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Abstract

We investigate helical single-walled nanotubes of BN and ZnO described with density functional

based tight-binding models. The employed objective molecular dynamics computational framework

accounts for the helical instead of the translational symmetry and allows for simulating chiral

nanotubes as the result of the nanomechanical process of a nearly-axial glide2. At large diameters,

by comparing the microscopic strain stored in the tube wall with the continuum predictions, we

observe the invalidity of the continuum shell idealization of the one-athom thick layer. At small

diameters, by comparing the computed Eshelby twist executed by the one-atom thick layers with

the one predicted by pure rolling of the mono-layer, we find that a large catalog of nanotubes

store intrinsic twists. This unusual intrinsic twist effect is shown to be dependent on chirality and

diameter, as part of the general trend to depart from the standard rolled-up construction. While

changes in the electronic structures and Young’s modulus are dominated by curvature, the shear

elastic constants vary both with curvature and chirality.

PACS numbers: 62.23.Kn, 62.25.-g, 62.20.D-
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I. INTRODUCTION

Nanostructured tubular materials have attracted vast attention for almost two decades.

In addition to carbon nanotubes (CNTs), first reported in 19913, a large number of in-

organic NT nanostructures have been synthesized from both layered4–12 and non-layered

materials13–18. While the inorganic fullerene-like NTs can be typically imagined as layers

rolled into cylindrical structures, the NTs made out of non-layered materials are essentially

pristine one-dimensional monocrystalline structures possessing a central vacant space. In

this paper we focus on two such one-atom thick NTs, made out of BN and ZnO.

Recent experimentation16–20 indicates that screw dislocation growth represents a growth

mechanism of quasi-one dimensional structures. Such developments renewed the interest

in chiral structures other than CNTs. Due to the inherent difficulties encountered at the

nanoscale, experimental characterization of these chiral materials is often problematic. Al-

though microscopic simulations are essential tools for investigating infinite crystalline sys-

tems, their applicability in NT chiral structures is challenging due to the difficulties asso-

ciated with handling translational symmetry. It is known that a screw dislocation lying

parallel with the axis of a thin rod or a tube, Fig. 1, is stabilized at a central location by

an Eshelby twist21,22. According to elasticity theory, the twist per unit length (twist rate)

γ′

E induced by the presence of an axial screw dislocation in an isotropic thin cylindrical rod

or a tube can be expressed in terms of its outer and inner radii (R and r, respectively) and

the magnitude of the Burgers vector b as

γ′

E =
b

π(R2 + r2)
. (1)

The formation energy per unit length of a screw-dislocated isotropic thin rod or a tube

writes

E =
Gb2

4π
ln

R

r
− Gb2

4π

R2 − r2

R2 + r2
+ S, (2)

where G is the shear modulus. The above expression contains three different terms: energy

associated with elastic strain field created by the screw dislocation (first term), energy

reduction attributed to the Eshelby twist (second term), and surface energy (third term)

of both outer and inner surfaces for non-layered materials (ZnO) or bending energy related

with rolling of a sheet into a tube for layered materials (C, BN).

From a continuum perspective, the one-atom thick tube can be represented by shell of
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a certain thickness, i.e. r 6= R. Then, the first two terms in eq. (2) bring non-vanishing

contributions and the NT total strain energy will contain shear strain. Alternatively, the

mono-layer can be represented by a continuum membrane without thickness23, i.e. r = R.

Then, the first two terms in eq. (2) vanish. This implies that there is no shear energy cost

to create an axial screw dislocation and, hence, the Burgers vector magnitude can be large.

Because in general the mechanics of an axial glide in a nanostructure is not yet under-

stood, the magnitude of the atomic-scale Eshelby twist, and hence the resulting translational

periodicity, is not a priori known. This makes it difficult to carry out systematic microscopic

calculations in the standard periodic framework.

