
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Self-compensation in semiconductors: The Zn vacancy in
Ga-doped ZnO

D. C. Look, K. D. Leedy, L. Vines, B. G. Svensson, A. Zubiaga, F. Tuomisto, D. R. Doutt, and
L. J. Brillson

Phys. Rev. B 84, 115202 — Published 12 September 2011
DOI: 10.1103/PhysRevB.84.115202

http://dx.doi.org/10.1103/PhysRevB.84.115202


1 
 

      Self-compensation in semiconductors: the Zn-vacancy in Ga-doped ZnO 

 

D.C. Look  

Semiconductor Research Center, Wright State University, Dayton, OH  45435   

K.D. Leedy 

Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 

L. Vines and B.G. Svensson 

Department of Physics, University of Oslo, N-0316 Oslo, Norway 

A. Zubiaga and F. Tuomisto 

Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland 

D.R. Doutt and L.J. Brillson 

Department of Physics, Ohio State University, Columbus, OH  43210 

 

Self-compensation, the tendency of a crystal to lower its energy by forming point defects to counter 

the effects of a dopant, is here quantitatively proven. Based on a new theoretical formalism and 

several different experimental techniques we demonstrate that the addition of 1.4 x 1021-cm-3 Ga 

donors in ZnO causes the lattice to form 1.7 x 1020-cm-3 Zn-vacancy acceptors. The calculated VZn 

formation energy of 0.2 eV is consistent with predictions from density functional theory. Our 

formalism is of general validity and can be used to investigate self-compensation in any degenerate 

semiconductor material. 
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I. INTRODUCTION 

Self-compensation (SC) in semiconductors, the formation of acceptor-type lattice defects to counter 

donor-type impurity dopants, or vice versa, has been theoretically predicted to occur in wide-

bandgap semiconductor materials; however, its existence has seldom ever been proven because of 

the difficulty in measuring and matching impurity and point-defect concentrations with donor (ND) 

and acceptor (NA) concentrations. In this work we develop a new theoretical formalism to determine 

ND and NA in degenerate semiconductor materials, and then use it to investigate an important 

transparent-electrode material, Ga-doped ZnO [1-3]. Then, from secondary-ion mass spectroscopy 

(SIMS) results, we show that ND ≈ [Ga], as expected, and from positron annihilation results that NA 

is consistent with [VZn], where VZn is the Zn-vacancy. Finally, from further comparison with SIMS 

measurements and the application of density functional theory (DFT), we show that NA can be 

explained only by VZn, and not any other impurity or point defect. These results conclusively 

demonstrate SC in highly doped ZnO, and by inference SC is also possible in other transparent-

electrode materials. If present, it will impose a limit on the ultimate conductivity that can be attained, 

at least under conditions of thermodynamic equilibrium. Indeed, for our ZnO sample the room-

temperature resistivity is 2.0 x 10-4 Ω-cm, but elimination of the Zn vacancies would improve it to 

0.9 x 10-4 Ω-cm, nearly a world’s record for ZnO. Finally, as a check on the model, the value of 

[VZn] is consistent with that expected from theoretical formation energies. 

II. THEORY 

Our theoretical formalism is based on finding an analytical expression for mobility µ(ND,NA,T) 

and then fitting this expression to the experimental mobility µexpt(T), obtained from Hall-effect 

measurements. The Hall experiment also measures carrier concentration n, which in degenerate 

materials immediately yields a second relationship: n = ND - NA, independent of temperature. 
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Degeneracy also simplifies the mobility calculations, because (1) no energy averaging is necessary 

since all scattering occurs at the Fermi energy, Ef; (2) Ef is a simple and well-known function of n; 

(3) Matthiessen’s Rule (µtot
-1 = µ1

-1 + µ2
-1 + µ3

-1 + …..) applies exactly [4,5]; and (4) the major 

scattering is due to ionized impurities and the relevant theory (Brooks-Herring, B-H) contains only 

well-known parameters [4]. In thin films, we must also consider scattering due to boundaries 

