ordi-
nary differential equations that govern spatial evolution
of parameters defining distribution function in Eq. (5).
This is possible since momentum dependence of the dis-
tribution function is fully determined by our ansatz (5),
which allows to complete all p integrations in the Boltz-
mann equation analytically. Among the six equations we

need, four represent conservation laws: conserved num-
bers of right- and left-moving electrons NR/L, total mo-
mentum P and energy E of electron system. The other
two are kinetic equations that account for the momen-
tum and energy exchange between subsystems of right-
and left-movers, thus capturing processes of thermaliza-
tion.

For the following analysis it is convenient to measure
chemical potentials and temperatures from their equilib-
rium values: µR(L)(x) = µ + δµR(L)(x) and T R(L)(x) =
T+δT R(L)(x). Expanding now Eq. (5) to the linear order
in uR(L), δµR(L) and δT R(L) and using Eq. (12) we can
identify ψ(p, x) that enters collision integral in Eq. (14)
as

ψ(p, x) = ψR(p, x) + ψL(p, x) (16)

where

ψR(L)(p, x) = θ(±p)
×
[

ψR(L)
µ (p, x) + ψR(L)

u (p, x) + ψ
R(L)
T (p, x)

]

. (17)

Here the three contributions are:

ψR(L)
µ (p, x) =

δµR(L)(x)

T
, (18)

ψR(L)
u (p, x) =

puR(L)(x)

T
, (19)

ψ
R(L)
T (p, x) =

(εp − µ)δT R(L)(x)

T 2
. (20)

These functions evolve in the real space as prescribed by
the collision integral Eq. (14) while their boundary values
can be extracted from the respective distributions in the
leads [Eq. (4)]. Indeed, expanding Eq. (4) with V = 0
one obtains

fp = f0
p +

(εp − µ)∆T

2T 2
f0
p (1 − f0

p )[θ(p) − θ(−p)]. (21)

By matching this result to Eq. (12) with ψ(p, x) taken
from Eqs. (16) and (17) we deduce the boundary condi-
tions

δµR(0) = δµL(L) = 0 , (22)

uR(0) = uL(L) = 0 , (23)

δT R(0) = −δT L(L) = ∆T/2 . (24)

Our task now is to derive the set of coupled ordinary
differential equations that govern spatial evolution of un-
known parameters uR(L)(x), δµR(L)(x) and δT R(L)(x).
This will give us complete knowledge of the electron dis-
tribution function. Knowing all parameters in Eq. (5) we
will be able to find heat current, and finally the thermal
conductance of the system. Before we realize this plan
conservation laws must be discussed.
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C. Transport currents and conservation laws

Conservation of the total number of particles implies
that in a steady state the particle current I(x) is uni-
form along the wire. Correspondingly, we infer from the
conservation of total momentum P and total energy E
that in the steady state a constant momentum current
IP and a constant energy current IE flow through the
system. In the following it will be convenient to express
these currents as the sums of individual contributions of
the left- and right-moving electrons, e.g., I = IR + IL,
thus introducing:

IR(L)(x) =

∫ +∞

−∞

dp

h
θ(±p)vpf(p, x) , (25)

I
R(L)
P (x) =

∫ +∞

−∞

dp

h
θ(±p)pvpf(p, x) , (26)

I
R(L)
E (x) =

∫ +∞

−∞

dp

h
θ(±p)εpvpf(p, x) . (27)

The positive sign in the step function corresponds to
right-movers, while the negative one to left-movers. Since
we neglect small backscattering effects, the numbers of
right- and left-moving electrons are conserved indepen-
dently

ṄR/L = 0 . (28)

It follows then immediately from the continuity equations
that particle currents are uniform along the wire

∂xI
R(x) = 0 , ∂xI

L(x) = 0 . (29)

Similarly we present conservation of total momentum and
energy

∂x(I
R
P (x) + ILP (x)) = 0 , (30)

∂x(I
R
E (x) + ILE(x)) = 0 . (31)

As the next step we express the currents (25)–(27) in
terms of the parameters defining electron distribution
function. Specifically, we use Eq. (12) and Eqs. (17)–
(20) together with the current definition in Eq. (25) and
thus find from Eq. (29)

dδµR(L)

dx
= ∓pF

duR(L)

dx

(

1− π2T 2

24µ2
− 7π4T 4

384µ4

)

. (32)

When deriving this equation from Eq. (25) we had to
carry out Sommerfeld expansion up to the forth order in
T/µ ≪ 1. Note here that even though backscattering is
neglected δµR(L) must change in space to accommodate
for the conservation laws for currents [Eqs. (29)–(31)] and
µR(L)(x) = µ+ δµR(L)(x) coincide with µr(l) = µ only at
the ends of the wire, see boundary conditions Eq. (22).
We then perform similar calculation for the momentum

and energy currents. From the momentum conservation,

Eq. (30), we find

pF
T

2µ

(

1 +
5π2

12

T 2

µ2

)(

duR

dx
− duL

dx

)

+

(

1 +
7π2

40

T 2

µ2

)(

dδT R

dx
+
dδT L

dx

)

= 0 , (33)

while from the energy conservation, Eq. (31),

pF
T

2µ

(

1 +
7π2

40

T 2

µ2

)(

duR

dx
+
duL

dx

)

+

(

dδT R

dx
− dδT L

dx

)

= 0 . (34)

When deriving these two equations we also made use of
Eq. (32) to exclude chemical potentials of right- and left-
movers.

