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Abstract

Spin-resolved noise correlations of electronic currents are investigated through a Coulomb-

blockaded two-level quantum dot coupled to two ferromagnetic leads. By changing the bias voltage

or/and modulating the spin polarization of leads, different types of dynamical mechanisms are

formed to exhibit a sub- to super-Poissonian statistics crossover. An optimized electron correlation

is obtained in the specifical regime where several dynamical mechanisms of electron bunching are

coexistent. It is found that the shot noise spectrum of spin currents can act as a signal for differ-

entiating which mechanism is responsible for the charge super-Poissonian transport statistics. In

addition, the positive cross correlation for two spin species is also predicted.

PACS numbers: 72.70.+m, 72.25.-b, 73.23.Hk, 85.75.-d
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I. INTRODUCTION

Quantum fluctuations of electronic current provide a great deal of insights into electronic

transport mechanisms and have recently boosted great interest in down-scaling mesoscopic

structure [1, 2]. For a system far from equilibrium, the unavoidable shot noise of currents

due to granularity of electron charge, obeying no longer the fluctuation-dissipation theorem

simply, allows us to access information not available from measurements of the average

currents, such as probing the correlations and entanglement of electrons [3–6].

It is well known that noninteracting fermions exhibits suppressed particle number fluctu-

ations relative to the classical Poissonian value (sub-Poissonian statistics) due to the Pauli’s

exclusion principle [7]. To obtain super-Poissonian statistics in electronic systems, intro-

duction of additional correlated mechanisms is needed, such as the Andreev reflection [8],

entanglement [3, 6], and quantum coherence [4, 9, 10]. For a quantum dot (QD), which is

a strong confined system, Coulomb interactions between electrons play a unique role in the

statistics property. Generally, the repulsive Coulomb interactions result in a further reduc-

tion of the shot noise [11]. Under some specifical conditions, however, they can also generate

a super-Poissonian characteristics. Three typical bunching mechanisms have been suggested

to generate the super-Poissonian statistics. Firstly, the dynamical channel blockade (DCB)

was first proposed in a multi-level QD [12], and then extended to tunable situations [13, 14].

Within the time intervals of the electrons in the lower level occasionally tunneling out of the

QD, several consecutive tunneling events (bunching of electrons) through the upper level

are followed. The second mechanism is the spin accumulation on the QD, which follows

from a detailed unbalance of electrons with opposite spin for strongly asymmetric magnetic

single-electron-transistors [15]. Thirdly, the dynamical spin blockade (DSB) stems from a

spin-dependent bunching of tunneling events, which may appear even in the absence of spin

accumulation on the dot [16–18]. In this case, the essential point is that the spin minority

with a slow tunneling rate modulates the fast transport of the spin majority.

The three types of mechanisms mentioned above were studied separately in different

systems and attributed to different physical origins. The first dynamical mechanism is close

associated with the inter-level Coulomb interaction and the other two with the interplay of

intra-level Coulomb interaction as well as finite spin polarization. In a realistic system, both

of intra- and inter-level interactions along with spin polarization can coexist. Therefore,
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an interesting issue is to study various super-Poissonian statistics and their mixed effect in

the same setup, and further to identify them. On the other hand, these super-Poissonian

behaviors are spin-dependent and the study on spin-resolved current correlations [19] is

expected to provide additional information about electronic bunching. For instance, spin-

current shot noise was suggested to determine the spin unit of quasi-particle [20], or to

examine the spin coherence from spin-orbit interactions [21]. Moreover, it was proposed

recently to probe attractive or repulsive interactions between electrons even in the lack of

charge super-Poissonian behavior [22].