Efficient microscopic modeling of screw dislocated NTs was only recently achieved2 due

to the development of objective molecular dynamics (MD)24, a relatively new microscopic

technique based on the objective structures25 concept. By coupling26 it with the computa-

tionally efficient density-functional based tight-binding (DFTB) treatment of the chemical

binding implemented in the code Trocadero27, objective MD enables simulating with mini-

mal symmetry constraints the interplay between the classical ionic and quantum electronic

degrees of freedom under an arbitrary twist and chirality.

Using objective MD and well tested two-center nonorthogonal DFTB models28–30, in this

paper we investigate the nanomechanics of screw dislocations in one-atom thick hexagonal

layers of BN and ZnO. The motivation for our study is threefold:

Firstly, it is interesting to understand and compare the rolling traits of these two materials

as they are representative for the two categories of the currently synthesized helical NTs.

Bulk hexagonal BN is a layered material and BN NTs have been synthesized in both single-

and multi-walled forms6–9,11. Although the majority of obtained tubes displayed zig-zag

configurations, helical and armchair BN NTs were also reported. ZnO exhibits a typical

wurtzite structure and helical ZnO NTs have been synthesized along the c direction via

dislocation-driven growth16–18. Structurally, the thicker-walled ZnO NTs are faceted and

display a hexagonal cross-section14,16–18. The single-wall NTs has a ZnO hexagonal wall and

a cylindrical cross-section31.

Secondly, single-walled BN and ZnO NTs are analogous to CNTs, with alternating B (Zn)

and N (O) atoms substitute for C atoms. They are both isotropic in the linear elastic regime.

When this approximation holds, the magnitude of the Eshelby twist can be analytically

predicted based on the standard rolled-up construction of CNTs32. Recent investigations33,34
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indicated that the thicker, three-atomic-layers of MoS2 and TiS2 exhibit a departure from

the rolled-up predictions, manifested in diameter-, chirality-, and wall-structure- dependent

intrinsic twists. Other symmetry-constrained DFTB calculations35 indicated that even the

widely-studied CNTs exhibit intrinsic twist. The effect was attributed35 to the well known

strain-sensitivity of the electronic properties38. It would be interesting to know if such

intrinsic twists are present in other one-atom thick NTs, with electronic properties less

sensitive to twisting.

Thirdly, the BN NTs offer a number of appealing properties11,40–42, including excellent

mechanical properties39,43. They are interest as components for electromechanical devices

in which the individual BN NT is subjected to torsional deformation44. The knowledge of

the elastic constant variations with diameter and chirality is assistive for the design of such

nanodevices.

This paper is organized as follows. Sec. II A reviews the standard rolled-up construction

and details the original helical nanotube construction introduced by Iijima3 and employed in

Ref.33,34 to simulate chiral MoS2 and TiS2 nanotubes. The relation between the Eshelby twist

and the helical NT indexes n and m is indicated. Sec. II B outlines the helical symmetry

treatment of the electronic states. Sec. III presents the simulation results for both BN and

ZnO helical NTs. Sec. III A focuses on the obtained structures and compares them with

the ideal rolled-up structure predictions. For a comparison with the existing literature35,45,

the case of small diameter helical CNT structures is also considered. Sec. III B focuses on

the scaling of electromechanical properties with chirality and diameter. Finally, in Sec. IV

obtained results are summarized and discussed.

II. METHODOLOGY

A. Ideal nanotube structure

An (n,m) NT is commonly conceptualized in the literature by the rolled-up construction,

which involves pure mechanical rolling of a flat hexagonal-lattice strip along the (n,m)

hexagonal lattice vector into a seamless cylinder32. In the unrolled representation, the n

and m indices represent the components of the circular circumference vector Ch of the

nanotube on the lattice vectors a1 and a2 of the honeycomb lattice, i.e. Ch = na1 +ma2.
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By convention, a1 and a2 are taken along the two armchair chains as shown in Fig. 2.