D. Scattering processes and kinetic equations

Although total momentum and energy currents, IP
and IE , are conserved, such currents taken for the left-

and right-movers separately, I
R/L
P and I

R/L
E , are not.

Indeed, three-particle collisions shown in Fig. 2(b) in-
duce momentum and energy exchange between counter-
propagating electrons. Let us focus on a small segment
of the wire between the positions x and x + ∆x, where

0 < x < L. The difference I
R/L
P (x + ∆x) − I

R/L
P (x) is

equal to the rate of change of the momentum of right-
moving electrons ṖR/L = ṗR/L∆x. Here ṗR/L is the rate
per unit of length. As a result, the continuity equation
for the momentum exchange reads

∂x(I
R
P (x)− ILP (x)) = 2ṗR . (35)

Here we used ṗL = −ṗR which is ensured by the conserva-
tion of total momentum. In complete analogy we can now
relate the difference of energy currents IRE (x+∆x)−IRE (x)

to the corresponding energy exchange rate ĖR = ėR∆x,
which gives us

∂x(I
R
E (x)− IRE (x)) = 2ėR , (36)

where we also used ėL = −ėR guaranteed by the energy
conservation. The right-hand-side of Eqs. (35) and (36)
can be calculated from the collision integral of the Boltz-
mann equation [Eq. (14)].

There are two basic processes which contribute to ṗR

and ėR. The first one includes two right-movers that scat-
ter off one left mover. This process is shown in Fig. 2(d).
The other process, when two left-movers scatter off one
right-mover, is equally important. Keeping both terms,
using Eqs. (14) and (16) we find for the relaxation rates
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(details of the derivation are given in Appendix A)

ṗR = −kF
pF
2τ

uR − uL

vF
, (37)

ėR = −kF
µ

τ

δT R − δT L

T
, (38)

1

τ
=

3

kF∆x

∑

p1>0,p2>0,p3<0

p
1′

>0,p
2′

>0,p
3′

<0

v2F (p3′ − p3)
2

µT
K

1′2′3′

123 . (39)

Having determined relaxation rates we now return to
Eqs. (35) and (36). Computing momentum and energy
currents of right- and left-movers in the same way as we
did in the previous section from Eqs. (26)–(27), using the
relaxation rates from Eqs. (37)–(38) we find two addi-
tional equations which describe relaxation of momentum

pF
π2T 2

12µ2

(

duR

dx
+
duL

dx

)(

1 +
5π2

12

T 2

µ2

)

+
π2T

6µ

(

dδT R

dx
− dδT R

dx

)(

1 +
7π2

40

T 2

µ2

)

=−hkF
τ

uR − uL

vF
(40)

and energy

pF
π2T 2

6µ2

(

duR

dx
− duL

dx

)(

1 +
7π2

40

T 2

µ2

)

+

π2T

3µ

(

dδT R

dx
+
dδT L

dx

)

= −2hkF
τ

δT R − δT L

T
. (41)

Equations (32)–(34) and (40)–(41), together with
the boundary conditions Eqs. (22)–(24) represent the
closed system of six coupled differential equations
whose solution fully determines the six parameters
µR/L, uR/L, T R/L that define electron distribution func-
tion (5). We now find these parameters explicitly. For
that purpose let us introduce dimensionless variables

η± =
uR ± uL

vF
, θ± =

δT R ± δT L

T
, (42)

and the microscopic scattering length

ℓb =
π3T 4

360µ4
(vF τ) . (43)

Calculation of ℓb requires detailed knowledge of the scat-
tering rate, implicit in the kernel K1′2′3′

123 , as a function
of momenta transferred in a collision. In Appendix B
we provide this information for the case of three-particle
collisions under consideration and in Appendix C find ℓb
explicitly for the spinless and spinful cases.

After some algebra coupled equations (33)–(34) and

(40)–(41) can be reduced to the following form

∂θ+
∂x

= −α∂η−
∂x

, (44)

∂η+
∂x

= −β ∂θ−
∂x

, (45)

∂θ−
∂x

=
η−
ℓb
, (46)

∂η−
∂x

=
θ−
ℓb
, (47)

which contain two dimensionless parameters

α = 1 +
29π2

120

T 2

µ2
, β = 1− 7π2

40

T 2

µ2
, (48)

where higher order in T/µ ≪ 1 corrections were ne-
glected. The remaining two equations for the chemi-
cal potentials of right- and left-movers [Eq. (32)] are not
written here for brevity. The latter do not enter the heat
current and thus are not explicitly needed. Equations
(44)–(47) can now be easily solved with the result:

θR(x) =
∆T

2T

α−e
x/ℓb + α+e

(L−x)/ℓb

α− + α+eL/ℓb
, (49)

θL(x) = −∆T

2T

α+e
x/ℓb + α−e

(L−x)/ℓb

α− + α+eL/ℓb
, (50)

ηR(x) =
∆T

2T

β−(e
x/ℓb − 1)− β+(e

(L−x)/ℓb − eL/ℓb)

α− + α+eL/ℓb
,

(51)

ηL(x) = −∆T

2T

β+(e
x/ℓb − eL/ℓb)− β−(e

(L−x)/ℓb − 1)

α− + α+eL/ℓb
,

(52)
where α± = 1± α, β± = 1± β and θR/L = (θ+ ± θ−)/2,
ηR/L = (η+ ± η−)/2. This concludes our solution of the
Boltzmann equation for three-particle collisions.

