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Abstract

Free-standing exfoliated monolayer graphene is an ultra-thin flexible membrane, which exhibits

out of plane deformation or corrugation. In this paper, a technique is described to measure the

band structure of such free-standing graphene by angle-resolved photoemission. Our results show

that photoelectron coherence is limited by the crystal corrugation. However, by combining surface

morphology measurements of the graphene roughness with angle-resolved photoemission, energy-

dependent quasiparticle lifetime and bandstructure measurements can be extracted. Our measure-

ments rely on our development of an analytical formulation for relating the crystal corrugation to

the photoemission linewidth. Our ARPES measurements show that, despite significant deviation

from planarity of the crystal, the electronic structure of exfoliated suspended graphene is nearly

that of ideal, undoped graphene; we measure the Dirac point to be within 25 meV of EF . Further,

we show that suspended graphene behaves as a marginal Fermi-liquid, with a quasiparticle lifetime

which scales as (E − EF )−1; comparison with other graphene and graphite data is discussed.

PACS numbers: 73.22.Pr,68.65.Pq
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I. INTRODUCTION

The recent availability of monolayer-thick two-dimensional crystals such as graphene, BN,

and BSCCO has generated widespread interest in the physics and materials science commu-

nities. In the case of graphene, in particular, the two dimensional nature of the crystal in

combination with its unusual massless Dirac fermions determines a host of intriguing and

unique transport phenomena, including graphene’s half-integer quantum Hall effect (HE)

and non-zero Berry’s phase.1,2 Unlike most metals, undoped graphene has a Fermi surface

which consists of a set of 2 inequivalent points in momentum-space. Thus, at zero temper-

ature and zero doping, the density of states at the Fermi level vanishes. In combination

with the linear dispersion of low energy charge carriers, this vanishing density of states is

expected to lead to unusual band-renormalization effects that are not seen in Fermi-liquid

systems such as unusually high electron-electron coupling. Motivated by interest in these

unusual properties, several theoretical and experimental studies have investigated the elec-

tronic properties of graphene.3

Angle-resolved photoemission spectroscopy (ARPES) is the experimental method that

is most frequently used to probe the electronic structure of crystals. However, so far, the

majority of ARPES studies of graphene have been conducted on epitaxial graphene, which

has been grown on a variety of substrates such as SiC, Ru, Ni and Ir.4–11 Epitaxial graphene

is ideal for photoemission experiments, but, due to the interaction between the epitaxial

graphene monolayer and the substrate, the band structure is often distorted such that the

Dirac point shifts away from the Fermi energy, thus changing the quasiparticle dynamics.

In an effort to minimize the effect of substrate interaction on epitaxial graphene, recent

ARPES studies have focused on several multilayer systems, such as intercalated graphite12

and graphene grown on the C face of SiC.13 These layered systems consist of multiple stacked

graphene sheets that are substantially electrically isolated, thus resulting in an electronic

band structure that mimics that of suspended exfoliated single-layer graphene. However,

despite its scientific and technological importance, exfoliated graphene has been the subject

of only a limited number of ARPES studies,9,14 despite the fact that it remains the best

choice for device physics, as it is easily backgated and has the highest measured mobility.15

Several obstacles impede measurement of the bandstructure of exfoliated graphene. One

difficultly arises from the fact that available single-layer exfoliated graphene flakes are typ-
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ically less than 20 µm in size, thus precluding the use of standard ARPES systems, which

require samples to be several mm in size. Hence, most information regarding low-energy

occupied states in exfoliated graphene has been obtained indirectly from electrical-transport

measurements1,2 or directly by optical-probing techniques.16,17 These techniques examine the

bandstructure generally within 1eV of the Dirac point and do not directly provide momen-

tum resolution. For photoemission the limitation in size can be overcome by working with

high lateral-spatial-resolution probes such as those available using spectromicroscopy.11,18 A

second major impediment to photoemission studies is due to the fact that graphene is an

ultrathin crystal. This ultrathin property has, in turn, two important consequences for pho-

toemission studies. The first is the transparency of monolayer graphene to UV photons and

photoemitted electrons, which causes a strong background photoemission signal if the mono-

layer graphene is in close physical proximity with a substrate.14 The second is that exfoliated

graphene is not atomically flat, but is known to deform locally, a result shown through AFM,

STM, electron microscopy, and electron scattering results.19–23 It has been argued that the

deformation is due to the fact that monolayer-thick graphene has soft flexural modes leading

to ready bending of the graphene. The presence of a supporting substrate or scaffold can, to

a certain degree, stabilize height fluctuations in the graphene layer, but corrugations in the

underlying supporting substrate are transferred in part to the graphene due to the reduced

stiffness of this material. Additionally, intrinsic corrugations that cannot be attributed to

interaction with the substrate were recently observed in supported graphene.19 Further, in

a recent low energy diffraction study, we demonstrated that even graphene suspended over

etched cavities exhibits corrugation, which appeared to have been intrinsic in origin.21

Thus, in general, two dimensional crystals produced by exfoliation may show significant

local curvature, manifested as corrugation and ripples. This corrugation is known to affect

not only the electronic and transport properties of the material, but can also have a major

impact on photoemission results. In particular, the theory of ARPES was developed for

single-crystal atomically flat surfaces and relies on the fact that momentum perpendicular

to the surface is conserved in the photoemission process. On such perfectly ordered crystals

the photoemission lineshape is directly related to the spectral function of the electronic

state being probed, from which information about many-body physics can be extracted.

The corrugation in thin sheets of layered materials breaks this symmetry and obscures the

intrinsic many-body effects.
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In this paper, we present a systematic approach to account for such corrugation-induced

broadening in ARPES on thin films. By combining our photoemission results with de-

tailed information about surface morphology obtained from prior electron-microscopy

measurements21 taken in-situ on the same samples we are able to quantify the influence of

corrugation on spectral broadening. We go on to describe a method to discount the effect of

surface corrugation from ARPES measurements to reveal the intrinsic many-body physics

present in graphene. Our results show that suspended graphene behaves as a marginal

Fermi-liquid with an anomalous quasiparticle lifetime which scales as (E − EF )−1.