The radius of this tubule writes R0 = |Ch|/2π = a
√
n2 + nm+m2/2π. Here a is the

length of the primitive vector of the flat layer. The NT chirality is measured by the angle

χ =arcsin[(
√
3m)/(2

√
n2 + nm+m2)] enclosed by Ch and the closest of the three armchair

chains in the flat graphene sheet. The special cases corresponding to (n, 0) and (n, n) are

the zigzag and armchair configurations, respectively.

The fundamental property of an infinitely long NT is ostensibly its translational period-

icity, described by the translational vector T pointing along the axial direction of the NT.

In the unrolled representation, the translational vector T is orthogonal to Ch. While the

precise expression of T can be found in literature32, what matters here is that it points into

a direction which is distinct from one of the glide directions of the graphene sheet, Fig. 2.

The underlying assumption is that during the rolling process of the unit cell delineated by T

and Ch, the translational symmetry is preserved even though the bond lengths and angles

between atoms will change due to finite curvature effects. The infinitely long NT structure

is then described with:

Xj,ζ = Xj + ζT, (3)

where Xj are the coordinates of the atoms located in the unit cell. Integer ζ indexes the

unit cell replica.

An ideal NT possesses also helical symmetry, described in the unrolled representation by

screw vectors comprised of both rotational and translational components, i.e. with compo-

nents along both Ch and T. One such vector is the Burgers vector b3 = a1 − a2, shown

in Fig. 2. By evaluating its axial and circumferential components, one obtain that screw

vector b3 is associated with a θ0 angular rotation and a T0 axial translation given by

θ0 =
π(n−m)

n2 + nm+m2
,

T0 =

√
3a(n+m)

2
√
n2 + nm+m2

. (4)

The makeup of helical CNTs was depicted by Iijima in a another way, namely by the

rolling-up along the tube axis of a graphene ribbon in the armchair orientation (along the

glide direction indicated by the Burgers vector b3), Fig. 2, such that the hatched edge

hexagons are superimposed3. In the cylindrical geometry, the gliding of the edges past

one another creates an axial screw dislocation2,33. Indeed, in the cylindrical structure of
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an (n, n) NT, its chiral vector keeps a closed ring composed of 4n atoms. A slip along

the nearly-axial helical glide path introduces an integer number of hexagons i between the

head and the tail of the old chiral vector and thus leads to a change in NT’s chirality.

Of course, during this process the cylindrical structure of the armchair NT is maintained

and its new chiral vector keeps a closed ring, i.e. the dislocation between the head and

the tail of the new chiral vector is zero. The wrapping indexes of the new chiral pattern

can be easily obtained by identifying on the unrolled NT representation the new chirality

vector connecting the overlapping hexagons. It is an easy task to show that one glide step

introduces a characteristic (+1,−1) change in NT’s indexes2. The repeated glide defines a

nearly equal radius family of NTs with indexes (n, n), (n+1, n− 1),...,(2n, 0). An arbitrary

NT with indexes (n+ i, n− i), where i ∈ [0, n], can be viewed as a screw-dislocated armchair

NT that undergoes a twist of a lattice per unit length given by

γ0 =
θ0
T0

=
b

2πR2
0

√

1−
(

b
2πR0

)2
. (5)

Here, b = i|b3| is the magnitude of the Burgers vector. According to equation (1), the

twist rate for an one-atom thick tube, where inner and outer radii coincide, is γ′

E = b/2πR2
0.

This means that the twist rate calculated under pure rolling assumption, as given in (5),

converges to continuum membrane elasticity result when the tube radius increases (valid

for i < n). Even for the extreme case of zigzag NT (i = n) the calculated twist rate of

γ0 = b/
√
3πR2

0 is very close to continuum predictions.