In this paper, we consider a Coulomb-blockaded QD with two levels coupled to two

ferromagnetic (FM) leads. This simple model allows us to reach not only various dynamical

mechanisms for electron bunching separately, but also their combination by a controllable

means. Moreover, the spin-current shot noise is analyzed and the positive cross correlation

for two spin channels is predicted in specifical dynamical regimes. It is shown that one

can identify various dynamical mechanisms of super-Poissonian by the probe of their spin-

current shot noise. The organization of the rest of the paper is as follows. In Sec. II the

theoretical model and combination-generation approach for calculation of spin-related shot

noise are presented, and in Sec. III the calculation results are discussed in detail for various

dynamical mechanisms and their combination. A short summary is given in the last section.

II. MODEL AND FORMALISM

Consider a two-level single QD with finite Coulomb interactions U within each level and

U ′ between levels, sandwiched by two FM electrodes via tunneling coupling. The schematic

diagram is depicted in Fig. 1(a), where only dot levels εi (i = 1, 2) contribute to electronic

transport and the other levels εi + U(U ′) (not shown in the schematic) for strong Coulomb

interactions are far out of the bias window eV = µL − µR. The Hamiltonian can be written

as

H =
∑

αk,σ

εαkσa
†
αkσaαkσ +

∑

σ,i=1,2

(εic
†
iσciσ +

U

2
niσniσ̄) +

∑

σ,σ′

U ′

2
n1σn2σ′

+
∑

αk,iσ

(tαa
†
αkσciσ +H.c.), (1)

where a†αkσ (c†iσ) is the creation operator for electrons with spin σ in the α = L,R leads

(i-th dot level), spin σ̄ is opposite to σ, and niσ = c†iσciσ is the occupation operator. The
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last term denotes the tunneling Hamiltonian between the dot and electron reservoirs with

level-independent coupling strength tα.

It is assumed that the tunneling coupling is so weak that the electronic transport is

dominated by the sequential tunneling. Starting from the Liouville-von Neumann equation

under the second-order Born and Markovian approximations [23], we derive the dynamical

evolution
∂ρn(t)

∂t
=

∑

α,σ,m6=n,

ρm(W
ασ+
n←m +W ασ−

n←m)− ρn(W
ασ+
m←n +W ασ−

m←n), (2)

for the diagonal element of QD density matrix ρn(t), which stands for the probability of

finding the dot state |n〉 at time t. Here, W ασ+
m←n = Γασfα(ǫm−ǫn)

∣

∣

∣
〈m| c†iσ |n〉

∣

∣

∣

2

and W ασ−
m←n =

Γασ[1− fα(ǫn − ǫm)] |〈m| ciσ |n〉|
2 are the transition rates of electrons tunneling from lead α

into the QD (superscript +) and vice versa (superscript −), accompanied with the dot state

changed from |n〉 to |m〉 according to selection rule 〈m| c†iσ(ciσ) |n〉. ǫn is the eigenenergy

of state |n〉 and fα(ε) = 1/[1 + e(ε−µα)/kBTα ] is the Fermi-Dirac distribution function with

µL(R) = ±eV/2 as the chemical potential and Tα as the temperature in lead α. Γασ =

2πΩασ |tα|
2 characterizes the linewidth function with Ωασ as the spin-resolved density of

states at the Fermi level. The spin polarization of the FM leads is defined as ξ = (Ω↑ −

Ω↓)/(Ω↑ + Ω↓). Thus, the linewidth functions can be expressed as ΓL↑(↓) = ΓL(1 ± ξ),

and ΓR↑(↓) = ΓR(1 ± ξ) for the parallel (P) alignment of the lead’s magnetizations while

ΓR↑(↓) = ΓR(1∓ ξ) for the antiparallel (AP) alignment.