IV. HEAT CURRENT AND THERMAL

CONDUCTANCE

Complete knowledge of the distribution function (5)
allows us to compute physical observables. Specifically,
we are interested in the thermal conductance K. For the
latter we need to evaluate the heat current

IQ(x) = IE(x) − µI(x) . (53)

By using Eqs. (5) we carry out Sommerfeld expansion for
the particle and energy currents, I and IE , from Eqs. (25)
and (27), up to the forth order in T/µ≪ 1, and then find
from the above definition [Eq. (53)]

IQ(x) =
π2T 2

3h

[

η+(x)

β
+ θ−(x)

]

, (54)
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which was presented here in our notations defined in
Eq. (42). With the help of Eqs. (49)–(52) it can be read-
ily checked that IQ is uniform along the wire. This fact is
a priori expected and follows from the conservation laws,
which we already explored above. By knowing IQ we can
finally find thermal conductance K(L) = IQ/∆T as a
function of the wire length

K(L)

K0
=

tanh(L/2ℓb) + β

αβ tanh(L/2ℓb) + β
. (55)

This is the main result of our paper. Note here that
K0 = π2T/3h for the case of spinless electrons, whereas
K0 is given by Eq. (3) for electrons with spin. The func-
tional form of K(L) remains the same in both cases ex-
cept for the expressions for ℓb, which we discuss below.
Let us now analyze limiting cases of Eq. (55) and discuss
microscopic form of the scattering length ℓb.
Equation (55) interpolates smoothly between two dis-

tinct limits. In short wires, L ≪ ℓb, from the expansion
of Eq. (55) one obtains for the interaction-induced correc-
tion to thermal conductance, δK = K−K0, the following
result

δK(L)

K0
= −π

2

30

T 2

µ2

L

ℓb
, L≪ ℓb . (56)

In such short wires electrons propagate from one lead
to the other rarely experiencing three-particle collisions
of the type shown in Fig. 2(b). Thus their distribu-
tion function is approximately determined by that in the
leads [Eq. (4)]. Under such assumption one can adopt
the strategy of Ref. 19, applied previously for the cal-
culation of conductance and thermopower in short wires,
and treat the collision integral of the Boltzmann equation
perturbatively, thus neglecting effects of thermalization
on the distribution function. Technically speaking, this
corresponds to a lowest order iteration for the Boltzmann
equation, which amounts to substituting distribution (4)
into the collision integral (14) to calculate the correction
to IQ. This perturbative procedure immediately repro-
duces Eq. (56).
It is physically expected that in longer wires particle

collisions Fig. 2(b) should have much more dramatic ef-
fect on the distribution function and thus thermal trans-
port. Indeed, once full thermalization has been achieved
for L ≫ ℓb we find from Eq. (55) that the correction to
thermal conductance saturates

δK(L)

K0
= −π

2

30

T 2

µ2
, ℓb ≪ L≪ ℓeq . (57)

One interesting aspect of Eq. (57) is that δK is indepen-
dent of the interaction strength. It means that no matter
how weak the interactions are, for sufficiently long wires
thermalization between right- and left-moving electrons
eventually establishes, which leads to saturation of δK.
The behavior of δK(L) as a function of the wire length
is summarized Fig. 3.

1 2 3 4 5

L

2 {b

0.002

0.004

0.006

0.008

0.010

-

∆K

K0

FIG. 3: [Color online] Interaction-induced correction to the
thermal conductance of a clean quantum wire as a function of
its length plotted for different values of temperature (from the
bottom to the top curve): T/µ = 0.05, 0.1, 0.15, 0.2. For L ≪

ℓb the correction scales with L and saturates to a constant
value ∝ (T/µ)2 once ℓb ≪ L in accordance with Eqs. (56)
and (57).