What is useful in the screw-dislocation construction based on the nearly-axial glide is

that under the helical repetition rule indicated by b3, one can alternatively describe any NT

from this family based on the same 4n atoms contained in the small translational unit cell

of the armchair (n, n) NT. Let Xj be the atomic positions in the open ring, after the axial

glide took place. Positions Xj,ζ of the atoms located in the objective cell replica indexed by

integer ζ are then obtained with

Xj,ζ = QζXj + ζT0, j = 1, ..., 4n. (6)

The rotational matrix Q and the axial vector T0

Q =











cos θ0 − sin θ0 0

sin θ0 cos θ0 0

0 0 1











, T0 =











0

0

T0
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describe the helical transformation indicated by the screw vector b3.

We emphasize that other views of chiral NTs as screw-dislocated achiral NTs are also

possible. To address CNT growth37, another representation was proposed which connects

(n, n) to (n, 0) NTs via glides along a1 combined with removal of semi-infinite atom chains.

The representation used here based on Iijima’s construction of helical NTs, has relevance in

the torsional mechanical response2. It relates (n, n) armchair and (2n, 0) zigzag NTs without

involving any edge component.

B. Symmetry-adapted density-functional theory tight-binding objective molecu-

lar dynamics

With the NT description (3), the usual DFTB treatment formulated under periodic

boundary conditions can be applied in order to determine the precise atomic location inside

one unit cell27. Microscopic modeling based on description (6), however, requires special

consideration for the electronic states. The one-electron states are represented in terms of

symmetry-adapted Bloch sums

|αj, κ〉 = 1√
Ns

Ns−1
∑

ζ=0

eiκζ |αj, ζ〉, (7)

where Ns is the number of helical operations (typically ∞) over which the cyclic boundary

conditions are imposed. The Bloch factors are eigenvalues of the helical operators and

−π ≤ κ < π is the helical quantum number. |αj〉 is an atomic orbital with symmetry

α located on atom j inside the computational cell. The valence shell basis set used here

comprises sp basis functions for C, B, N, and O, and sd for Zn. The orbitals located in the

objective cell indexed by ζ are obtained by applying proper rotations to the corresponding

|αj〉 orbitals26. Specifically, for the five d orbitals of Zn, we have
























|dx2
−y2j, ζ〉

|dxyj, ζ〉

|dzxj, ζ〉

|dyzj, ζ〉

|d3z2−r2j, ζ〉

























=

























cos2θ − sin2θ 0 0 0

sin2θ cos2θ 0 0 0

0 0 cosθ − sinθ 0

0 0 sinθ cosθ 0

0 0 0 0 1

























·

























|dx2
−y2j〉

|dxyj〉

|dzxj〉

|dyzj〉

|d3z2−r2j〉

























,

where θ = ζθ0. Note that the d3z2−r2 orbitals are invariant because they are oriented along

z axis, which is parallel to the NT axis.
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The symmetry-adapted Bloch elements with different helical numbers of the TB Hamilto-

nian and overlap matrices vanish. Therefore, the eigenvalue problem becomes block diagonal

and it can be solved separately for each block labeled by κ. As described elsewhere26, the

total energy and the forces on each atom is then computed analytically using the Hellmann-

Feynman theorem.

III. RESULTS

Using the DFTB symmetry-adapted theoretical framework, we have performed objective

calculations on four NT families (n = 3, 6, 8, 10) generated by introducing axial screw dis-

locations in (n, n) NT structures. Additionally, a large collection of armchair and zig-zag

NTs in the 1− 4 nm diameter range was considered. For a comparison, the systematic cal-

culations performed on BN and ZnO NTs, were supplemented with additional calculations

carried out on selected small diameter CNTs.

The linear combinations of atomic orbitals were sampled for 50 κ values of the helical

Bloch phase. The initial structural information for any NT is adopted from the rolled-up

approximation, for which the free parameters θ0 and T0 can be obtained with the simple ex-

pressions given before. Next, the stress-free atomic positions and the actual DFTB Eshelby’s

twist parameters θE and TE are identified by applying a conjugate gradient minimization

procedure to the potential energy.