(surfaces and interfaces), and at higher temperatures, we must include phonon scattering. Thus, µtot
-1 

= µii
-1 + µph

-1 + µbdry
-1, where µtot is to be fitted to the experimental mobility, µexpt. Another scattering 

mechanism, that due to charged grain boundaries [6], may also be important if n ≤ 1020 cm-3; 

however, that is not the case for our samples, or indeed for most competitive TCO materials. We can 

transpose the above equation to read: µii(ND,NA)-1 =  µexpt
-1 - µph(n,T)-1 - µbdry(n,d)-1 where T is the 

absolute temperature and d is the sample thickness. Every term on the right-hand side is either 

measured or easily calculable from parameters in the literature, and thus we obtain a relationship 

between ND and NA. The other relationship is n = ND - NA. 

 The degenerate form of the B-H equation is usually written as µii(n,Nii) = µii0(n)n/Z2Nii, where 

Nii is the concentration of ionized impurities (or defects) of charge Z, and  µii0(n) is given by [4,5] 
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Here, ε0 is the static dielectric constant and m* is the effective mass. Usually it is assumed that Z = 

1, and if so, then µii(n,Nii) = µii0(n)(1-K)/(1+K), where K = NA/ND is the compensation ratio, and 

µii0(n) can be identified as the maximum possible mobility at a given concentration n because it is 

the value of µ when NA = 0 [4]. However, for this study it will be necessary to relax the condition Z 

= 1 and also we will need to generalize the B-H equation to allow for multiple types of donors and 

acceptors. To carry out this generalization we recognize that each group of donors and acceptors will 

act as independent scattering centers, and thus we can add their respective scattering rates, i.e., the 

inverse mobilities, essentially invoking Matthiessen’s Rule again: 

 

                     (3) 

 

In our sample, we will show that there is one main donor, Ga, with ZD = 1, and one main acceptor, 

the isolated Zn vacancy VZn, with ZA = 2 (in n-type material) [7,8].  In this case, Eq. 3 becomes 

µii(ND,NA) = µii0(n)(ND – 2NA)/(ND + 4NA).       

 For high-temperature analysis, we must add scattering due to optical and acoustic phonons. The 

optical phonons interact mainly through the polar potential, at least in ZnO, and the acoustic 
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where Tpo is the polar-optical temperature (837 K in ZnO, or 72.1 meV), ε1 is the high-frequency 

dielectric constant, and χ(Tpo/T) is a numerical function introduced by Howarth and Sondheimer. 

For ZnO (only) we offer a fairly good approximation for χ(Tpo/T) over the limited range Tpo/T ≥ 2.8, 

or T ≈ 0 – 300 K: χ(Tpo/T) = [1 + exp(-0.6Tpo/T)]-1. The acoustic phonons, interacting through the 

deformation potential, lead to a mobility [5,9]: 
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where E1 is the acoustic deformation potential, cl the longitudinal elastic constant, and Ef(n) the 

Fermi energy, given by the well-known formula Ef(n) = (ħ2/2m*)(3π2n)2/3 [5]. Lastly, for acoustic 

phonons interacting through the piezoelectric potential, the associated mobility is [5,9]: 
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where Ppe is the unitless piezoelectric constant. The three phonon scattering mechanisms are again 

combined via Matthiessen’s Rule: µph(n,T)-1 = µpo(T)-1 + µac(n,T)-1 + µpe(n,T)-1.  

 Finally, in thin films we can have scattering at the boundaries, the surface and interface. Here, 

we offer a simple, heuristic model that seems to work well for thicknesses d above, say, 20 nm. 