II. EXPERIMENT

Our measurements used the Spectroscopic Photoemission and Low Energy Electron Mi-

croscope (SPELEEM) at the Nanospectroscopy beamline at the Elettra Synchrotron light

source.24 The SPELEEM is a versatile multi-technique microscope that combines low energy

electron microscopy (LEEM) with energy-filtered X-ray photoemission electron microscopy

(XPEEM). The microscope images surfaces, interfaces and ultra-thin films using a range

of complementary analytical characterization methods, which have been described in detail

previously.25,26 When operated as a LEEM, the microscope probes the specimen using elasti-

cally backscattered electrons. LEEM enables high sensitivity to surface crystalline structure

and, due to the favorable backscattering cross-sections of most materials at low energies,

allows image acquisition to be obtained at video frame rate. The lateral resolution of the

microscope for LEEM imaging is currently below 10 nm. In XPEEM mode, the specimen

is probed using the beamline photons, provided by an undulator source; thus, the technique

is sensitive to the local chemical and electronic structures. Laterally resolved versions of

synchrotron based absorption (XAS) and photoemission spectroscopy (XPS) are possible.

The lateral resolution in XPEEM approaches a few tens of nm.27

Along with real-space imaging, the SPELEEM microscope is capable of micro-probe

diffraction imaging, i.e. laterally restricted low energy electron diffraction (µ−LEED) and

angle resolved photoemission electron spectroscopy (µ−ARPES) measurements when prob-

ing with electrons and photons, respectively. In diffraction operation the microscope images

and magnifies the back focal plane of the objective lens. In ARPES mode, the full angular

emission pattern can be imaged on the detector up to a parallel momentum of ∼ 2Å
−1

;
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FIG. 1. (Color Online) (a) Schematic drawing of our suspended-graphene sample configuration.

(b) Optical micrograph of sample containing suspended monolayer graphene (MLG) and few-layer

graphene (FLG). (c) LEEM image at 1.3 eV of typical sample area of interest. (Background)

Artists rendering of corrugated graphene crystal (height fluctuations not to scale).

at larger parallel momentum the transmission of the microscope decreases. All diffraction

measurements are restricted to areas of ∼ 2 µm in diameter, which are selected by inserting

a field limiting aperture into the first image plane along the imaging-optics column of the

instrument. Thus, the microscope enables measurements on samples that are homogeneous

over areas of a few square microns.

The energy resolution of the SPELEEM is 300 meV and the momentum resolution of

the microscope when operated in diffraction mode (LEED or ARPES) is ∼ 0.045 Å
−1

. This

value for the momentum resolution was obtained from calibration on a standard tungsten

crystal; measurements using this crystal showed that the value changed by less than 5%

as the kinetic energy of photoemitted electrons (or backscattered electrons for the case of

LEED) increased from 25 to 100 eV. Specifically, the momentum resolution was observed to

increase from 0.044 Å
−1

at 25 eV to 0.046 Å
−1

at 100 eV.

Graphene samples were extracted by micro-mechanical cleavage from Kish graphite crys-

tals (Toshiba Ceramics, Inc.) and placed onto an SiO2-thin-film layer on an Si substrate,

which was previously patterned with cylindrical cavities to a depth of 300 nm, as described

in Ref. 21. The use of planar processing of this substrate allowed us to suspend areas of

the graphene films without the use of further photolithographic techniques, which would
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introduce contaminants to the graphene sheets. Graphene samples with lateral sizes from

10 to 50 µm were placed in contact with Au grounding strips deposited on the surface via

thermal evaporation through a shadow mask. A sketch of the sample configuration is shown

in Fig. 1 along with an optical micrograph.

The SPELEEM instrument used to collect data has the important advantage of having

a sufficiently high spatial resolution to guarantee that we are measuring a single crystal

sample of monolayer graphene and that all of the measured spectral intensity is derived

from a fully suspended region. This capability is necessary since the suspended regions

are approximately 5 µm in diameter and, therefore, cannot be resolved with conventional

photoemission instruments, which employ spatial averaging techniques that collect data over

surface areas of several square millimeters. The potential to combine both photoemission

and electron scattering measurements is essential for our experiment since it allows us to

measure bandstructure and surface morphology on the same samples. We note, additionally,

that a similar instrument was recently used in a study, which examined the morphology and

electronic structure of epitaxial graphene grown on Pt.11

After preparation the samples were placed into a UHV chamber with a base pressure

of 2 × 10−10 mbar, and the surface cleaned via low energy electron irradiation to elim-

inate adventitious hydrocarbon molecules adsorbed during prior atmospheric exposure.21

All graphene samples were characterized with LEEM before investigation with ARPES and

LEED. For each sample, LEEM was used to locate sample areas of interest and to determine

film thickness with atomic resolution by measuring intensity modulations in the LEEM I-V

spectra.21,28,29

ARPES data at multiple photon energies were obtained on the suspended areas of the

graphene film. Only regions of uniform thickness were considered. In order to elucidate

the role of surface corrugation and substrate influence, comparative experiments were also

carried out on corresponding regions where the film was supported by the SiO2 substrate.

This surface has been recently carefully calibrated by prior STM and electron-scattering

measurements.19,20,22 In addition, ARPES measurements were made on Kish-graphite flakes

that were present on the same substrates. As graphite is a well understood and commonly

studied system, these measurements provided a useful point of comparison for our graphene

measurements. Photoemission from graphite is, in some respects, similar to that from

graphene because of the stacked-layer nature of the former. However, the physics near the
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FIG. 2. (Color online) ARPES data along symmetry directions in Brillouin Zone for graphene and

graphite. (a)SiO2 supported graphene (~ω=90 eV). (b) Suspended graphene (~ω=84 eV). (c)Kish

graphite (~ω=90 eV). (d) Suspended graphene (~ω=50 eV). Inset shows 2D graphene Brillouin

zone.

Dirac point is significantly different owing to the fact that the multilayer stacking in graphite

breaks the symmetry between A and B sublattices, which results in two dispersing branches,

such that low energy excitations do not have the simple linear dispersion relation that is

found for graphene.

