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We show how canonical transformations can map problems with impurities coupled to non-
interacting rings onto a similar problem with open boundary conditions. The consequent reduction
of entanglement, and the fact the density matrix renormalization group (DMRG) is optimally suited
for open boundary conditions, increases the efficiency of the method exponentially, making it an
unprecedented tool to study persistent currents. We demonstrate its application to the case of the
one-channel and two-channel Kondo problems, finding interesting connections between the two.

I. INTRODUCTION

The transport and non-equilibrium behavior of
strongly correlated quantum many-body systems is one
of the most challenging problems in condensed matter
physics. Interactions can give rise some complex and
intriguing phenomena, such as the Kondo effect, with
counter-intuitive transport properties in systems with
impurities.1 Thanks to advances in nanofabrication, ex-
perimentalist can routinely manufacture nanostructures
that resemble artificial atoms –quantum dots– that can
be manipulated with an extreme degree of control2,3, re-
alizing an ideal playground to test transport theories.
Understanding the physical phenomena arising in these
systems has a fundamental technological interest, since
it could lead to the development of the next generation
of electronic devices.
The study of persistent currents in mesoscopic systems

dates back to the 1980’s6. A particular problem that
has attracted a great deal of interest is the behavior of
persistent currents through quantum-dot devices5. They
can shed light on the Fermi liquid properties of these
systems4, and provide a sorely needed tool to calculate
conductance7,8, and other transport properties9–11. In-
terferometry devices can also serve as probes for frac-
tional statistics12, and spin-charge separation13. Unfor-
tunately, the lack of well controlled analytical methods
that can deal with Kondo physics, especially in a ring ge-
ometry, can be a source for disagreement between differ-
ent theoretical treatments14–16,18. Since quantum Monte
Carlo19 and Numerical Renormalization Group (NRG)20

cannot be applied to the case of a magnetic flux threading
the ring (appearing as a complex phase in the hopping),
it would be highly desirable to count with a reliable nu-
merical technique to treat this problem.
The DMRG method21 could in principle overcome

these limitations. However, its efficiency with periodic
boundary conditions (PBC) is undermined by the struc-
ture of the quantum entanglement in a ring geometry,
and its application has been limited to the case of spin-
less fermions28, or to small rings. If we consider a parti-
tion of our system into two disjoint parts, the quantum
entanglement between the two subdivisions can be quan-
tified by the von Neumann entropy S. The von Neu-
mann entanglement entropy determines the number of
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FIG. 1: Cartoons showing the impurity or quantum-dot (QD)
coupled to a ring (a) and the equivalent systems with open
boundary conditions: (b) with the impurity in the center, and
(c) at the edge.

states m necessary to efficiently represent the ground-
state of the system using a matrix product state (MPS)22,
m ∼ exp (S). Since the entanglement entropy for a sys-
tem with periodic boundary conditions is twice the one
for open boundary conditions (OBC)23, a much larger ba-
sis is needed to simulate it. Besides this fundamental fact,
the structure of the MPS used by the DMRG algorithm
as an ansatz to approximate the ground state does not
properly account for the entanglement introduced by the
closed ends of the ring24. This is a problem in transport
calculations, since the current through the ring scales in-
versely with the length and the coupling strength in the
problem, and high precision is required to study large
systems. Ingenious tricks have been introduced25, but
their application to general situations is limited.

Here we revisit a well known canonical transformation
that was originally introduced in the context of quan-
tum impurity problems26, and referred to as a “folding”
transformation27, mapping a Hamiltonian with periodic
boundary conditions onto an equivalent model with open
boundary conditions. This has two important implica-
tions: (i) it reduces the entanglement by half, allowing
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FIG. 2: (a) Error in the energy using a ring with PBC, and
the equivalent system with OBC, relative to results for OBC
using m = 1000 states.(b) Entanglement entropy for different
for different cuts along the chain using both systems. The
impurity is in the center. All results are for a system with
L = 20 (Lring = 41), JK = 1, φ = π/2, at half-filling.

for a more efficient representation in terms of MPS, and
(ii) the OBC enable the DMRG algorithm to simulate
this problem optimally.