Under the logical assumption that the boundary-scattering-limited mean free path (mfp) should 

increase as d increases, we postulate that mfp = d/C, where C is a constant that depends on the 
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particular system being studied [4,12]. The relevant velocity for scattering should be the Fermi 

velocity, so the mobility becomes: 

                    (7) 

 

The value of C can be determined by growing multiple samples with various values of d and fitting 

µexpt vs d to Eq. 8, below. For example, ZnO layers grown on SiO2 by pulsed laser deposition (PLD) 

in O2 at 400 °C and annealed in forming gas (5% H2 in Ar) at 400 °C were well fitted with C = 4 [4], 

and  PLD ZnO layers grown on Al2O3 in Ar at 200 °C required C = 2.5 [12]. Fortunately, however, 

an accurate value of C is not a requirement for obtaining good values of ND and NA for our sample 

of thickness d = 278 nm. This can be seen immediately by inserting the measured values C = 2.5 and 

n = 1.1 x 1021 cm-3 into Eq. 7 to get μbdry = 527 cm2/V-s. Since μexpt ≤ 50 cm2/V-s for all samples in 

this study, boundary scattering is not a major component of the mobility; however, we will still 

include it for maximum accuracy.  

 We now combine Eq. 3 with our earlier equation, µii(ND,NA)-1 =  µexpt
-1 - µph(n,T)-1 - µbdry(n,d)-1, 

to get:   
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Here, Corr(d,n,C,T) may be thought of as a correction term (normally small) due to phonon 

scattering at high temperatures and boundary scattering at small thicknesses. For our unannealed 

sample, at T = 20 K, Corr = 0.001+ 0.062 = 0.063, and at 300 K, Corr = 0.131 + 0.054 = 0.185. 

Thus, it is always best, if possible, to measure µexpt at as low a T as possible, say, T < 100 K, to 

avoid the phonon terms altogether. In this regard, measurements at liquid-nitrogen temperature 

(77K), if available, should be quite sufficient in most cases. Also, thicker samples are better for 

avoiding the boundary scattering correction. However, if thick samples and low-temperature 

measurements are not possible, then Eqs. 9 - 10 can be applied with only slightly reduced accuracy. 

III. EXPERIMENT 

 Eight, 1-cm x 1-cm pieces were cut from a 278-nm-thick ZnO film grown on a 3-inch Al2O3 

substrate by PLD at 200 °C in an atmosphere of pure Ar. We have earlier showed that the unusual 

process of PLD growth in pure Ar, without any O2 in the growth ambient, produces highly 

conductive ZnO [12]. For the present samples, the as-grown, room-temperature (RT) resistivity was 

1.96 x 10-4 Ω-cm, without any additional processing, such as annealing. However, to test whether 

even lower resistivities could be obtained by further processing, we subjected seven of the pieces to 

rapid thermal annealing in forming gas (5% H2 in Ar) for 10 min at various temperatures from TA = 

300 – 600 °C. The minimum resistivity obtained was 1.46 x 10-4 Ω-cm, at TA = 500 °C.  Although 

these annealing results are of interest for practical applications, we wish to emphasize that the main 
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conclusion of this paper, the existence of self-compensation in the form of Zn vacancies, depends 

only on analysis of the unannealed sample. 

Hall-effect measurements were carried out over the range 20 – 300 K. The mobilities for the 

unannealed sample and those annealed at 450, 500, and 600 °C are shown in Fig. 1. The fits to the 

curves, using Eq. 8, are also shown, as solid lines. In the fittings, the following parameters in Eqs. 1 - 

6 were taken from the literature: ε0 = 8.12εvac, ε1 = 3.72εvac, Tpo = 837 K, E1 = 3.8 eV, Ppe = 0.21 [9], 

and cl = 1.4 x 1011 N/m2[13]. For the remaining two parameters, the constant C = 2.5 in Eq. 7 was 

determined from a µ vs d analysis, discussed in Ref. [12], and an effective mass m* = 0.34m0 

produced the best fit of µ vs T for the unannealed sample, as demonstrated by the solid line in Fig. 1. 