A. Optimized Nanotube Structures

One advantage of the current approach is that it enables us to separate the curvature

from the chirality effects. The first goal is to determine how well the translational symmetry

and the ideal rolled-up predictions hold. The results of our structural optimizations indicate

that for small diameter chiral NTs, the axial relaxation under fixed angle θ0 is not sufficient

to obtain the stress-free states. As exemplified in Fig. 3 for the (3, 3)...(6, 0) NT family,

further angular relaxation under fixed |TE | exhibits a parabolic dependence and can lower

the energy. The angle values of the stress-free chiral structures θE deviate substantially from

the predicted θ0.

Unlike the flat layer, the structure of these narrow NTs is characterized by non-equal
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bond-lengths and bond-angles. The data for (4, 2) NTs summarized in Table I, detail the

significant departure from the bond lengths and angles given by the rolled-up prediction. The

most circumferentially-oriented bonds are the most affected. For example, while the rolled-

up prediction gives a 1.399 Å length for the most circumferential bonds in a (4,2) CNT,

the DFTB relaxations obtained a 1.430 Å value. Such microscopic relaxations lead to

differences not only between the optimized R and non-optimized R0 radii, but also between

the optimized θE and TE and the non-optimized θ0 and T0 structural parameters. Hence, with

respect to the the rolled-up construction, the (4,2) NT structures store both a circumferential

and a helical pre-strain.

The presence of helical pre-strains alters the translational unit cells identified on the ideal

flat hexagonal layer. To illustrate this point, we mapped in 2D the DFTB relaxed structures

of the (3,3) and (4,2) CNTs. The obtained bond lengths and angles, depicted in Fig. 2 right,

reflect into a deformed hexagonal layer. For the (3,3) CNT, the lattice is elongated along

the Ch and T directions, which remain perpendicular onto each other. However, for the

(4,2) CNT case the lattice is additionally sheared and vector T acquires a small component

along Ch, thus becoming a screw vector. Hence, the translational symmetry depicted by

the translation vector T is broken by the intrinsic twist (θE − θ0)/TE.

Our calculations indicated that both BN and ZnO NTs store intrinsic twists. Focusing

on the (3, 3)...(6, 0) NT family, Table II reveals that at a set chirality, BN NTs exhibit the

largest intrinsic twist. For the CNT family we are able to regain the intrinsic twist values

reported earlier35 from calculations based on higher symmetry two-atoms “helical-angular”

cells.

To give a broader view of the deviations from the ideal rolled-up construction, Fig. 4

and 5 plot the variations with the NT diameter of the axial pre-strain ε = (TE − T0)/T0,

the radial pre-strain, defined as ε∗ = (R − R0)/R0, the buckling of the surface, defined

as the mean radius of the N (O) atoms minus the mean radius of the B (Zn) atoms, and

the shear pre-strain, defined as γ = R(θE − θ0)/TE. The obtained changes in NT length

and diameter, buckling of the surface, and locking of the intrinsic twist, are qualitatively

similar for BN and ZnO. We obtain the following insights: (i) The rolled-up construction

works very well for both BN and ZnO only at diameters larger than ∼ 2 nm. (ii) As the

NT diameter decreases, ε displays an increased spread after chirality. In the nearly-equal

diameter families, the armchair tubes are the most elongated while the zig-zag ones are the
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most compressed. (iii) As the NT diameter decreases, ε∗ is also significant but appears to

be chirality-independent. Our data can be fitted with the power laws ε∗ = 2.2(R/Å)−2.3

for BN and ε∗ = 0.2(R/Å)−2 for ZnO. (iv) The amount of buckling is independent of the

tube helicity as well. In BN and ZnO NTs the wall bucking is however presented to some

degree even at large diameters, as reflected by the scaling laws 0.6(R/Å)−1 Å for BN and

0.4(R/Å)−1 for ZnO obtained by fitting the atomistic data presented in Fig. 4(c) and 5(c).