The interaction strength, however, sets the length scale
ℓb at which thermalization occurs. Its actual dependence
on temperature is determined by the phase space avail-
able for a three-particle collision to occur and by the de-
pendence of the corresponding scattering amplitude on
momenta transferred in a collision. For spinless electrons
and Coulomb interaction we find (see Appendix C for the
derivation and additional discussions)

ℓ−1
b ≃ kFλ1(kFw)(e

2/~vFκ)
4(T/µ)3 , (58)

where w is wire width and λ1(z) = z4 ln2(1/z). In the
case of spinful electrons scattering length changes to

ℓ−1
b ≃ kFλ2(kFw)(e

2/~vFκ)
4(T/µ) ln2(µ/T ) , (59)

where λ2(z) = ln2(1/z). Contrasting Eqs. (58) and (59)
one sees that spin of electron plays an important role
since inverse scattering length of spinful electrons is sig-
nificantly larger, by a factor (µ/T )2 ≫ 1. This is a
manifestation of the Pauli exclusion principle. Indeed,
for three-particle scattering to occur electrons must ap-
proach each other on the distance of the order of ∼ k−1

F .
When electrons are spinless Pauli exclusion suppresses
probability of such scattering. In contrast, the suppres-
sion is not as strong when the total spin of the three
colliding particles is 1/2 since at least two electrons may
have opposite spins while exclusion applies to the third
particle. This technical point and importance of the ex-
change effect in the scattering amplitudes are discussed
in more detail in Appendix B.

V. DISCUSSION

In this paper we studied the thermal transport prop-
erties of one-dimensional electrons in quantum wires. In
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this system equilibration is strongly restricted by the
phase space available for electron scattering and conser-
vation laws such that leading effects stem from the three-
particle collisions. This is in sharp contrast with the
higher dimensional systems where already pair-collisions
provide electronic relaxation. Although our theory is
applicable only in the weakly interacting limit the pre-
sented results are still beyond the picture of the Lut-
tinger liquid since three-particle collisions are not cap-
tured by the latter. We have elucidated the microscopic
processes involved in electron thermalization and devel-
oped a scheme for solving Boltzmann equation analyti-
cally within the linear response analysis. Our approach
allows to find thermal conductance at arbitrary rela-
tion between the wire length and microscopic relaxation
length, see Eq. (55).
In order to establish connection to the previous

works21,22 we emphasize that our solution of the kinetic
equations and the result for thermal conductance pre-
sented in Eq. (55) rely on the simplifying assumption
that electron backscattering can be neglected. This is
a good approximation except for the case of very long
wires, L & ℓeq, where small probability of backscatter-

ing ∼ e−µ/T is compensated by the large phase space
available for scattering to happen. Accounting for the
backscattering processes it was found in Ref. 21 that for
wires with length L ∼ ℓeq thermal conductance is

K(L)

K0
=

ℓeq
L+ ℓeq

. (60)

This result gives only exponentially small correction to
thermal conductance, δK/K0 = −L/ℓeq ∝ e−µ/T , in the
limit L≪ ℓeq, since in the analysis of Ref. 21 thermaliza-
tion effects on the distribution function were neglected.
It is our result Eq. (57) that gives the leading order cor-
rection to δK in this case. On the other hand, our ex-
pression (55) is not applicable for the long wires, L ∼ ℓeq,
whereas Eq. (60) works in this regime. It displays an
essentially new feature, which is solely due to backscat-
tering processes, namely vanishing thermal conductance
δK ∝ 1/L as L→ ∞.
Our work may be relevant for a number of recent ex-

periments. In particular, Ref. 10 reported thermal con-
ductance measurements and a lower value of K, than
that predicted by the Wiedemann-Franz law, at the
plateau of electrical conductance. As we explained in
the text, corrections to G are exponentially small, G =
2e2/h − O(e−µ/T ), for wires with L ≪ ℓeq. Thus the
conductance remains essentially unaffected by interac-
tions, and its quantization is robust. In contrast, the
effect of three-particle collisions on the thermal conduc-
tance is much more pronounced. Our Eq. (57) shows that
thermal conductance is reduced by interactions, which is
qualitatively consistent with the experimental observa-
tion.10 Apparent violation of the Wiedemann-Franz law
is due to the fact that interaction-induced corrections δK
and δG originate from physically distinct scattering pro-
cesses, see Figs. 2(b) and 2(c), respectively.

Another experiment15 reported measurements of elec-
tron distribution function in one-dimensional wires. This
experiment demonstrated that electrons thermalize de-
spite the fact of severe constraints imposed by the conser-
vation laws and dimensionality on the particle collisions.
We take the point of view that three-particle collisions
are responsible for relaxation and provide an explicit so-
lution of the Boltzmann equation, thus uncovering the
structure of the distribution function, see Eqs. (5) and
(49)–(52), which in principle can be compared to exper-
imental results.28

A related study16 provided us information about the
time scales of thermalization of one-dimensional elec-
trons. Although we do not study the latter our results for
relaxation lengths Eqs. (58)-(59) can be directly linked
to the experiment. Note also that dramatic difference be-
tween relaxation lengths, and thus times, of spinful and
spinless electrons, provides distinct signature of three-
particle collisions that could be tested experimentally.