(The upper and lower dashed lines are calculated using different values of m*, 0.30m0 and 0.40m0, 

respectively.) Note that our best-fit m* of 0.34m0 is larger than the literature value 0.318m0 [9] or 

the value 0.30m0 that we and others have typically used for nondegenerate samples [14]. However, it 

is expected that the conduction band (CB) may be somewhat nonparabolic at the Fermi energy (Ef = 

1.3 eV at n = 1.1 x 1021 cm-3), and so our higher value of m* may be taken as a measure of the CB 

nonparabolicity at Ef. Using m* = 0.34m0 along with the other parameters mentioned above, we fit 

Eq. 8 to the mobility data for the unannealed sample and those annealed at 450, 500, and 600 °C. 

The values of ND and NA producing the best fits are displayed in Fig. 1. For the unannealed sample, 

ND = 1.45 x 1021 and NA = 1.71 x 1020 cm-3, where we have assumed that ZD = 1 and ZA = 2. Below 

we will compare with SIMS to show that ND consists mainly of the dopant Ga, with slight 

contributions from H and Al, but that NA cannot be due to any impurity.   

 To quantitatively assess the possible impurity involvement in ND and NA, secondary-ion mass 

spectrometry (SIMS) measurements were performed. Calibrations of individual impurities were 

accomplished with ion-implanted standards. For maximum calibration accuracy, the peak 
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concentration of a given impurity in the implanted standard was designed to be about the same as the 

expected concentration of that same impurity in the sample itself. A mass scan of all elements was 

carried out to determine which were of a sufficient concentration to contribute significantly to the > 

1021 cm-3 donors and the > 1020 cm-3 acceptors, and thus only impurities of concentration > 1018 cm-3 

were considered further in the  analysis. Three impurities, all normally donors, satisfied this 

criterion: Ga (~ 1.4 x 1021 cm-3), H (~ 1 - 9 x 1019 cm-3, depending on depth and anneal conditions), 

and Al (~ 3 x 1018 cm-3). Thus, as expected, the donors are dominated by Ga, but H and Al are also 

included in the total SIMS-derived donor concentration, i.e., SIMS-ND = [Ga] + [H] + [Al]. The 

SIMS-ND‘s are plotted in Fig. 2 for the unannealed sample and those annealed at 500 and 600 °C, 

and they are compared with the Hall-ND’s calculated from the respective mobilities at 20 K. In the 

unannealed sample, the excellent agreement between the Hall and SIMS ND‘s, along with the good 

fit to the overall temperature dependence demonstrated in Fig. 1, shows that the scattering model is 

basically sound and should also be applicable to the annealed samples. Consider the sample annealed 

at 600 °C: here the SIMS-ND has dropped about 10%, with the drop split about evenly between 

decreases in [H], expected to leave the sample at 600 °C [15], and [Ga]. However, the Hall-ND has 

decreased much more, about 45%. Since [Ga] itself drops by only about 5%, the large decrease in 

ND has to come from the loss of donor character in some of the Ga atoms, and this can possibly 

occur through reactions at 600 °C that produce neutral forms of Ga, such as Ga2O3 or ZnGa2O4 [16]. 

Confirmation of such possibilities will have to await further investigation. 

IV. DISCUSSION 

 We now turn to the identity of the acceptors, of concentration NA = 1.71 x 1020 cm-3. No 

impurities, except possibly Ga itself, can account for a concentration this high. If Ga were involved, 

then the associated acceptor would likely be GaZnVZn, a singly-charged complex. In that case, we 
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would have ZA = 1 and Eqs. 9 and 10 would give ND = 1.64 x 1021 and NA = 5.40 x 1020 cm-3. For 

Ga to account for all the acceptors, and all of the donors except H and Al, we would need [Ga] = ND 

– [H] – [Al] + NA ≈ 2.0 x 1021 cm-3, and that is outside the error of our SIMS value, [Ga] ≤ 1.4 x 1021 

cm-3. Thus, we conclude that the dominant acceptor must be a doubly-charged point defect, at a 

concentration of about 1.7 x 1020 cm-3. The potential acceptor-like point defects are the Zn vacancy, 