In the strong Coulomb blockade case of U (U ′) ≫ δǫ = ǫ2 − ǫ1, at most one electron

can occupy the QD. There are five probable states whose probabilities can be denoted as

a density vector ρ(t) = (ρ0, ρ1↑, ρ1↓, ρ2↑, ρ2↓)
T . Under this representation, Eq. (2) can be

rewritten as dρ(t)/dt = Mρ(t) with

M =
∑

α























−
∑

iσ

W α+
iσ←0 W α−

0←1↑ W α−
0←1↓ W α−

0←2↑ W α−
0←2↓

W α+
1↑←0 −W α−

0←1↑ 0 0 0

W α+
1↓←0 0 −W α−

0←1↓ 0 0

W α+
2↑←0 0 0 −W α−

0←2↑ 0

W α+
2↓←0 0 0 0 −W α−

0←2↓























. (3)

Its formal solution is ρ(t) = ρ(0)eMt, where vector ρ(0) is the steady-state solution satisfying

equation Mρ(0) = 0 with normalization condition
∑

n

ρ
(0)
n = 1. The spin-resolved stationary
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currents, given by Iσα = −e
∑

m,n

ρm(W
ασ+
n←m −W ασ−

n←m), can be expressed as Iσα = e
∑

υ

[Iσαρ
(0)]υ.

Here, the summation goes over all vector elements υ, and Iσα is the matrix of current operator,

whose nonzero elements are

I
α↑
12 = W α−

0←1↑, I
α↑
14 = W α−

0←2↑, I
α↑
21 = −W α+

1↑←0, I
α↑
41 = −W α+

2↑←0

for I↑α, and

I
α↓
13 = W α−

0←1↓, I
α↓
15 = W α−

0←2↓, I
α↓
31 = −W α+

1↓←0, I
α↓
51 = −W α+

2↓←0 (4)

for I↓α.

The shot noise spectrum can be calculated by the Fourier transform of the current-current

correlation function

Sσ,σ′

α,α′(ω) = 2

∫ ∞

−∞

dteiωt[〈Îσα(t)Î
σ′

α′ (0)〉 − 〈Îσα〉〈Î
σ′

α′ 〉]. (5)

Following the widely applied combination-generation approach [16, 24, 25], we have

〈Îσα(t)Î
σ′

α′ (0)〉 = θ(t)
∑

υ

[Iσαe
MtIσ

′

α′ρ(0)]υ + θ(−t)
∑

υ

[Iσ
′

α′e−MtIσαρ
(0)]υ, (6)

where θ(t) is the Heavisider function. Substituting Eq.(6) into Eq.(5) and performing Fourier

transform, the expression for the spin-resolved shot noise spectrum is obtained as

Sσ,σ′

α,α′(ω) = δα,α′δσ,σ′SSch
ασ − 2e2

∑

υ

[IσαSE+S
−1Iσ

′

α′ρ(0) + Iσ
′

α′SE−S
−1Iσαρ

(0)]υ, (7)

which is the same as Eq. (16) of Ref. [25]. Here SSch
ασ = 2eIσα is the self-correlation Schottky

noise, S is a matrix whose columns are eigenvectors of matrix M, and E± is a diagonal

matrix whose diagonal elements are E
(nn)
± = 1

λn±iω
for λn 6= 0 and E

(nn)
± = 0 for λn = 0 with

λn as the n-th eigenvalue of matrix M.

The shot noise definition for I
c(s)
α = I↑α ± I↓α gives the charge-current shot noise as Sc =

∑

σ=↑,↓

(Sσσ + Sσσ̄) and the spin-current shot noise as Ss =
∑

σ=↑,↓

(Sσσ − Sσσ̄). In this paper, we

are interested in the zero frequency shot noise Sσ,σ′

α,α′(0) = Sσ,σ′

α,α′(ω = 0). It can be easily shown

that auto-correlations and cross-correlations satisfy Sσσ′

= Sσσ′

LL (0) = Sσσ′

RR(0) = −Sσσ′

LR (0) =

−Sσσ′

RL (0).