III. RESULTS

Photoemission spectra were measured from two samples with differing degrees of sur-

face corrugation and substrate interaction, that is, on suspended and substrate-supported

graphene; note that all ARPES data presented in the paper are raw (i.e. unprocessed) unless

explicitly stated otherwise. Previous LEED measurements have shown that the horizontal

correlation length increases from 24 nm to 30 nm in measurements taken on supported and

suspended samples, respectively.21 In addition, ARPES data were collected at room temper-

ature over the entire surface Brillouin zone (SBZ) from 0.5 eV to -8 eV (energy referenced to

EF ), for monolayer graphene and graphite, using a range of photon energies. Figure 2 shows
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ARPES spectra taken from a sample supported by and in contact with the SiO2 surface

and a sample that was suspended over the 5 µm wells shown in Fig. 1. For comparison,

the ARPES spectrum from Kish graphite is shown as well. This data has been included to

provide an example of the photoemission linewidth obtained by the SPELEEM instrument

on a well known and related crystal system.

The data show dispersion along 3 symmetry lines in the SBZ. As expected from the

reduced corrugation, as well as the absence of any substrate interaction, the ARPES data

for suspended graphene show a dramatic improvement in quality as compared to the data

for supported graphene. Additionally, there is a very broad, parabolically dispersing peak

centered at the Γ point at a binding energy of∼8 eV in the data taken on supported graphene.

This feature has been previously attributed to photoemission from the amorphous SiO2

substrate14 and is not observed in the spectrum taken on suspended graphene. Although

the substrate is only 300 nm below the suspended graphene, any background electrons

emmited at this height will be significantly defocused in the electron optics of SPELEEM

microscope. Additionally, due to the grazing incidence angle of the photon beam (16◦), the

bottom of the cavity is not fully illuminated as the cavity edge casts a shadow, which further

reduces the photoemission signal from the substrate.

In the vicinity of the K points, a conical dispersion is observed centered at the K point

on the suspended graphene spectrum. At ∼ 1 eV below the Fermi level a trigonal-warping

deviation from angular isotropy becomes clearly noticeable. Measurements taken through

the K point and in the vertical direction (perpendicular to the ΓK direction) show two

symmetric dispersing branches forming the two sides of the Dirac cone. The band structure

can be made significantly sharper (see Fig. 3) by taking the second derivative along each

momentum direction. In this case, use of the second derivative allows easier determination

of the Dirac point with respect to the Fermi level. Figure 3(b) shows the linear best fit to the

two branches as well as the location of the Fermi level. From the fit, we find that the Dirac

point is within 25 meV of EF (ED = −9 ± 25meV ). Thus, the sample is minimally doped

due to the preparation procedure used here, which did not involve any photolithographic

or chemical-transfer techniques. In contrast, the Dirac point previously measured by our

group on a supported sample was found to be ∼300 meV below the Fermi level, which was

attributed to doping by interaction with charged impurities in the SiO2 layer.14

For comparison with results on a known 3D photoemission materials system, graphite
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FIG. 3. (Color online) (a) ARPES intensity through K point along ky direction (perpendicular

to ΓK direction) in suspended monolayer graphene (~ω = 50eV ). (b) Smoothed second derivative

image of dispersion shown in (a). (c) Smoothed second derivative ARPES intensity through K

point along kx (ΓK) direction. (d) Extracted dispersion from (c) Inset shows graphene Brillouin

zone. Red solid (dashed) line indicates ky (kx) direction through K point.

spectra were taken at two photon energies (86 and 76 eV) along the same (vertical) direction

through the K point; these results are shown in Fig. 4. Additionally, this data allows us

to display the instrumental resolution on this known system. The dispersion obtained at

~ω=86 eV is clearly symmetric about the K point. At this photon energy we can resolve the

splitting of the π state into bonding and antibonding bands, with the two bands separated

by ∼ 0.12 Å
−1

. The bands themselves are approximately 0.1 Å
−1

in width. In the spectrum

taken at 76 eV the two peaks are nearly degenerate. Again, the second derivative allows for

easier determination of peak locations.

Figure 5 shows the graphene dispersion taken along the ΓK direction through the K point.

Comparative measurements were made at two different photon energies (~ω = 50, ~ω = 84)

and are shown in Fig. 5(a) and (b), respectively. In this direction, only one branch of

the dispersion can be seen as the difference in phase between electron waves emitted from
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FIG. 4. (Color online) Dispersion along the vertical (ky) direction through the K̄ point for graphite

obtained at photon energies of (a) ~ω = 86 eV and (b) ~ω = 76 eV. (c-d) Smoothed second

derivative images of spectra shown in (a) and (b), respectively. Inset shows graphite surface

Brillouin zone. Solid red line indicates ky direction through K̄ point.

the A and B sub-lattice sites results in complete destructive interference.30 Thus, this is a

convenient direction along which to measure precisely the dispersion in the vicinity of the

Dirac cone. The inset to Figure 5(c) compares momentum distribution curves (MDCs) taken

at a binding energy of 0.7 eV for the suspended-graphene spectra at both photon energies.

The data in Fig. 5(c) show that the width of the ~ω=84 eV MDC is significantly larger

than the ~ω=50 eV MDC (0.17 Å
−1

vs 0.12 Å
−1

).

Additionally, there is a slight asymmetry in all three MDCs as additional spectral weight

is present on the right side of the peak (at higher values of kx). The background signal

decreases and the peaks become narrower for 50 eV photons as compared to 84 eV photons.

Specifically, in the 0-4 eV range (referenced to EF ), the MDC width increases monotonically

from 0.1 to 0.2 Å
−1

and from 0.15 to 0.3 Å
−1

for data collected with 50 eV photons and

84 eV photons, respectively. In contrast, MDCs taken along the same direction (ΓK) on

supported graphene are significantly broader14 and show almost no dependence on binding

energy; they are ∼0.5 Å
−1

in width from the Fermi energy to -4 eV binding energy. Thus,
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FIG. 5. (Color online) ARPES intensity along ΓK direction in suspended monolayer graphene.

Graphene photoemission taken with photon energies of (a) ~ω = 50 eV and (b) ~ω = 84 eV. (c)

HWHM of MDCs as a function of binding energy taken from (a) and (b). Upper inset shows sample

MDCs taken 0.7 eV below EF as indicated by dashed red lines in (a) and (b). Lower inset shows

sample EDCs taken from ~ω = 50 eV data set. Successive EDCs separated by ∼ 0.057 Å
−1

.

spectral features are sharpest for suspended samples measured with lower photon energy.