VZn, the O interstitial, OI, and the O antisite, OZn. To get an estimate on which of these defects is 

most likely we can assume quasi-equilibrium growth conditions and compare the formation energies 

EF’s calculated from density functional theory DFT [7,8]. It turns out that for n-type material, under 

either Zn-rich or O-rich growth conditions, the EF’s for both OI  and OZn are at least 2 eV higher than 

that of VZn. The concentration of a particular species can be approximated by C ≈ Nsitesexp(-EF/kTG), 

where Nsites is the density of sites available for that species and TG = 473 K is the growth 

temperature. For VZn, Nsites ≈  4 x 1022 cm-3, and C = NA = 1.7 x 1020 cm-3, so that the predicted 

EF(VZn) ≈ 0.22 eV. Theoretical values for EF(VZn) have been calculated by DFT, but these values 

depend on the choices of exchange and correlation functionals. In Ref. 7, localized functionals 

(GGA approximation, in this reference) are used and EF(VZn
2-), for a Fermi energy EFermi at the CB 

minimum (ECBmin), ranges between + 1.8 eV for Zn-rich growth to -1.9 eV for O-rich growth. In Ref. 

8, several local and nonlocal combinations of functionals are compared, and a screened exchange 

(sX) functional, which produces an accurate bandgap Eg = ECBmin – EVBmax = 3.41 eV, gives EF(VZn
2-

)  = + 4.1 eV for Zn-rich growth and + 0.2 eV for O-rich growth. However, EFermi in our samples will 

in general be different from 3.41 eV, because the extremely high concentration (~ 1021 cm-3) of Ga 

atoms will affect it in several ways: (1) the CB will be shifted downward because of exchange and 

correlation effects arising from the donor electrons (bandgap narrowing or renormalization) [17,18]; 

(2) the host CB states will hybridize with the Ga donor states and induce nonparabolicity [18]; and 
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(3) the donor electrons will fill states well into the CB and thus effectively increase the bandgap 

(Moss-Burstein effect) [17,18,19]. For comparison with the nondegenerate DFT case, the new 

equilibrium bandgap will be EDFT(n) = ECB(kFermi) - EVBmax.  To determine EDFT(n), some relevant 

information can be obtained from a simple optical absorption (OA) threshold measurement, which 

gives EOptAbs = 3.85 eV for a sample with n = 1 x 1021 cm-3, grown on double-side polished Al2O3 (in 

order to carry out absorption measurements). The OA experiment was performed with the light 

direction parallel to the c-axis which means the light is polarized perpendicular to the c-axis. For 

such a polarization, transitions are allowed from either of the top two, nearly degenerate, valence 

bands (Γ7 and Γ9 symmetry) to the lowest conduction band (Γ7) at k = 0 [20]. Since the absorption 

transition is vertical in k-space, we can write EOptAbs = ECB(kFermi) - EVB(kFermi) = EDFT(n) + EVBmax - 

EVB(kFermi). Thus, EDFT(n) = EOptAbs - (ħ2/2)[(kx
2 +ky

2)/ mhh⊥
* + kz

2/ mhh//
*] , where mhh⊥

*, and mhh//
* 

are the effective masses of the heavy holes, perpendicular and parallel to the c axis, respectively, and 

kFermi = (3π2n)1/3.  Also, kx
2 + ky

2 + kz
2 = k2 = kFermi

2 = (3π2n)2/3.  Unfortunately, mhh⊥
* and mhh//

* are 

not well-known quantities, but some recently reported values are mhh⊥
* = 0.8m0 and mhh//

* = 5.0m0 

[21]. The optical-absorption threshold will occur at the highest point in the VB consistent with k = 

kFermi, and   for n = 1021 cm-3, that point is kx
 = ky = 0, and kz =  kFermi = 3.1 x 109 m-1, giving EDFT(n) 