There is very important limitation on the applicability
of Eqs. (55) and (59) that we need to discuss in the case
of spinful electrons.24 From the point of view of Luttinger
liquid electrons are not well defined excitations in one di-
mension and instead one should use bosonic description
in terms of charge and spin modes. Weakly interact-
ing limit considered here and usage of the Boltzmann
equation assumes that electrons maintain their integrity
during collisions and thus neglects effects of spin-charge
separation. In order to quantify the condition to which
extent such description is valid consider an electron with
the excitation energy ξ above the Fermi energy µ. For
the quadratic dispersion, εp = p2/2m, velocity of such
electron differs from that of the electrons in the Fermi
sea by an amount ∆v = ξ/mvF . Spin and charge do
not separate appreciably if ∆v ≫ vc − vs, where vc(s)
are velocities of charge (spin) excitations. At finite tem-
peratures characteristic excitation energy is ξ ∼ T so
that above condition can be equivalently reformulated
as T/µ ≫ (vc − vs)/vF . For weakly interacting elec-
trons the difference between velocities of charge and spin
modes is related to the zero momentum Fourier com-
ponent of electron-electron interaction potential, namely
vc − vs ≃ V0/π~ ≪ 1. This implies that at low tempera-
tures when T/µ ≪ V0/~vF description in terms of elec-
trons breaks down and Eqs. (55) and (59) are no longer
applicable.

Finally, our work also points to open issues and direc-
tions for the future research. It is of great interest to un-
derstand the fate of energy relaxation and the nature of
thermal transport in the case of strong interactions which
simultaneously have to be combined with nonequilibrium
conditions. At very low temperatures description of one-
dimensional system in terms of electronic excitations be-
come inadequate even if the interactions are weak. Effect
of spin-charge separation has to be included and thermal
transport from plasmons and their relaxation are central
issues to consider.
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Appendix A: Derivation of ṖR and ĖR

In this Appendix we derive Eqs. (37)–(39) presented
in the main text of the paper. As explained in Sec. III D,
when computing ṖR and ĖR we have to account for two
types of scattering processes. One is shown in Fig. 2(b)
and the other is similar and consists of a scattering of one
left-mover and two right-movers. We start by considering
the quantity Pn =

∑

p1>0 p
n
1f1. Its rate of change is

Ṗn =
∑

p1>0

pn1 ḟ1 = −
∑

p1>0,p2,p3
p
1′

,p
2′

,p
3′

pn1K
1′2′3′

123

× (ψ1 + ψ2 + ψ3 − ψ1′ − ψ2′ − ψ3′) , (A1)

where we used the Boltzmann equation [Eq. (10)] and
the short-hand notation ψi = ψ(pi, x). It is convenient
to split each sum from the last equation into parts that
contain positive and negative values of the momenta, so
that one gets

Ṗn =
∑

+−−

−−−

(. . .) + 3
∑

+−−

++−

(. . .) + 6
∑

++−

+−−

(. . .) +
∑

+−−

+++

(. . .)

+
∑

+++

−−−

(. . .) + 3
∑

+++

+−−

(. . .) + 3
∑

+++

++−

(. . .) + 2
∑

++−

+++

(. . .)

+2
∑

++−

−−−

(. . .) + 3
∑

+−−

+−−

(. . .) + 6
∑

++−

++−

(. . .) +
∑

+++

+++

(. . .).

(A2)

The notations here mean
∑

+−−

−−−

(. . .) =
∑

p1>0,p2<0,p3<0

p
1′

<0,p
2′

<0,p
3′

<0

(. . .) , (A3)

and analogously for the other terms. When deriving
Eq. (A2) we have used the following symmetry proper-
ties of the kernel: (a) exchange of incoming and out-

going momenta K
1′2′3′

123 = K
123
1′2′3′ , (b) pairwise exchange

K
1′2′3′

123 = K
2′1′3′

213 , and (c) inversion of momenta pi → −pi,
K

1′2′3′

123 = K
−1′−2′−3′

−1−2−3 . In the final expression for Ṗn we
keep only the terms of Eq. (A2) that contain equal num-
bers of positive incoming and outgoing momenta, i.e.,
the last three terms. The other terms contain at least
one state near the bottom of the band and therefore give
a contribution that is exponentially suppressed due to
the small probability to find an unoccupied state. After

employing Eqs. (16)–(20) combined with momentum and
energy conservations, we end up with

Ṗn = 3
∑

++−

++−

K
1′2′3′

123

[

δT R − δT L

T 2
[2pn1 − (−p3)n]

×(εp3
− εp3′

) +
uL − uR

T
[2pn1 + (−p3)n] (p3 − p3′)

]

.

For n = 1 from the last expression we easily get

ṖR = Ṗ1 = −3
uR − uL

T

∑

++−

++−

K
1′2′3′

123 (p3′ − p3)
2, (A4)

which reduces to Eq. (37) in the main text. For n = 2

ĖR =
Ṗ2

2m
= −3

δT R − δT L

T 2

∑

++−

++−

K
1′2′3′

123 (εp3′
− εp3

)2 .

(A5)

One additional step is required to obtain Eq. (38). Since
all three particles participating in a collision are located
near the Fermi points it means that characteristic mo-
mentum of right-movers is ∼ pF while for the left-mover
∼ −pF . In contrast, the momenta transferred in a colli-
sion qi = pi′ − pi are much smaller ∼ T/vF ≪ pF , which
stems from the temperature smearing of the occupation
functions implicit in the kernel K1′2′3′

123 . Since |qi| ≪ pF
we approximate p3 ≈ −pF and linearize spectrum near
the Fermi points, in particular

εp3+q3 − εp3
≈ 1

2m
[(−pF + q3)

2 − p2F ] ≈ −vF q3 , (A6)

which then brings last expression for ĖR to the form of
Eq. (38) in the main text.