II. MODELS AND METHOD

A. One-channel Kondo problem

To illustrate the method, we consider, as an illustra-
tion, the case of a side-coupled Kondo impurity con-
nected to a one-dimensional non-interacting chain, as pic-
tured in Fig.1(a). Let us split the chain into a left and
right halves, and assume for the moment that the leads
have both a finite length L. The Hamiltonian is written
as:

H = Hleads +Hboundary +Hdot

Hleads = −t
∑

λ=0,1

L−1
∑

j=1,σ

(

c†λ,j,σcλ,j+1,σ + h.c.
)

(1)

Hboundary = −t
∑

λ=0,1

∑

σ

(

c†λ,1,σc0,σ + h.c.
)

Hdot = JK ~S·~s0 − hSz

where cλ,j,σ is the electron annihilation operator acting
on site j of lead λ (where the values 0,1 correspond to

left and right leads), with spin σ = {↑, ↓}, and ~S is the
spin operator acting on the impurity/dot. The spin ~s0
on site “0” connects the chain to the impurity via an an-
tiferromagnetic exchange parametrized by JK . We have
also included a Zeeman field h acting on the impurity
spin. We now introduce a symmetric (+) and antisym-
metric (-) combination of operators acting on the left and
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FIG. 3: Persistent current as a function of the magnetic phase,
for (a)(b) one-channel, and (c)(d) two channel Kondo rings.
All simulations are at half-filling. We show results for different
values of the Kondo interaction JK and system sizes.

right leads. This is nothing else but an application of the
reflection symmetry, yielding new even(+) and odd(-) op-
erators:

c±,j,σ =
1√
2
(c0,j,σ ± c1,j,σ). (2)

This is a simple change of basis, with the new operators
obeying fermionic anti-commutation rules, that yields a
curious and convenient identity. The hopping term in
Hboundary becomes:

H ′
boundary = −

√
2t

∑

σ

(

c†+,1,σc0,σ + h.c.
)

, (3)

while the hopping term into the (-) leads has cancelled
identically. As a consequence, the new Hamiltonian will
consist of an impurity coupled to a single lead (+), and
a second decoupled lead (-). This means that we can
just solve the impurity-lead piece of the system indepen-
dently, leading to a reduction of the Hilbert space by a
power of one-half. This transformation has been used in
NRG for decades20. However, to the best of our knowl-
edge, its application to systems with PBC has been cu-
riously ignored, maybe because the NRG method works
for the thermodynamic limit17.
To illustrate the application of the scheme to a case

with PBC we studied the behavior of the persistent cur-
rent at half-filling, as a function of the coupling JK . Let
us introduce a hopping term connecting the last sites of
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the two leads, labelled as “L”. We can easily see that the
hopping term reduces to:

HPBC = −t
∑

σ

(n+,L,σ − n−,L,σ) , (4)

where n± = c†±c± is the density operator. This term
is just a boundary chemical potential with opposite signs
for the (+) and (-) leads. But the leads remain decoupled,
meaning that we can still solve the problem of a single
lead with OBC!
Let us consider now the case of a magnetic flux thread-

ing the ring. This problem was extensively studied in
Ref.18 using DMRG in systems with up to Lring = 35
sites in an enormous computational effort using PBC.
The flux φ is introduced by adding a complex phase in
the hopping matrix element t → t exp (iφ/Lring), where
the total length of the ring is Lring = 2L + 1 in our
notation. By performing a gauge transformation on the
fermionic operators, we have the freedom to move the
phase to any link along the ring. In particular, we are
going to move it to the one connecting the site “0” to the
leads in Hboundary in (1). The term containing the phase
will now read:

Hboundary = −t
∑

σ

(

eiφc†0,1,σc0,σ + c†1,1,σc0,σ + h.c.
)

.(5)

The flux in the hopping term now introduces a complica-
tion: the (-) lead will no longer decouple and, as a conse-
quence, the new, transformed Hamiltonian will have an
additional term:

H ′
boundary = −

√
2t

∑

σ

(

eiφ/2 cos (φ/2)c†+,1,σc0,σ

+ ieiφ/2 sin (φ/2)c†−,1,σc0,σ + h.c.
)

. (6)

This hopping term now couples to both (+) and (-) chan-
nels, because we have broken reflection symmetry, but
the system still has OBC, as depicted in Fig.1(b).
Fig.2(a) shows the error in the energy a function of

the number of states for a ring with JK = 1,φ = π/2,
L = 20 (Lring = 41), using PBC in real space, and the
equivalent system with OBC in the transformed basis. As
a reference we have used the energy of the system with
OBC and keeping m = 1000 DMRG states. We clearly
see that we can achieve better accuracy with OBC, using
a fraction of the number of states. This can be explained
by looking at the behavior of the entanglement entropy,
shown in Fig.2(b), where the entanglement entropy of the
transformed system with OBC is smaller by a factor ∼ 2.
In this plot, we show values of S for different cuts along
the system, with site “0” and the impurity situated both
at the center.
Making use of the gauge transformation, we can choose

to put the phase factor at the link connecting both leads.
In that case, the (-) channel would decouple from the
site “0”, recovering the expression (3), but the boundary
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FIG. 4: Cartoons for the 2-channel Kondo problem showing
(a) the impurity coupled to two rings, and (b) the equivalent
system with open boundary conditions.

term would have to be corrected:

HPBC = −t
∑

σ

(cos (φ)n+,L,σ − cos (φ)n−,L,σ+

+ i sin (φ)c†−,L,σc+,L,σ + h.c.
)