Referring, now, to data taken on the suspended sample, one obvious concern is that the

dramatic increase in spectral features observed with increasing photon energy reflects an

electron kinetic energy dependence in the momentum resolution of the instrument. However,

as noted above the instrumental resolution has been calibrated with a standard tungsten

crystal and shown to increase by less than 5 % over a large range in electron kinetic energies

(25 to 100 eV). This change in resolution is not sufficient to explain the ∼ 50 % increase

seen in MDC width between data taken with 50 and 84 eV photons. Additionally, as noted

above, one can clearly resolve features that are separated by less than 0.12 Å
−1

in the graphite

spectrum obtained with a photon energy of 86 eV.
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IV. DISCUSSION

A. Comparison of Graphite and Graphene Results

As shown in Fig. 5, variation in photon energy results in changes to the linewidth of

the graphene photoemission spectra, which can be exploited to sharpen the spectrum. In

explaining these results on graphene, it is useful first to examine the effect of photon energy

variation for the case of graphite. The differences in the measured photemission spectra of

graphite taken at ~ω=76 eV and ~ω=86 eV shown in Figs. 4(a) and (b), respectively, are

easily understood to be the result of the 3 dimensional band structure of graphite; namely,

a change in photon energy causes a change in kz, which is manifest in the spectra in Fig 4

as a decrease in the band splitting.30–35

Consider now the effect of changing photon energies for the case of graphene photoe-

mission. Since graphene is truly a 2D crystal, the initial states in the valence band are

highly localized along the z direction. Thus, the Brillouin zone is strictly 2 dimensional and

the electronic strucure is essentially kz independent. Comparison with photoemission from

surface states is useful, since they are also localized in 2D.36 However, the role of evanescent

decay into the bulk, which is important for surface states in metals and results in a partial kz

dependence,36 such as surface resonance, is absent in graphene and, thus, we may treat the

initial state as independent of photon energy. In fact, as seen in Fig. 5, changing the photon

energy in the case of graphene causes only a change in the overall linewidth and does not

affect the measured bandstructure. As will be discussed below, the difference in the width

of ARPES features between spectra obtained at ~ω =50 and ~ω =84 is a consequence of

the surface roughness of the graphene samples. Since electrons in graphene propagate on a

locally curved surface, the usual momentum conservation rules in ARPES must be modified

and a photon-energy-dependent broadening term is introduced.

B. General Considerations

In standard many-body ARPES theory, the intensity of the photoemission signal is pro-

portional to the spectral function, A(k, ω):
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A(k, ω) =
Im[Σ(k, ω)]

(ω − ωk − Re[Σ(k, ω)])2 + Im[(Σ(k, ω)]2
(1)

where ω = E − EF and k are binding energy and momentum, respectively, and ωk is

the single-particle dispersion. The real and imaginary parts of the self-energy, Σ(k, ω),

represent renormalization of the bare-bands and scattering rate, respectively. To obtain the

full expression for the photocurrent, the above function is then multiplied by energy and

momentum-preserving delta functions, δ(ki−kf−G)δ(Ei−Ef−W ), where G is a reciprocal

lattice vector and i and f label the initial and final states, respectively, and W is the work

function of the material.

However, one major complication to this approach arises for the case of suspended

graphene since the momentum preserving function, δ(ki − kf −G), is only a precise delta-

function if the system under investigation is atomically flat. While this is the case for

the majority of single-crystal samples probed with ARPES, including the Kish graphite

described above, exfoliated monolayer graphene, as is discussed in the Introduction, has

significant deviations from planarity, ranging from 1 to 10 Å.37 This corrugation introduces

an additional broadening mechanism into the ARPES spectrum, which can be as large as, or

larger than, the intrinsic broadening represented by Im[Σ(k, ω)]. Thus, in order to extract

the true self-energy of carriers in the crystal, such corrugation-induced broadening must be

taken into account. The MDCs are best fit by a convolution of A(k, ω) with a function that

represents broadening due to surface roughness. Thus, as will be shown below, at fixed ω,

photoemission intensity as a function of k‖ can be expressed as:

I(k‖) ∝
∫
d2k‖

′Sk⊥(k‖)A(k‖ − k′‖, ω) (2)

where k‖ = ki‖ − kf‖ and Sk⊥ represents corrugation-induced broadening. Sk⊥ , the surface

structure factor, is a function of the surface geometry of the sample and is also generally de-

pendent on the change in perpendicular momentum from initial to final state, k⊥ = ki⊥−kf⊥.

We note that several prior studies have examined the effect of surface roughness on ARPES

measurements.38,39 In these prior studies, the roughness considered was due to discrete height

variations caused by monatomic steps, rather than the continuous undulations of a thin film.

Thus, the broadening in spectral features measured by ARPES was attributed to increased

electron scattering rather than a variation in the phase of photoemitted electrons induced
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by local height fluctuations. In our experiments on suspended graphene samples, the surface

morphology is carefully measured simultaneously with the ARPES measurements presented

here, thus allowing us to determine Sk⊥ independently.27

Finally, note that the surface corrugation of the graphene sheets will also alter the band-

structure by inducing a change in the local potential proportional to the square of the

curvature. Thus, the ripples act as scattering centers, which will decrease lifetime and po-

tentially change the Fermi velocity. These effects are contained in A(k, ω) and will also be

present in the ARPES data. However, such effects are distinct from that described by Sk⊥ ,

which represents decoherence as electrons pass from a curved 2D space to free space.

C. Corrugation Broadening

Corrugation broadening can be treated by considering the equation that describes pho-

toemission from a Bloch state in the graphene sheet into a free-electron state above the

crystal. Using the standard tight-binding approach to describe the initial state:

ψk(r) =
1√
N

∑
R

eik·R
∑
j=A,B

Ck
j φ(r−R− τj) (3)

we obtain the following matrix element for excitation into a free electron final state:

M ∝ (ki · λ̂)
∑
j=A,B

Cki
j e
−ikf ·τj

∑
R

ei(ki−kf )·Rφ̃(kf ) (4)

where ki is the initial pseudo-momentum of a valence-band electron and kf is the final-state

momentum (for a full description and definitions of symbols see Appendix). Equation 3 de-

scribes an initial state with precise momentum at a fixed binding energy. For an atomically-

flat crystalline 2D surface the position vectors can be expressed as R = n1a1 + n2a2, where

the ni are integers and the ai primitive lattice vectors in the xy plane. In this case, the

sum over R in Eq. 3,
∑
ei(ki−kf )·R, is zero unless ki‖ − kf‖ = G, where G is a reciprocal

lattice vector. This condition is, thus, a statement of the momentum conservation discussed

above, δ(ki−kf−G). If, however, z is allowed to vary continuously as a function of position

along the surface, so that R = n1a1 + n2a2 + ∆x + ∆y + z40, with z no longer constant,

the summation in Eq. 4 is not as readily calculated. Perfect phase cancellation away from

reciprocal lattice vectors does not occur, resulting in non-zero photoemisison intensity when
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ki‖ − kf‖ 6= G.