Finally, (v) the γ stored in the NT’s wall is both diameter and chirality dependent. It is

significant only at the smallest diameters. As can be seen in Fig. 4(d) and 5(d), γ is absent

in the armchair and zig-zag NTs and it is maximal near the 150 chirality.

For a compact characterization of the NT structural parameters, we appeal to simple

functional forms constructed based on symmetry arguments. At constant R, the developed

anisotropy between special armchair and zig-zag directions implies that both the ε and γ

pre-strains must have a 600 period in their chirality angle dependence. Additionally, we find

that the radial scaling laws identified for ε∗ are suitable for ε and γ data as well. Indeed,

Fig. 4(e,f) and Fig. 5(e,f) show nearly linear dependences of the R2.3 and R2 augmented ε

and γ to the lowest symmetry-allowed order in chiral angle. Specifically, we obtained ε =

−0.12(R/Å)−2.3 cos(6χ) and γ = 0.24(R/Å)−2.3 sin(6χ) for BN, ε = −0.03(R/Å)−2 cos(6χ)−
0.02(R/Å)−2 and γ = 0.05(R/Å)−2 sin(6χ) for ZnO. As discussed before45, these pre-strains

alter the chiral angle values. Of course, the n and m indexes are not changed. In the above

expressions, χ represents the chirality predicted by the rolled-up construction.

B. Electromechanical properties

Having identified the stress-free NT morphologies, we are now in the position to analyze

their electronic states. We focus our attention on ZnO NTs, since the BN NTs have already

been the focus of many studies41. Our DFTB parameterization is designed to describe well

the structural properties of ZnO materials. Unfortunately, it overestimates the bandgap

values. For example, the used parameterization predicts a bandgap of 6.3 eV for the bulk

wurtzite ZnO phase, while the experimentally measured value is 3.4 eV. For the purposes of

predicting the fundamental bandgaps in ZnO NTs, the original parameters have been slightly

altered: the on-site energy value for the 4s electron of Zn was replaced by the experimental

first ionization energy (the parameter is changed from -0.2079 a.u. to -0.3527 a.u.). This
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modification insures that the bandgap of the wurtzite phase is reproduced46.

Similar with BN NTs41, the electronic structure of ZnO NTs appears more sensitive

to curvature than to chirality. The calculated bandgaps of all the ZnO NTs studied are

displayed in Fig. 6 as function of their diameters. The bandgap increases with diameter.

Above ∼ 2 nm, it converges rapidly, regardless of chirality, to the 4.08 eV value of the flat

layer. Below ∼ 2 nm in diameter, the bandgap begins to exhibit a weak dispersion after

chirality, that becomes non-negligeable for the smallest diameter NT considered here, Fig. 6

(inset).

The electronic structures are stable against applied small twists. In objective MD, an

arbitrary twist can be applied by varying θE while keeping |TE| constant. Fig. 7 exemplifies

the response of the density of states (DOS) in (6, 6) NTs to a 4.2 deg/nm twist rate. It

can be seen that both BN and ZnO remain insensitive to small twist, especially around

the Fermi level. This is in sharp contrast with the behavior of the (6, 6) CNT, showing a

bandgap opening and change in the location of the van Hoove singularities. This obtained

behavior is in agreement with the model proposed by Yang and Han38.

Pure axial strain can be applied by varying |TE| and keeping constant θE . Similarly,

pure shear strain can be achieved by varying θE and keeping constant |TE|. The adiabatic

approximation, where forces on atoms are derived from the electronic ground state at each

strain configuration, was used to study tensile and torsional deformations36. Our inves-

tigation was restricted to the linear elastic regime. The elastic constants were evaluated

through second-order polynomial fits of the ground-state energy’s dependence on strain.