. (7)

This scenario is depicted in Fig.1(c).
The current can be obtained by differentiating the en-

ergy as a function of the flux J = −dE/dφ. For nu-
merical convenience, we choose to calculate the expres-

sion J = −it〈c†0,1,σc0 − c†0c0,1,σ〉, since it can be di-
rectly obtained from the ground-state. Depending on
the gauge choice, we measure it either at the link con-
nect site “0”, or at the one connecting the two leads. In
Fig.3(a) we show results for a one-channel Kondo ring
with Lring = 81. These results were obtained effortlessly
using m = 600 states, although the error is small enough
with m = 200 for intermediate values of JK . The profile
of the persistent current can be deduced from symmetry
considerations16,27. Using reflection symmetry around
the dot (c0,j,σ → c1,j,σ), we find that J(φ) = J(−φ).
This indicates that it is sufficient to estimate j in the
interval 0 ≤ φ ≤ π. Furthermore, for the present case
with N = Lring odd, an electron-hole transformation on

the fermions (cλ,j,σ → c†λ,j,σ) and also on the impurity,

maps H(−φ) onto H(φ + π) and J(−φ) = −J(φ + π).
Combining both results we obtain that J(φ) = J(φ+π),
and J(π/2) = 0. This means that the persistent current
will have a periodicity in π, instead of 2π.
With little additional complication, the transformation

can be applied to a ring with an even number of sites. For
comparison, we show results for a system with Lring = 80
in Fig.3(b). Using similar symmetry arguments, one can
show that the periodicity in this case should be 2π. In
all cases the current is rapidly suppressed with increasing
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JK . For large JK , the size of the “Kondo cloud” will
be confined to the site “0” in direct contact with the
impurity. This local tightly bound singlet will suppress
conduction through the ring.

B. Two-channel Kondo problem

We now generalize the above considerations to the case
of a two-channel Kondo model29. In this case, the impu-
rity is also coupled to a second channel, represented by a
second ring in Fig.4(a). We can perform a similar canon-
ical transformation in both rings independently. We as-
sume that a magnetic flux φ is threading both rings, and
we put the phase terms on the connecting link at the end
of each lead as in Eq.(7). This open both rings symmet-
rically about the impurity site (see Fig.4(b)), yielding
an equivalent one-dimensional system with OBC, that
can easily and efficiently be simulated with the DMRG
method. The remarkable aspect in this case is that we
have eliminated two closed rings from the problem.
In this case, we study the problem in the sector with

total Sz = 1/2, and even total number of conduction
electrons. Unlike the one-channel case, in the present
case the impurity will be overscreened, with each channel
trying to form a singlet with the impurity. Thus, the
impurity is expected to be less efficient at suppressing
the current through the leads.
In Figs.3(c) and (d) we show results for the persistent

current through an impurity coupled to two channels.
The length of each lead, for each channel is Lring = 41

and Lring = 40 respectively, meaning that the total
lengths of the systems are Ltot = 83 and Ltot = 81 sites.
Interestingly, the current has the same behavior as in the
one-channel problem with Lring odd, even though in this
case, since we have two rings, the total number conduc-
tion electrons is always even. For Lring = 41, one would
expect a periodicity in 2π instead of π. By looking at the
currents for each spin sector in Fig.5(b), we observe that
they both have a periodicity of 2π, but they are shifted
by a phase π. Thus, the total current will have a period
π. This resembles the situation encountered in a single
side-coupled quantum dot with an applied magnetic field,
that was proposed as an efficient spin filter in Refs.30,31.
A simple intuitive explanation would be to assume that
the screening effect of the second ring on the impurity is
seen by the first ring as an effective magnetic field act-
ing on the impurity. To prove this picture, we applied a
small Zeeman field to the one-channel problem, and we
show the results in Fig.5(a). We clearly observe the same
behavior as in the two-channel case, with curves that are
qualitatively indistinguishable.

III. SUMMARY AND CONCLUSIONS

To summarize, we have applied a “folding” canoni-
cal transformation to lattice models of impurities cou-
pled to rings, mapping the problems onto equivalent sys-
tems with open boundary conditions. As a remarkable
counter-intuitive result, we find that a system with open
ends can realize persistent current when transformed to
the original real-space basis. As a consequence, entan-
glement is reduced by a factor 2, and makes the prob-
lem suitable for efficient DMRG simulations of large sys-
tems with little or moderate effort, as shown here for the
cases of the one-channel and two-channel Kondo prob-
lems. The folding transformation cannot be applied to
disordered rings , or to problems with bulk interactions,
since many-body terms would introduce long-range in-
teractions between (+) and (-) leads. However, the sig-
nificant entanglement reduction opens the doors to finite
temperature calculations32, and the study of complex im-
purity problems.
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