III. RESULTS AND DISCUSSION

We focus on the shot noise in the region of µL > ε2 > ε1 ∼ µR, as shown in Fig. 1(a),

for which the Fermi distribution functions at temperature kBTα ≪ δǫ reduce to be fL(ε1)
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= fL(ε2) = 1 and fR(ε2) = 0. For ε1 close to µR = −eV/2, define x to be fR(ε1) =

1/[1+ e(ε1+eV/2)/kBTR ], which can be tuned by the bias voltage. It spans from x = 0 to x = 1

with changing µR well below ε1 to well above ε1.

In Figs. 2(a) and 2(b), we plot charge-current Fano factor F c = Sc/(2eIc) (solid lines)

and spin-current Fano factor F s = Ss/(2eIc) (dashed lines) as a function of x for different

spin polarizations of the leads. For the nonmagnetic leads (ξ = 0), a prominent characteristic

is that the charge-current Fano factor F c starts with a sub-Poissonian statistics F c < 1 and

increases monotonically with x to maximal F c = 2 at x = 1, whereas the spin-current Fano

factor F s keeps to the Poissonian value F s = 1, independently of x. Interestingly, F c and F s

merge at x = x0, which is determined by Sσσ̄ = 0, yielding (2ΓL+ΓR)x0
2+3ΓRx0−2ΓR = 0.

For x > x0, we have F c > F s, indicating that the current correlation Sσσ̄ between opposite

spins becomes attractive. For the FM leads (ξ 6= 0), the Fano factor shows quite different

variation with x. In the P alignment [Fig. 2(a)], the increase of ξ lifts both F c and F s curves

and makes them faster beyond the Poissonian value, but the cross-point of F c and F s is

fixed at x0. More complicated behaviors appear in the AP alignment, e.g., the cross-point

x0 is ξ-dependent and vanishes for larger ξ, as shown in Fig. 2(b). To clarify the underlying

physics, we discuss in what follows two limit cases of x = 0 and x = 1.

A. Double level transport regime: x = 0

At the regime of x = 0 (i.e., ε1 > µR), the electronic transport through either level ε1 or

ε2 is allowed. The corresponding Fano factors in the P and AP alignments are plotted in

Fig. 3(a) as a function of polarization ξ with symmetric coupling ΓL = ΓR. In the P case,

the spin-resolved shot noises are obtained as

S↑↑(↓↓) = eI
1± ξ

(4ΓL + ΓR)2

[

16Γ2
L

1∓ ξ
+ 4ΓLΓR + ΓR

2

]

, Sσσ̄ = −eI
4ΓLΓR

(4ΓL + ΓR)2
. (8)

For ξ = 0, it follows that the Fano factor of charge current F c = 1 − 8ΓLΓR

(4ΓL+ΓR)2
< 1 is of

sub-Poissonian type, the spin-current Fano factor F s = 1 is of Poissonian type, and the

opposite-spin correlation Sσσ̄ is repulsive. If 4ΓL is replaced with ΓL in Eq. (8), it will

reproduce the result without interactions. The quadrupling of ΓL arises from the presence

of strong Coulomb interactions within and between levels. Although there are two levels ε1

and ε2 within the bias window, only one electron can occupy on the QD. As a result, there
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are four possible spins (|1 ↑〉, |1 ↓〉, |2 ↑〉, and |2 ↓〉) that can enter an empty dot, each of

them with ΓL, whereas for a singly-occupied dot there is only one possible spin to tunnel out

with ΓR. For the FM leads (ξ 6= 0), F c
P and F s

P in the P alignment increase monotonically

with ξ, and F c
P develops from a sub-Poissonian type to a super-Poissonian type, exhibiting

ξ-induced bunching of electrons. The transition of sub- to super-Poissonian Fano factor

happens at a threshold of spin polarization, ξ1 =
√

ΓR/(4ΓL + ΓR). Such a change stems

mainly from the contribution of S↑↑, for which the DSB for spin majority is formed.