Appendix B: Three-particle scattering amplitude

For most of our analysis the detailed form of the scat-
tering rate entering kinetic equation (10) was not im-
portant. However, for the calculation of the microscopic
quantities, such as the scattering lengths ℓa and ℓb, we
need to know the precise form of the scattering rate
W 1′2′3′

123 introduced in Eq. (11). Below we give the de-
tails of the structure of the scattering rate. We start
with the golden rule expression

W 1′2′3′

123 =
2π

~
|A1′2′3′

123 |2δ(E − E′)δP,P ′ (B1)

where A1′2′3′

123 is the corresponding scattering amplitude,
while the delta-functions impose conservations of the to-
tal energy E(E′) =

∑

i εpi(pi′ )
and total momentum

P (P ′) =
∑

i pi(i′) of the colliding electrons. One should
note that in Eq. (B1) we include δP,P ′ in the definition

of the scattering rate W 1′2′3′

123 rather than the amplitude
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FIG. 4: [Color online] Direct (a) and five exchange (b)-(f)

terms in the three-particle amplitude A
1′2′3′

123 [Eq. (B2)] that

contribute to the finite momentum ṖR and energy ĖR ex-
change rates between right- and left-movers.

A1′2′3′

123 , which is in contrast to the usual convention. This
step simplifies our notations.
Since the electrons interact with two-particle interac-

tion potential V (x), the three-particle scattering ampli-
tude is found in the second order in V (x). The details of
such calculation were presented in Ref. 19. In the case of
spinless electrons the final result reads

A1′2′3′

123 =
∑

π(1′2′3′)

sign(1′2′3′)A(11′, 22′, 33′) . (B2)

One should notice that Eq. (B2) contains the term
A(11′, 22′, 33′), which is the amplitude of the direct scat-
tering process [Fig. 4(a)], and the terms obtained by the
remaining five permutations of the outgoing momenta,
which are the exchange terms [Figs. 4(b)–4(f)]. They
can be written compactly for the segment ∆x of the wire
as follows

A(1a, 2b, 3c) = aab12 + aac13 + abc23 , (B3)

aab12 ≡ apapb
p1p2

=
1

(∆x)2
Vpa−p1

Vpb−p2

×
[

1

E−εp1
−εpb

−εP−p1−pb

+
1

E−εpa
−εp2

−εP−pa−p2

]

, (B4)

where (a, b, c) is a particular permutation of (1′, 2′, 3′). In
Eq. (B2) the notations π(. . .) and sign(. . .) denote per-
mutations of the final momenta and parity of a particular
permutation. Finally, Vp is the Fourier transformed com-
ponent of the bare two-body interaction potential. For
the calculations we take Coulomb interaction between
electrons

V (x) =
e2

κ

[

1√
x2 + 4w2

− 1√
x2 + 4d2

]

, (B5)

screened by a nearby gate, which we model by a conduct-
ing plane at a distance d from the wire. We also intro-
duced small width w of the quantum wire, w ≪ d, to
regularize the diverging short-range behavior of this po-
tential. This enables us to evaluate the small-momentum
Fourier components Vp of the interaction potential V (x).
To this end, we find in the limit ~/d≪ p≪ ~/w

Vp =
2e2

κ
ln

(

pw
|p|

)[

1 +
p2

p2w

]

, (B6)

while in the limit of very small momenta p≪ ~/d

Vp =
2e2

κ
ln

(

d

w

)[

1− p2

p2d

ln(pd/|p|)
ln(d/w)

]

. (B7)

In the last two equations we introduced notations pw =
~/w and pd = ~/d. We also employed logarithmic accu-
racy approximation for Vp, meaning that numerical coef-
ficients in the arguments of the logarithms in Eqs. (B6)
and (B7) are neglected. In the following discussions we
refer to Eq. (B6) as unscreened Coulomb potential, and
to Eq. (B7) as the screened one. The complete expres-
sion for the amplitude (B2) with the interaction poten-
tial taken in the form (B6) or (B7) is fairly complicated.
However, major simplification is possible by studying
kinematics of the three-particle collisions, which in a
way allows to obtain approximated form of the ampli-
tude for a specific scattering processes, such as the one
in Fig. 2(b), which determines the scale ℓb.
It is convenient to label the outgoing momenta as

pi′ = pi + qi for i = 1, 2, 3 in order to separate explicitly
the momenta qi transferred in a collision. Momentum
conservation then reads

q1 + q2 + q3 = 0 . (B8)

while energy conservation E = E′ can be equivalently
rewritten as

2p1q1 + 2p2q2 + 2p3q3 + q21 + q22 + q23 = 0 . (B9)