Summations such as the one in Eq. 4 are encountered in the theory of LEED on rough

surfaces.41–43 In fact, in many respects the formal analysis of LEED results bears many

similarities to that of ARPES. In a prior study using one-photon photoemission and high-

resolution LEED applied simultaneously to surface states of Cu(100) and Cu(111), it was

demonstrated experimentally that the photoemission linewidth and the width of the LEED-

spot profile are correlated linearly.39 In particular, for LEED one measures the diffraction

structure factor, S(k) ∝ |
∑

eik·R|2 where, as in the case of photoemission, k is the total

momentum transfer, k = ki − kf , and the sum is over atomic positions, R, on a surface.

In addition, for ARPES transition probability is proportional to the square of the matrix

element; thus, the same structure factor, S(k), is applicable. Thus, LEED theory can guide

our analysis.

The structure factor, S(k), can be calculated with information about the average prop-

erties of the surface, described by three variables: horizontal correlation-length, ξ, RMS

height variation, w, and a dimensionless parameter, α, termed the “roughness exponent,”

which describes surface roughness on length scales smaller than ξ.43 All three parameters can

be extracted from real-space information about the surface by computing the height-height

correlation function, which is used in a variety of thin film measurements, including those

on graphene and other surfaces, and is defined as H(r) = 〈|z(r0 + r)− z(r0)|2〉. As is shown

in the appendix, S(k) = S(k⊥,k‖) is intimately related to H(r) as the Fourier transform of

e−
1
2
k⊥H(r). Thus, the average parameters that characterize a given rough surface (w, ξ, and

α) and determine the form of H(r) also determine S(k⊥,k‖). Hence, with these parameters,

it is possible to compute the summation in Eq. 4. In fact, previously reported measurements

using low-energy electron microscopy and low-energy electron diffraction have determined

these parameters to be α = 0.54±0.02, w = 1.99±0.15 Å, and ξ = 30±0.3 nm for the same

suspended graphene samples used in this study.21 Although the functional form of S(k⊥,k‖)

is complex, the width of Sk⊥(k‖) (i.e. for k⊥ fixed) in k‖ space has a simple dependence

on k⊥ and the parameters describing the surface roughness. In particular, the width, ΓS

is proportional to (k⊥w)1/α/ξ, which explains the decrease in experimental linewidth with

decreasing k⊥ shown in Fig. 5. For fitting purposes it is useful to have the exact functional

form of Sk⊥(k‖). Yang, et al. have shown that for (wk⊥)2 � 1 the form is purely diffusive

and can be expressed as:43

16



Sk⊥(k‖) = (ξ/(wk⊥)
1/α)Fα(k‖ξ/(wk⊥)

1/α)

Fα(Y ) =

∫
XdXexp(−X2α)J0(XY ) (5)

D. Intrinsic Broadening

It is straightforward to introduce intrinsic initial-state broadening into our ARPES de-

scription by replacing our initial state wavefunction, ψk, with a sum over multiple momentum

states,
∑
akψk, where the aki

are complex coefficients related to the spectral function by

|aki
|2 = A(k, ω). Our transition matrix then becomes a sum, M =

∑
akM

k, over multiple

matrix elements weighted by the complex coefficients ak, where the Mk are the original

transition matrix elements defined in Eq. 4. Again, using Fermi’s golden rule we find that

the transition probability is proportional to the square of this sum.

I ∝ |M |2 = |
∑
k

akM
k|2 =

∑
k

|ak|2|Mk|2 +
∑
k6=k′

a∗kak′Mk∗Mk′
(6)

As shown in the appendix the k 6= k′ sum can be safely neglected due to random phase

cancellation and we arrive at the final expression for the full photoemission intensity ex-

pressed in Eq. 2.

Note that the broadening introduced by the surface corrugation of the suspended

graphene sheet is only contained in the transition matrix element Mk. The many-body

physics that describes the interaction of charge carriers in graphene with other excitations

is contained in the complex coefficients ak. Thus, the ”intrinsic” or initial state broadening

referred to in this section, as well as subsequent sections, is the width of the spectral function

derived from the complex coeffiecients, A(k, ω) = |aki
|2.

E. Analysis of Spectra and Discussion

Figure 3(d) shows a plot of the dispersion obtained along the ΓK direction in the vicinity

of the Dirac point. The average Fermi velocity, derived from the slope of ω vs kx is 1.07±

0.05 × 106 m/s. This value is obtained from an analysis of the dispersion in the energy

range from 0 to 0.6 eV (see blue best-fit line in Fig. 3(d)). Additionally, the dispersion
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FIG. 6. (Color online) (a) Graphene bandstructure over first BZ. (b) Contour lines drawn along

constant binding energies in the vicinity of the K point (binding energies indicated in eV). (c-d)

Dispersion along kx and ky, respectively (along dashed blue lines in (b)).

along ΓK is linear in this region (0 to 0.6 eV) with no deviations from linearity within our

experimental uncertainty. As discussed above, despite the roughness induced broadening

in the spectrum, the dispersion curve is easily extracted from the ARPES data by taking

the second derivative of the ARPES intensity along the momentum direction. However,

determining the intrinsic width of spectral features requires a deeper analysis.