The obtained size dependence of Young’s modulus Y is displayed in Fig. 8(a). The axial

elasticity of BN NTs appears similar to the in-plane one of the flat BN sheet, apart from

effects due the tube curvature. Indeed, above ∼ 2 nm in diameter Y is practically constant

and takes the 850 GPa value. For 2R <∼ 2 nm Y gradually softens and remains insensitive

to chirality. The calculated shear modulus (G) is shown in Fig. 8(b). For 2R >∼ 2 nm, G

converges quickly to the 370 GPa value. For 2R <∼ 2 nm there is a pronounced χ splitting

with G bounded from above by zig-zag and from below by armchair BN NTs.
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IV. DISCUSSION AND CONCLUSION

The objective molecular dynamics technique, which accounts for helical symmetry explic-

itly, allowed us to systematically investigate the screw dislocation mechanics in BN and ZnO

mono-atomic layers. We addressed a large catalog of NTs and obtain scaling laws beyond

the errors of the numerical procedures.

The results shown in Fig. 4 and 5 demonstrate qualitative similarity in the rolling traits for

layered BN and non-layered ZnO materials. Differences are only qualitative, in scaling laws

of pre-strains with the NT radius and in the magnitudes of pre-strains and wall bucklings.

ZnO NTs reveal smaller intrinsic twists than BN ones, but a larger buckling, as shown in

Table II.

For both BN and ZnO with 2R >∼ 2 nm, we obtained that the screw dislocation me-

chanics gives a structure equivalent with the rolled-up construction one. This means that,

as predicted by eq. (2) in the r = R limit, chiral NTs store only bending strain. The lack

of shear strain energy in the NT wall once more47 suggests the invalidity of the continuum

shell idealization associated with the one-atom thick layer. For 2R <∼ 2 nm, the detailed

structure analysis of our optimized NTs indicated a systematic departure from the rolled-

up construction manifested in radial, axial, and shear pre-strains that exhibit a common

scaling with curvature. The presence of the shear strain, manifested into an intrinsic struc-

tural twist, removes the NT translational periodicity predicted by the rolled-up prediction.

Therefore, care must be exercised in future numerical studies of chiral nanotubes relying on

standard translational symmetry.

The presence of the pre-strains in small diameter NTs, indicate that the NT wall stores

not only bending but also in-plane axial and shear strain energy. The discrepancy with the

prediction given by eq. (2) in the r = R limit is due to the loss of isotropy in the NT wall.

It is useful to realize that the axial and shear pre-strains observed in smaller diameter NTs

are ultimately related to the significant distortion of the hexagonal lattice symmetry.

The calculated elastic moduli of BN NTs presented in Fig. 8 reveal that Young’s modulus

is only curvature dependent, while shear modulus G presents both curvature and chirality

dependence. The behavior at 2R <∼ 2 nm, unequivocally shows that isotropy is lost, since

the continuum isotropic relation23 G=Y/2(1 + ν) with ν the Poisson ratio, cannot be used.

Isotropic continuum idealization can be used for BN and ZnO NTs with 2R >∼ 2 nm. The
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isotropic relation between G and Y if fulfilled with ν = 0.15.

In the case of CNTs, the origin of the intrinsic twist was attributed35 to the well known

sensitivity of the electronic states to torsion38. The BN and ZnO NT studied here exhibit

lack of electronic states sensitivity to chirality and twist. The common scaling of the axial,

shear, and radial prestrain with curvature, allows us to attribute the intrinsic twist solely

to the curvature effect. The presence of pre-strains in (4,2) CNT documented in Table I

and in a previous work45, suggests that curvature plays a prime role in the development of

intrinsic twist in CNTs.
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TABLE I: The DFTB structure of (4,2) BN, ZnO, and C NTs compared with the rolled-up pre-

dictions.