To clearly illustrate the above bunching process with respect to the spin majority, we

plot corresponding schematic diagrams in Figs. 1(b)-(d). For simplify, only one level of the

dot is plotted there. If a spin-down electron occupies the level [see Fig. 1(b)], the spin-up

electron cannot flow through the dot under strong Coulomb blockade. Until the spin-down

electron leaves the dot for the right lead, the spin-up electron has a chance to tunnel [see

Fig. 1(c)]. Here, the spin-up electron is assumed to be the spin-majority. It means that

large numbers of spin-up electrons will flow through the dot within a time interval t↑, which

is shorter than that of a spin-down electron due to tσ ∼ 1/Γσ and Γ↑ > Γ↑. The larger the

polarization ξ, the more the spin-up electrons of consecutive tunneling are, and at the same

time, the shorter t↑ is, leading to bunching effect of the spin majority at certain threshold

ξ1 [see Fig. 1(d)]. This can explain the Fano factor changing from sub- to super-Poissonian

type in Fig. 3(a). It is emphasized that this spin-dependent bunching induces not only a

super-Poissonian F c
P but also F s

P > 1 owing to enhancing S↑↑. However, the DSB does not

change negative Sσσ̄, which is independent of ξ as given by Eq. (8).

In the AP alignment, there exhibits a nonmonotonic behaviors of Fano factor, as shown

in Fig. 3(a). The charge-current Fano factor can be obtained analytically as F c
AP = 1 +

8(4ξ2 − 3ξ4 − 1)/(5 + 3ξ2)2. It then follows that F c
AP > 1 for ξ > ξ2 with ξ2 determined by

4ξ22 − 3ξ42 − 1 = 0. This super-Poissonian behavior is close associated with the joint effect

of finite spin polarization and strong Coulomb interactions. Noted that F c
AP is always less

than one in the single-level QD without or with interactions [17]. In the AP configuration,

there is no DSB-induced bunching, since both spin species now experience equal coupling

strengths with only the roles of source and drain exchanged. Further analysis indicates

that the weak bunching of tunneling events results from the spin accumulation due to the

strong asymmetric tunneling, which is further enhanced by combinative inter- and intra-

interactions. Distinguishing significantly from the DSB, this super-Poissonian statistics F c
AP

7



in the range of ξ2 < ξ < 1 is accompanied with a spin-current shot noise F s
AP = 1 −

48ξ2(1− ξ2)/(5 + 3ξ2)2 below the Poissonian value and a positive cross noise Sσσ̄ = (20ξ2−

18ξ4 − 2)/(5 + 3ξ2)2 > 0. The ξ dependence of Sσσ̄ is the origin of cross-point x0 of F c
AP

and F s
AP that shifts with ξ, as shown in Fig. 2 for the AP case. It is remarked that positive

Sσσ̄ has also been reported previously due to “population inversion” for strong asymmetric

coupling [22].

B. Single level transport regime: x = 1

At x = 1 (or ε1 < µR), only the upper level ǫ2 is within the bias window and forms the

only channel for an electron to pass through the dot. In this regime, the Fano factors F c and

F s in the P and AP alignments are plotted in Fig. 3(b) as a function of spin polarization

ξ in leads. Unlike in the x = 0 case, even for the unpolarized leads (ξ = 0), F c exhibits

super-Poissonian behavior, F c = 1+ 2ΓL

ΓL+ΓR

, and the corresponding spin-resolved shot noises

is given by

Sσσ = eI[1 +
ΓL

ΓL + ΓR
], Sσσ̄ = eI

ΓL

ΓL + ΓR
. (9)