Our prior measurements of the surface corrugation in suspended graphene allow us to

extract the intrinsic electronic structure from our ARPES data. The procedure for this fitting

is as follows: first, Sk⊥ is determined from our surface morphology measurements and used

as a constant parameter, then A(k‖) is varied until the convolved function, I(k‖), represents

a good fit to the experimental data. Although a full deconvolution is, in principle, possible it

is much more straightforward to begin with an assumption for the functional form of A(k‖)

and systematically vary the parameters until a good fit is found. The functional form of

A(k‖) is assumed to be a Lorentzian, the most commonly used photoemission lineshape,

which results from the k-independent approximation for Im[Σ(k, ω)].44

In carrying out this procedure, we introduce two additional simplifications. First, note
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FIG. 7. (Color online) Intrinsic width of ARPES features for Suspended monolayer graphene. (a)

Example of MDC fitting. (b) Two independent contributions to broadening. Red line: intrinsic

linewidth of initial state. Blue line: broadening due to corrugation at ~ω=50 eV (solid) and ~ω=84

eV (dashed). (c) Inverse lifetime as a function of binding energy for ~ω=50 (blue) and ~ω=84 eV

(red). Inset shows best fit line to intrinsic width vs. binding energy for ~ω=50 data in vicinity of

Fermi level.

that we are examining the region in k-space within the first Brillouin zone along the ΓK (kx)

direction in the vicinity of the K point. As shown in Fig. 6, the π state disperses rapidly along

kx in this region, but relatively slowly along ky since ∂ω/∂ky=0 at ky=0. Thus, although

Eq. 6 describes a 2D convolution, it is possible to replace the required 2D kxky integral with

a 1D integral along kx. Second, we note that most of the MDCs considered here have an

asymmetric peak shape, with additional spectral weight in the ω > vF |k| region of the curve.

Possible reasons for this asymmetry are discussed in a separate paragraph below. For fitting

purposes, this additional spectral weight was not considered and the best fit was obtained

by imposing a momentum cutoff within 0.1 Å
−1

of the peak position on the ω > vF |k| side

of the curve. Figure 7(a) shows a representative curve from the ~ω=50 eV data taken 0.7 eV

below the Fermi level along with a best fit. Note that the lineshape of this curve provides an

excellent fit to the experimental data. Figure 7(b) shows the two independent contributions

to the linewidth: the corrugation-induced broadening and the intrinsic broadening. In

order to cross-check that the convolution procedure accurately captures the photon-energy

dependence of the photoemission process, the same fitting procedure was repeated on data
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obtained with a photon energy of ~ω=84. At this photon energy, k⊥ = 4.27Å
−1

and,

according to Eq. 6, the width of Sk⊥ is nearly twice as large as it is at ~ω = 50 eV. However,

as expected, the intrinsic linewidth extracted from the fitting procedure is the same for data

obtained with both photon energies. A comparison of the self-energy extracted from the two

data sets is shown in Fig. 7(c); the two resulting curves are the same, within experimental

error, thus confirming the photon-energy dependence given in Eq. 6 and lending further

support to our approach.

Comparison can be made to the theoretical work of Park et al. who compute, from first

principles, the MDC broadening expected in an ARPES study of graphene45. Although their

computation has been performed for doped graphene, their result for suspended graphene

compares very favorably to ours. Figure 8 shows our result for the intrinsic MDC width along

with the prediction of Park et al. for both freely suspended graphene and SiC supported

graphene. As seen in Fig. 8(b), dielectric screening from the SiC substrate significatly

reduces the MDC broadening. However, their result for suspended graphene is qualitatively

similar to ours; they predict a monotonic increase in MDC width from 0 at EF to ∼0.09

at 2 eV. However, care must be taken when comparing this calculation to our result, as

the calculation has been performed for doped graphene, which changes the quasiparticle

dynamics. For example, the kink observed in the 1 to 1.5 eV range is not present in our

data. In comparison, our measured intrinsic linewidth increases linearly from EF to ∼ 3 eV,

after which it is constant at ∼ 0.13 Å
−1

. The kink at ∼3 eV in our data corresponds to the

rapid change in the density-of-states in graphene which occurs at a binding energy equal to

the nearest-neighbor hopping energy of ∼2.8 eV (see inset to Fig 8).

To make our observations quantitative, we perform a linear fit of the intrinsic width,

versus binding energy, Γi = α+β(E−EF ). From this fit, we find α = 0.002±0.005 Å
−1

and

β = 0.039±0.01 Å
−1
eV −1. As expected, the value of α is within experimental uncertainty of

zero since excited states just above the Fermi level should be very long lived. Consider now

the parameter β that describes the increase in inverse quasiparticle lifetime with increasing

binding energy.

The lifetime is related to Γi by τ = 1/(2ΓivF ). Thus, our measured value can be reex-

pressed as β= 0.78±0.02 fs−1 eV−1, so as to enable ready comparison with prior measure-

ments of the same quantity on graphite and exfoliated graphene. For graphite, β has been

measured by femtosecond photoemission to be an order of magnitude smaller, viz. 0.029
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FIG. 8. (Color online) Inverse lifetime as a function of binding energy for ~ω=50 (blue) shown

with error bars. Inset shows graphene DOS. (b) Previous experimental and theoretical results

for ARPES MDC width of graphene. Plot includes first principles calculation of Park, et al.45

for suspended (red curve) as well as SiC supported (blue curve) graphene along with data from

Bostwick, et al.5 (black curve). Note that this data corresponds to doped graphene.

fs−1 eV−1,46 while STS measurements of exfoliated graphene on graphite have produced an

intermediate value of (β = 0.11 fs−1 eV−1).47 A reasonable explanation for this discrepancy

is the greater out-of-plane corrugation of suspended graphene, which has been predicted to

be the largest contribution to electron scattering in rough graphene sheets48–50. Indeed, such

roughness constitutes short-range correlated disorder, which has also been shown theoreti-

cally to lead to scattering rates which scale linearly with ω in graphene.51

Comparison can also be made with results obtained on epitaxial graphene grown on SiC.

In such a system the Dirac point is 0.5 to 0.75 eV below the Fermi level which changes

the quasiparticle dynamics resulting in a non-linear behavior for Γi vs ω. In particular, it

has been shown that electron-plasmon interaction in doped epitaxial graphene results in an

increase in the electron scattering rate in a narrow energy region where ω ∼ ED
5 (see black

curve in Fig 8(b)). However, at deeper binding energies a nearly linear increase of Γi has

been demonstrated with a slope of ∼ 0.025 Å
−1
eV −1, which is comparable to our measured

value of β.