At low temperatures, T ≪ µ, the Fermi occupation func-
tions constraint particles participating in the collision to
lie in the momentum strip of the order of T/vF ≪ pF
near the Fermi level. It practically means that the typi-
cal momentum transferred in a collision will not exceed
max{|q|} . T/vF . To leading order in T/µ ≪ 1 the en-
ergy and momentum conservation requirements for the
scattering process in Fig. 4 can be resolved by

q1 ≈ −q2 +O{[(p1 − p2), q2]/pF} , (B10a)
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and

q3 ≈ q1(q1 + p1 − p2)

2pF
+O{[(p1− p2), q1]

2/p2F } , (B10b)

where we used p1 − p2 ∼ T/vF and set p3 ≈ −pF . From
this analysis one concludes that energy transfer between
the right- and left-movers occurs via small portions of
momentum q3 exchange such that

{|q1|, |q2|} ∼ T/vF , |q3| ∼ T 2/vFµ≪ {|q1|, |q2|} .
(B11)

Having two small parameters at hand |q1|/pF ≪ 1 and
|q3|/|q1| ≪ 1, and accounting for all the exchange contri-
butions one can expand the amplitude (B2) to the leading
nonvanishing order.29 In the course of such expansion we
observed that exchange contributions result in the severe
cancelations between different scattering processes. The
result of the calculations for the model of unscreened in-
teraction (B6) is

|A1′2′3′

123 |2 =

(

2e2

κ

)4
9λ1(kFw)

64µ2(∆x)4
ln2

(

q21
2pF |q3|

)

(B12)

where the amplitude is written for the segment of the
wire of length ∆x and function λ1(kFw) was introduced
earlier [see definition after Eq. (58)]. For the screened
case we find

|A1′2′3′

123 |2 =
(

2e2

κ

)4
25λ3(kF d)

4µ2(∆x)4

×
[

q21
p2F

ln

(

pF
|q1|

)

− 4q23
q21

ln

( |q1|
|q3|

)]2

, (B13)

where λ3(z) = z8 ln2(1/z). Both amplitudes (B12) and
(B13) are written in the logarithmic accuracy approxima-
tion. As argued above, the typical scattering processes
studied here only involve small-momentum transfer, of
the order q ∼ T/vF . As a result, from the conditions
of applicability of the interaction potential Eq. (B6) it
follows that corresponding amplitude Eq. (B12) applies
for T ≫ ~vF /d. Similarly, screened interaction potential
Eq. (B7) and corresponding amplitude Eq. (B13) applies
at lower temperatures T ≪ ~vF /d.
There are several general remarks we need to make re-

garding the scattering amplitude in Eq. (B2). It is known
from the context of integrable quantum many-body prob-
lems30 that for some two-body potentials, N -body scat-
tering processes factorize into a sequence of two-body col-
lisions. In the context of this work, it means that three-
particle scattering for the integrable potentials may result
only in permutations within the group of three momenta
of the colliding particles; all other three-particle scatter-
ing amplitudes must be exactly zero for such potentials.
We have checked explicitly that the three-particle scat-
tering amplitude in Eq. (B2) nullifies for the several spe-
cial potentials: for the contact interaction, Vp = const,
for the Calogero-Suthreland model, Vp ∝ |p|, and also for
the potential Vp ∝ 1−p2/p20 which is dual to the bosonic

Lieb-Liniger model. Surprisingly, we have also noticed
that logarithmic interaction potential Vp ∝ ln |p| gives
exact zero for the three-particle amplitude in Eq. (B2)
although we are unaware of any exactly solvable model
for that case. This is the reason to keep the next leading
order term ∼ (p/pw)

2 ≪ 1 in Eq. (B6), which prevents
amplitude in Eq. (B2) from vanishing exactly.
The second set of remarks concern electrons with spin.

For the latter three-particle amplitude has the same form
as Eq. (B2), however, it acquires additional dependence
on the spin indices

A1′2′3′

123 =
∑

π(1′2′3′)

sign(1′2′3′)Ξσ1σ2σ3

σ1′σ2′σ3′
A(11′, 22′, 33′),

(B14)
where Ξσ1σ2σ3

σ1′σ2′σ3′
= δσ1σ1′

δσ2σ2′
δσ3σ3′

. One can repeat

the expansion of the amplitude for |q1|/pF ≪ 1 and
|q3|/|q1| ≪ 1 and observe that due to the spin struc-
ture the exchange terms do not cancel each other. In
particular, with the help of Eq. (B6) we find amplitude
for the case of unscreed Coulomb potential in the form

∑

{σ}

|A1′2′3′

123 |2=
(

2e2

κ

)4
3λ2(kFw)

32µ2(∆x)4

[

4p2F
q21

+
q21
q23

]

ln2
(

2pF
|q1|

)

,

(B15)
which is by a factor of (pF /|q1|)2 ≫ 1 larger than
Eq. (B12) and λ2(kFw) was defined under Eq. (59).