Here not only the same-spin correlations but also the opposite-spin correlations are positive,

all the spin components deviating remarkably from the Fermi statistics. This bunching effect

arises from the spin-dependent DCB, different from the usual DCB in a two-level QD [12, 13]

where the opposite-spin currents are uncorrelated, Sσσ̄ = 0. When an electron in the lower

level (slow channel) is thermally activated out of the dot, the probability of bunching effect

through the higher level can happen between electrons with either same spin Sσσ or opposite

spins Sσσ̄ due to random spin of the slow channel. It then can be understood why the same

correlated factor ΓL/(ΓL+ΓR) appears in Sσσ and Sσσ̄ of Eq. (9). This spin-dependent DCB

differs from the DSB for which the slow channel is only for spin minority and so the bunching

effect arises always for spin majority S↑↑. Interestingly, it is found that despite F c > 1, the

spin-current noise F s = 1 is of Poissonian-type statistics in the DCB mechanism, which is

able to distinguish evidently from the mechanisms associated with the DSB (F s > 1) and

the spin accumulation (F s < 1), as shown in Fig. 3(a).

In the discussion above, we have studied different super-Poissonian behaviors dominated

separately by only one of the dynamical mechanisms. In order to optimize bunching of

electrons, one can combine these dynamical mechanisms as shown in Fig. 3(b) for finite spin

8



polarization. Here, all the Fano factors start from the DCB behavior of F c = 2 and F s = 1

at ξ = 0, and increase monotonically with ξ for both P and AP configurations. Especially,

after ξ ∼ 0.5, F
c(s)
P in the P case shows a dramatic enhancement and becomes diverge at

full polarization ξ = 1, while F
c(s)
AP in the AP case increases relatively slowly and maximizes

to F
c(s)
AP = 3 at ξ = 1. The former is governed by a joint contribution of the DCB and

DSB, while the latter is governed by that of the DCB and weak spin accumulation. In these

regimes, there are the optimized correlations between electrons, giving rise to the super-

Poissonian statistics of charge current and spin current as well as positive cross correlations

between the currents of two spin species at the same time. They arise from the interplay

of intra- and inter-level Coulomb interactions together with the spin block effect. The joint

super-Poissonian statistics is characterized by F s
P (AP ) > 1 and F s

P (AP ) < F c
P (AP ) (or S

σσ̄ > 0),

which is significantly distinct from F s
P > F c

P in the DSB mechanism and from F s
AP < 1 in

the spin accumulation mechanism. Thus, probing of spin-current shot noise F s can give

important information to understand different dynamical mechanisms of super-Poissonian

statistics.

IV. SUMMARY

We have investigated the spin-resolved noise correlations of electronic currents through

a double-level QD coupled to two FM leads by taking into account the interplay of strong

intra- and inter-level Coulomb interactions on the QD and spin polarization of the leads.

By changing x (equivalently the bias voltage), spin polarization, and the relative orien-

tation of lead’s magnetizations, we can realize different types of charge super-Poissonian

statistics separately, and their combination for which electron correlations are optimized

due to the simultaneous formation of several super-Poissonian mechanisms. Interestingly, it

is shown that one can identify different dynamical mechanisms of super-Poissonian statis-

tics by probing spin-current shot noise F s (either its Poissonian type or/and its relative

magnitude compared to the charge-current shot noise F c). In addition, the positive cross

correlation for two spin species is predicted for either the spin-dependent DCB or the spin

accumulation mechanism.
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FIG. 1: (Color online) (a) Schematic view of a two-level QD coupled to two FM leads. Fermi

distribution function x = 1/[1+e(ε1−µR)/kBTR ] weighs the tunneling rate ΓR between incoming and

outgoing electrons when ε1 is close to µR = −eV/2. (b)-(d) Formation process of spin majority

bunching, where faster transport of spin-up electrons is modulated by slower tunneling of the

spin-down electron.

FIG. 2: (Color online) Fano factors F c of charge current and F s of spin current as a function of x

for different spin polarizations of the leads in the (a) P and (b) AP magnetization configuration.

FIG. 3: (Color online) Fano factors F
c(s)
P in the P configuration and F

c(s)
AP in the AP one as a

function of spin polarization ξ at (a) x = 0 and (b) x = 1.
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