Because of the unique Dirac Fermion behavior and two-dimensionality of graphene, there

has been much discussion of many-body physics that would lead to lifetime broadening in

ARPES measurements of graphene5,52–54.
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In conventional bulk crystals Fermi-liquid theory predicts the decay of a photohole

through creation of an electron-hole pair to result in a lifetime which scales as (E − EF )2,

in proportion to the number of excitation pathways that satisfy momentum and energy

conservation. However, the linear dispersion of the graphene bands along with the van-

ishing density of states at EF modify this picture. Hence, undoped graphene is expected

to show anomalous marginal Fermi-liquid behavior, characterized by a lifetime that scales

as (E − EF )−1.52 Electron-phonon interaction has also been shown experimentally to lead

to linewidth broadening.5,55 However, the interaction is limited by the phonon dispersion

to within 140 meV of EF .9 Coulombic interactions, however can affect scattering rates for

electrons well below EF . As noted above, elastic scattering due to short range correlated

impurities such as adatoms, dislocations or corrugations has also been shown theoretically

to produce a (E − EF )−1 dependence on lifetime.51

As discussed above, prior STS measurements have confirmed this linear increase for a

small range of energies (∼150 meV) in the vicinity of the Fermi level for exfoliated graphene

on graphite.47 Our measurement confirms that this behavior persists as far as 2eV below the

Fermi level; a log-log plot of Γi vs ω displays a slope of ∼1. As noted above, such marginal

Fermi-liquid behavior has also been observed by femtosecond time-resolved photoemission

spectroscopy on graphite.46

We now return to the topic of asymmetry in MDC peak shape. As many recent theoretical

studies have pointed out, the commonly made k-independent approximation for Im[Σ(k, ω)]

is not fully valid in graphene as the doping level approaches zero.52,53 The vanishing density

of states at ω = EF along with graphene’s linear dispersion near EF places a kinematic

restriction on the available phase space for electron-electron scattering. The scattering

pathway e− → e− + e−h+ is only available for off-shell electrons for which ω > vF |k| and is

kinematically forbidden when ω < vF |k|. Thus, one expects a discontinuity in Im[Σ(k, ω)]

at ω = k and decay due to electron-electron interaction may be indicated by asymmetry in

MDC peak shape.51,53 As mentioned above and indicated in Fig. 7, in MDCs taken through

the K point for monolayer graphene additional spectral weight is present in the ω > vF |k|

regime. In principle, a full deconvolution of the ARPES intensity would recover the exact

function form of A(k, ω). However, such a procedure would require use of the full 2D integral

specified by Eq. 2, which is beyond the scope of the work presented here.
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V. SUMMARY

Photoemission on thin sheets of 2D crystals is expected to grow in importance as interest

in single layer insulators and semiconductors increases. We have performed ARPES on

a 2D suspended surface with well defined surface corrugation. By comparing our work

with our prior results obtained from diffraction measurements on corrugation in suspended

graphene sheets14 we have developed a model for understanding the effect of corrugation on

ARPES spectra. By analyzing results obtained with different photon excitation energies,

we have estimated the contribution of surface roughness to broadening. Thus, despite the

surface corrugation in the graphene layer, it is still possible to develop insights into graphene

physics. In particular, we have shown that exfoliated suspended graphene is essentially

undoped in its pristine form. Additionally, we have shown that the band structure has no

significant deviations from linearity in the vicinity of the Dirac point. Our measured Fermi

velocity is comparable to results obtained on supported graphene by transport and optical

measurements. Finally, we have also shown that undoped exfoliated graphene behaves as a

marginal Fermi-liquid with an anomolous carrier lifetime, which scales as (E − EF )−1.
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Appendix

In this appendix, we will follow the standard formalism for single photon photoemission

using the dipole approximation. We will adapt the treatment to deal with a locally curved
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surface using a specific initial state described by the tight binding model for graphene.

According to the standard tight-binding scheme, initial π states in the valence band of

graphene with energy ωk and crystal-momentum k are represented as a linear combination

of molecular pz orbital states:

ψk(r) =
1√
N

∑
R

eik·R
∑
j=A,B

Ck
j φ(r−R− τj) (A.1)

where 1√
N

is an overall normalization factor, A and B designate the sublattice sites and

τj their locations within the unit cell. The Ck
j are complex coefficients obtained from the

tight-binding model and the φ are molecular pz orbitals. The sum over R runs over all N

unit cells in the crystal (note that we work in the limit where N →∞).

The transition-matrix for photoexcitation from this initial state to a plane wave final state

with total momentum kf outside the crystal can be written, using the dipole approximation,

as follows:

Mk ∝
∫
d3re−ikf ·r(p ·A)ψki

(r) (A.2)

Inserting the above definition for the initial state we obtain:

Mk ∝ (ki · λ̂)
∑
R

ei(ki−kf )·Rφ̃(kf )
∑
j=A,B

Ck
j e
−ikf ·τj (A.3)

where φ̃ is the Fourier transform of the molecular pz orbital and λ̂ represents the polarization

vector of the incoming radiation. We are interested in a small region of momentum-space in

the vicinity of the K point. Since ki·λ̂ and φ̃(kf ) are nearly constant in this region, we concen-

trate our attention on the sum,
∑
ei(ki−kf )·R∑Cki

j e
−iki·τj . The sum over j,

∑
Cki
j e
−ikf ·τj ,

depends only on the relative phase between the Ck
j ’s and the pathlength difference from

atoms A and B to the detector. This term changes rapidly on a contour around the K

point. Along the ΓK direction, the term changes from 2 to 0 as we pass through the K point

from the first to the second BZ. However, if we restrict ourselves to the region of k-space

along the ΓK direction within the first BZ (see Fig 6),
∑
Cki
j e
−ikf ·τj is nearly constant.

Thus, we are left with the sum
∑
ei(ki−kf )·R.