Appendix C: Intra-branch and inter-branch

relaxation lengths

In this Appendix we estimate the scattering lengths ℓa
and ℓb. Our starting point for evaluation of the inter-
branch length ℓb is the expression

ℓ−1
b =

1080µ4

π3T 4

1

vFkF∆x

∑

++−

++−

(vF q3)
2

µT
W 1′2′3′

123 F{f0},

(C1)
which follows from Eqs. (39) and (43), where in addition
we introduced the notation

F{f0} = f0
p1
(1− f0

p1+q1)f
0
p2
(1 − f0

p2+q2)f
0
p3
(1− f0

p3+q3).
(C2)

In view of kinematic constraints (B10a) and (B10b) con-
servation of momentum and energy in the expression (B1)

for the scattering rate W 1′2′3′

123 can be presented as

δ(E − E′)δP,P ′ ≈ 1

2vF
δ

(

q3 −
q1(q1 + p1 − p2)

2pF

)

δq1,−q2 ,

(C3)
which eliminates two out of six momentum integrations
in Eq. (C1). The other four integrals can be completed
analytically with logarithmic accuracy. This amounts
replacing weak logarithmic parts of the amplitude in
Eqs. (B12), (B13) and (B15) by their typical values taken
at characteristic momenta, q1 ∼ T/vF and q3 ∼ T 2/vFµ.
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We thus treat ln(q21/2pF |q3|) in Eq. (B12) as a con-
stant of order unity, and approximate ln(pF /|q1|) ≃
ln(|q1|/|q3|) ≃ ln(µ/T ) in Eqs. (B13) and (B15). Af-
ter this step we can integrate in Eq. (C1) explicitly by
linearizing electron dispersion relation inside the Fermi
functions and get

∑

p1p2p3

q41F{f0} =
(∆x)3T

4h3vF

q61
sinh2

(

vF q1
2T

) , (C4)

∑

p1p2p3

q31(p1 − p2)F{f0} = − (∆x)3T

4h3vF

q61
sinh2

(

vF q1
2T

) , (C5)

∑

p1p2p3

q21(p1 − p2)
2
F{f0} =

(∆x)3T

6h3vF

q41

(

7q21
4 + π2T 2

v2
F

)

sinh2
(

vF q1
2T

) .(C6)

For the spinless case and high temperature regime T ≫
~vF /d, where Coulomb interaction unscreened, we are
obtain

ℓ−1
b ≃ λ1(kFw)

p2FT
4∆x

(

e2

~κ

)4
∑

q1

q41

(

q21
4 + π2T 2

v2
F

)

sinh2
(

vF q1
2T

) . (C7)

Note here that we do not keep track of the numerical
coefficient in the expression for ℓb since within adopted
calculation with logarithmic accuracy this coefficient is
not determined. After the remaining q1 integration one
recovers Eq. (58) presented in the main text of the paper.
At lower temperatures, T ≪ ~vF /d, screening effects

become important and one should use Eq. (B13) in the
expression for the scattering length Eq. (C1). Estimate
of ℓb in this case gives

ℓ−1
b ≃ kFλ3(kF d)(e

2/~vFκ)
4(T/µ)7 ln2(µ/T ) . (C8)

In the spinful case this calculation is completely anal-
ogous to above; we just need to use different expression
for the scattering amplitude. With the help of Eq. (B15),
which is applicable for the model of unscreened Coulomb
potential interaction, we get at the intermediate step
with the logarithmic accuracy

ℓ−1
b ≃ λ2(kFw)

T 4∆x

(

e2

~κ

)4

ln2
(µ

T

)

∑

q1

q21

(

5q21
2 + 4π2T 2

v2
F

)

sinh2
(

vF q1
2T

) .

(C9)

After the final integration this translates into Eq. (59).

We turn now to the discussion of the intra-branch re-
laxation length ℓa introduced in Sec. II. Unlike the case
of inter-branch relaxation, Fig. 1(b), here all three collid-
ing particles are near the same Fermi point, see Fig. 1(a).
In this case, the typical momentum change for the three
electrons is the same,

|q1| ∼ |q2| ∼ |q3| ∼ T/vF . (C10)

At this point we should emphasize that for the processes
that determine the length scale ℓb, a new energy scale
T 2/µ appeared in the problem purely from the kinematic
constraints based on the conservation laws. This scale
determined the typical momentum transfer of the parti-
cle that was alone at one side of the Fermi surface, see
Eqs. (B10b) and (B11).

Another important quantity is the scattering ampli-
tude. For Coulomb interaction and for the process where
all three particles are near the same Fermi point, it is
a relatively complicated expression, but similarly to the
Eqs. (B12) and (B13) it depends on momenta only weakly
(logarithmically) for the intra-branch processes.

These two observations help us to estimate ℓa using
the known result Eq. (58) for ℓb. Namely, by replacing
the energy scale T 2/µ in ℓb by T , we obtain the estimate

ℓ−1
a ≃ kFλ1(kFw)(e

2/~vFκ)
4(T/µ)2, (C11)

for the unscreened Coulomb case, T ≫ ~vF /d. At lower
temperatures, T ≪ ~vF /d, it changes to ℓ

−1
a ∝ T 6. It is

important to emphasize that regardless of the interaction
model we use there exists distinct separation between the
scales of relaxation lengths, namely

ℓa/ℓb ∼ T/µ≪ 1. (C12)

This fact justifies our anzats for the distribution function
[see the discussion after Eq. (5)]. The detailed calculation
of ℓa will be presented elsewhere.29
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