= 3.85 – 0.073 = 3.78 eV. Interestingly, the new value of ECBmin - EVBmax is then 3.78 - ħ2k2/2me
*   = 

3.78 – 1.07eV = 2.71 eV which may be taken as the renormalized bandgap. Our EF(VZn
2-) values for 

the sX functional must therefore be corrected by -2(3.78 - 3.41) = -0.74 eV and thus we get EF(VZn
2-) 

= + 4.1 – 0.7 = 3.4 eV for Zn-rich growth and +0.2 – 0.7 =  – 0.5 eV for O-rich growth, respectively 

. For comparison, another DFT approach (LDA + U) [7], gives EF(VZn
2-) = + 1.8 eV for Zn-rich 

growth, and – 1.9 eV for O-rich growth, before corrections for EFermi, and thus 1.1 eV and -2.6 eV, 

respectively, after corrections. Clearly, our Hall-effect-derived value of + 0.2 eV is within the 
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theoretical ranges presented in both of these works, and thus our hypothesis, that the dominant 

acceptor is VZn, is consistent with the predictions of DFT. 

Finally, we consider the question of direct evidence for large quantities of VZn in our samples. 

For this we apply positron annihilation spectroscopy (PAS), a technique that is very sensitive to 

negatively-charged vacancies such as VZn in ZnO [22,23]. To get good signal strength, we used two 

thicker PLD samples, one Ga-doped, and the other undoped. The PAS-determined concentrations of 

isolated Zn vacancies [VZn] were ≥ 1019 cm-3 for the Ga-doped sample, and ≤ 1018 cm-3 for the 

undoped sample. (The lower limit on [VZn]  for the doped sample is due to saturation of the PAS 

signal at [VZn] ≈ 1019 cm-3.) Two conclusions are evident:  (1) [VZn] is at least 1019 cm-3 and thus 

must be the dominant acceptor since it is far larger than any impurity of acceptor-type character; and 

(2) [VZn] of the undoped sample is more than an order of magnitude below that of the Ga-doped 

sample, showing that the heavy donor incorporation produces large quantities of compensating 

point-defect acceptors. (It should also be noted that a signal sometimes seen for vacancy clusters 

[23,24] was at least two orders of magnitude smaller than that for isolated vacancies, showing that 

only the latter are important.) 

 Optical evidence for [VZn] is also found. Depth-resolved cathodoluminescence (DRCL) 

measurements have shown that bands in the 1.7 – 2.1 eV region correlate well with VZn 

concentrations [24]. Indeed, these bands are not strong in most as-grown, nondegenerate ZnO 

samples, which instead are dominated in the deep region by a green band at 2.4 – 2.5 eV [25]. 

However, high-energy electron irradiation in such nondegenerate samples produces EPR lines 

known to be due to VZn and also a strong photoluminescence band at 1.8 eV, attributed to shallow-

donor-VZn pair (DAP) recombination [25]. Our present, unannealed, Ga-doped sample also has a 

dominant peak near 1.8 eV, as shown in Fig. 3. in agreement with the presence of VZn. Here we 
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compare the samples annealed at 300 °C and 550 °C, because neither of these samples had been 

subjected to post-anneal processing. Our Hall-effect analysis gives ND = 1.44 x 1021 and NA = 1.64 x 

1020 cm-3 for the 300 °C sample (very close to ND and NA of the unannealed sample), and ND = 9.25 

x 1020 and NA = 0.33 x 1020 cm-3 for the 550-°C sample. In Fig. 3, the dashed curve is the 300-°C 

sample intensity normalized to that of the 550-°C sample in the near-band-edge region (~ 3.5 eV), in 

order to visually compare the relative intensities of the peaks near 1.8 eV. Qualitatively, the 300-°C 

sample has a larger 1.8-eV peak, in agreement with the larger NA found from the Hall-effect 

analysis. More quantitatively, we might associate the ratio RCL = I(1.8 eV)/I(3.5 eV) withRHall = 

NA/ND, and thus compare RCL(300)/RCL(550) = 2.5, and RHall(300)/RHall(550) = 3.4, which should be 

considered to be satisfactory agreement considering the many unknown factors affecting the optical 

line intensities. Thus, the DRCL measurements give further evidence that heavy donor doping 

induces VZn acceptors.  