Material: BN ZnO C

Bond lengths (Å):

DFTB 1.476, 1.463, 1.495 1.925, 1.913, 1.922 1.430, 1.420, 1.449

Rolled-up predictions 1.424, 1.450, 1.445 1.870, 1.904, 1.898 1.399, 1.425, 1.420

DFTB mapped in 2D - - 1.456, 1.420, 1.454

Bond angles (deg):

DFTB 119.6, 117.0, 119.5 119.5, 119.2, 117.8 118.4, 119.1, 115.1

Rolled-up predictions 118.1, 120.3, 113.2 118.1, 120.3, 113.2 118.1, 120.3, 113.2

DFTB mapped in 2D - - 120.4, 118.0, 121.6

NT Radius (Å):

DFTB 2.210 2.852 2.142

Rolled-up predictions 2.115 2.778 2.079

Structural parameters:

DFTB TE (Å), θE (deg) 2.470, 13.96 3.240, 13.33 2.411, 13.42

Rolled-up T0 (Å), θ0 (deg) 2.466, 12.86 3.239, 12.86 2.424, 12.86

Buckling (Å)

DFTB 0.125 0.134 0

Rolled-up predictions 0 0 0

FIG. 1: Schematics of a screw-dislocated hollow tube with Burgers vector b with (a) fixed ends

and (b) one free-to-rotate end leading to an Eshelby’s twist.
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TABLE II: Intrinsic twist values (deg/nm) in (3,3)...(6,0) NT family, as obtained with the DFTB

description.

Material: BN ZnO C

(3,3) 0 0 0

(4,2) 4.5 1.5 2.3

(5,1) 2.8 1.0 1.1

(6,0) 0 0 0

FIG. 2: (color online) (left and center) Schematics for the two ways of forming (a) (3,3) and (b)

(4,2) NTs, from the ideal flat hexagonal layer: By rolling-up the big rectangle bounded by the

chiral Ch and translational T vectors, and by rolling-up a ribbon such as the hexagons labelled by

A become superimposed. Lattice basis vectors a1 and a2, and Burgers vector b3 along the hatched

hexagon are also shown. The row of hatched hexagons form a helix on the tube. The objective unit

cells used in the calculations are shown with thicker (red) lines. (right) Bond lengths and angles

obtained by mapping in 2D the DFTB optimized CNTs. The NT axis is in the vertical direction.

FIG. 3: (color online) Torsional strain energy vs. θ for the (3,3), (4,2), (5,1), and (6,0) (a) BN

and (b) ZnO NTs. The energy minima indicate the θE angles of the stress-free NTs while the

arrowheads indicate the θ0 values.

FIG. 4: (color online) Optimized structures of BN NTs. Dependence of the intrinsic (a) axial

pre-strain, (b) radial pre-strain, and (c) wall buckling on diameter. (d) Dependence of the intrinsic

shear γR on chirality. Scaling of (e) the axial pre-strain and (f) intrinsic twist (both multiplied by

R2.3) with lowest symmetry-allowed order in chiral angle.

FIG. 5: (color online) Optimized structures of ZnO NTs. Dependence of the intrinsic (a) axial

pre-strain, (b) radial pre-strain, and (c) wall buckling on diameter. (d) Dependence of the intrinsic

shear γR on chirality. Scaling of (e) the axial pre-strain and (f) intrinsic twist (both multiplied by

R2) with lowest symmetry-allowed order in chiral angle.

FIG. 6: (color online) Bandgap dependence on diameter and chirality for ZnO NTs.
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FIG. 7: (color online) Density of states in stress-free (6,6) NTs and under 4.2 deg/nm applied

twist. The Fermi energy level was set to zero.

FIG. 8: (color online)(a) Young’s and (b) shear modulus vs. BN NT diameter. In order to gain

GPa units, a wall thickness of 3.14 Å was assumed.
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in a thin cylindrical whisker in terms of its radius, R, and the magnitude of screw component of

b

)), where r

(a) (b)
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