For a 3D crystal with perfect translational symmetry R = n1a1 + n2a2 + n3a3 where

n1, n2, n3 are integers and a1, a2, a3 are primitive lattice vectors. In this case, the sum over
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R reduces to momentum preserving delta function δ(kf − ki −G) where G is a reciprocal

lattice vector. However, since graphene is a two-dimensional lattice, momentum conservation

does not hold in the perpendicular direction. More significantly, exfoliated graphene is a

flexible membrane that is not atomically flat, so the R’s must be expressed in terms of a

continuous variable; thus R = n1a1 +n2a2 + ∆x+ ∆y+ z, where zj is a continuous variable

which represents the local height of the graphene sheet. The variation in height is such

that we can consider the well known theory of scattering from continuous rough surfaces in

order to evaluate the sum in equation A.3. We begin by replacing the discrete sum with an

integral:

∑
R

ei(ki−kf )·R =

∫
d3rD(r)ei(ki−kf )·r (A.4)

where D(r) is the density-function of the material which, for a perfectly crystalline flat

sample, has the form:

D(r) =
∑
R

δ(r−R) (A.5)

A periodic lattice generates a photoemission spectrum with the periodicity of the recip-

rocal lattice. However, since we are concerned with the photoemission spectrum in a small

region of k-space in the first Brillouin zone, we may abandon the description of the surface

as a discrete lattice and replace it with a smooth, continuous sheet. Thus, we approximate

D(r) as a surface density function:

D(ρ, z′) ' δ[z′ − z(ρ)] (A.6)

where ρ = r‖ = (x, y) and z′ = r⊥. Thus, the surface is now defined by the height function

z = z(ρ). Inserting the above definition of D(r) and explicitly separating ki and kf into

components parallel and perpendicular to the surface we obtain:

M ∝
∫
d2ρei(ki⊥−kf⊥)·z(ρ)ei(ki‖−kf ‖)·ρ (A.7)

We have retained momentum conservation; for a constant z(ρ) the above integral produces

δ(ki‖ − kf ‖) times a complex phase; but for a non-trivial z(ρ), the delta function broadens

since ei(ki⊥−kf⊥)·z(ρ) is no longer independent of ρ. Additionally, electronic states in graphene
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propagate on a curved space, which implies that the direction of the initial state wavevector,

ki, varies as a function of position along the surface so that ki⊥ and ki‖ vary with ρ as well.

This introduces additional phase variation into the exponential argument (ki⊥−kf⊥) · z(ρ).

However, this variation is very small in comparison to that introduced by changes in z(ρ)

and can effectively be ignored with little change in our final result. In particular, ki⊥ varies

proportional to k ∂z
∂ρk

which is on the order of 0.01 Å−1. Thus the phase variation in the

term ki⊥z � 1 (∆z ≈ 2 Å) is very small in comparison to the variation in the kf⊥z term

(kf⊥ ranges from 2.5 to 3.5 Å−1). Thus, we will approximate the direction of the initial

state wavevector, ki, as constant for all points on the surface. This means that k is not ρ

dependent and we can define a new vector k = ki − kf , so that our expression becomes:

M ∝
∫
d2ρeik⊥·z(ρ)eik‖·ρ (A.8)

To find the photoemission intensity we use Fermi’s golden rule which yields:

I =
2π

~
‖M‖2δ(ε+ ~ω − ~2k2/2m), (A.9a)

‖M‖2 ∝
∫
d2ρ′d2ρeik⊥·z(ρ)eik‖·ρe−ik⊥·z(ρ′)e−ik‖·ρ′ . (A.9b)

Defining r = ρ− ρ′ we can rearrange to obtain:

I ∝
∫
d2r

(∫
d2ρeik⊥·[z(ρ+r)−z(ρ)]

)
eik‖·r (A.10)

The term inside the parenthes is the height-difference function, C(r, k⊥), of the surface

which is related to the height-height correlation function, H(r) = 〈|z(r0 + r) − z(r0)|2〉. It

is straight forward to show that the C(r, k⊥) equals e−
1
2
H(r)k2⊥ .43 Thus, we have:

I ∝
∫
d2rC(k⊥, r)e

ik‖·r, (A.11a)

C(k⊥, r) = e−
1
2
H(r)k2⊥ . (A.11b)

For a large class of surfaces, H(r) has the following properties:

H(r) ∝ e2α, for r � ξ (A.12)

H(r) = 2w2, for r � ξ (A.13)
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where α is a measure of the small scale roughness termed the “roughness exponent.” In,

particular, it can be shown that the full width at half maximum (FWHM) of I(k‖) (with k⊥

held constant) scales as ξ−1(wk⊥)
1
α when (wk⊥)2 � 1. The functional form of I(k‖) is well

approximated as:43

Sk⊥(k‖) = (ξ/(wk⊥)
1/α)Fα(k‖ξ/(wk⊥)

1/α)

Fα(Y ) =

∫
XdXexp(−X2α)J0(XY ) (A.14)

The above discussion began with the assumption that the initial state, ψk, had a well

defined pseudo-momentum, k, and energy ωk. To include initial state broadening in our

description, we replace ψk with a sum over multiple momentum states,
∑
akψk, where the

ak are complex coefficients. The coefficients, ak, are related to the spectral function, A(k, ω)

by |ak|2 = A(k, ω) with the spectral function defined as:

A(k, ω) =
Im(Σ)

(ωk − ω −Re(Σ))2 + Im(Σ)2
(A.15)

where Σ = Σ(k, ω) is the quasiparticle self-energy. Retaining our simple description of the

final state as a free-electron state with momentum q, our transition matrix becomes a sum,

M =
∑
akM

kq, over multiple matrix elements weighted by the complex coefficients ak,

where the Mkq are the original transition matrix elements defined in Eq. A.3. Again, using

Fermi’s golden rule we find that the transition probability is proportional to the square of

this sum:

I ∝ |M |2 = |
∑
k

akM
kq|2 =∑

k

|ak|2|Mkq|2 +
∑
k 6=k′

a∗kak′M
kq∗Mk′q (A.16)

The cross terms have the form:

Mkq∗Mk′q ∝
∫
d2r

(∫
d2ρeik⊥·[z(ρ+r)−z(ρ)]ei∆k‖ρ

)
eik

′
‖·r (A.17)

where ∆k‖ = k′‖ − k‖, k⊥ ≈ k′⊥. The ei∆k‖ρ factor in the ρ integral introduces a ran-

dom phase that causes the integral to average to zero (since it is taken over the whole
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surface). Thus, the cross terms can be safely neglected and we arrive at the final expression

or photoemission intensity as a function of k‖ with k⊥ fixed, described by Eq. 2.
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