 Although our experimental work in this investigation has concentrated on the Zn vacancy in 

ZnO, the mobility model presented here is applicable to all degenerate semiconductors for which 

values of m*, ε0, ε1, Tpo, E1, Ppe, and cl are available.  (Note that Ref. [9] lists such values for 19 

materials.) In particular, the formulas for ND and NA (Eqs. 9 and 10) can be immediately applied to 

other ZnO results already present in the literature. As an example, consider the ZnO sample with one 

of the lowest ever reported resistivities, ρ = 8.12 x 10-5 Ω-cm [26]. It was grown by PLD on quartz 

at 300 °C to a thickness of 200-nm, and Hall-effect measurements gave µ = 30.96 cm2/V-s, and n = 

1.46 x 1022 cm-3, at room temperature. From these values of µ and n, we can use Eqs. 9 and 10 to 

calculate ND = 1.76 x 1021 and NA = 1.50 x 1020 cm-3, under the assumption that m* = 0.34m0 and C 

= 2.5. Then, assuming that NA = [VZn], as with our sample, we get EF(VZn) ≈ 0.27 eV, very close to 
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our value of 0.22 eV. The higher ND = 1.76 x 1021 cm-3, compared with our value of 1.45 x 1021 cm-3, 

may be due to the higher Ga content in their target, 5% vs our 3%. In any case, the close overall 

agreement between these two studies, especially the very high concentrations of acceptors of near 

equal magnitudes, is totally consistent with the idea of point-defect compensation in heavily-doped 

semiconductors.  

V. SUMMARY 

 In summary, we have quantitatively demonstrated self-compensation in a highly doped, wide-

bandgap semiconductor, ZnO. To accomplish this task, we have developed a theoretical formalism 

to calculate donor and acceptor concentrations from mobility measurements in degenerate 

semiconductors and have applied it to Ga-doped ZnO. In conjunction with Hall-effect, SIMS, and 

PAS measurements, we have shown that ND is comprised mostly of Ga, with small contributions 

from H and Al, and that NA is due to Zn vacancies. The Zn-vacancy concentration is consistent with 

that predicted by density-functional theory for nearly stoichiometric growth conditions. 
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Figure Captions 

Figure 1. Experimental (points) and theoretical (solid and dashed lines) mobilities for Ga-doped ZnO 

samples grown at 200 °C in pure Ar and annealed at various temperatures in forming gas.  

Figure 2. A comparison of donor concentrations determined by Hall mobility analysis (solid lines), 

and SIMS measurements of [Ga] + [H] + [Al] (dashed lines). 

Figure 3. Cathodoluminescence spectra for Ga-doped ZnO samples grown at 200 °C in pure Ar and 

annealed at 300 °C and 550 °C, respectively, in forming gas. The dashed curve represents the 300-°C 

sample intensity normalized to that of the 550-°C sample in the near-band-edge region (3.5 eV) in 

order to compare the relative intensities of the peaks near 1.8 eV. 
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Figure 1. Experimental (points) and theoretical (solid and dashed lines) mobilities for Ga-doped ZnO 

samples grown at 200 °C in pure Ar and annealed at various temperatures in forming gas.  
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Figure 2. A comparison of donor concentrations determined by Hall mobility analysis (solid lines), 

and SIMS measurements of [Ga] + [H] + [Al] (dashed lines). 
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Figure 3. Cathodoluminescence spectra for Ga-doped ZnO samples grown at 200 °C in pure Ar and 

annealed at 300 °C and 550 °C, respectively, in forming gas. The dashed curve is the 300-°C sample 

intensity normalized to that of the 550-°C sample in order to compare relative intensities of the peaks 

near 1.8 eV. 

 


