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We investigate the electronic and structural properties of CuO, which shows significant deviations
from the trends obeyed by other transition-metal monoxides. Using an extended Hubbard-based
corrective functional, we uncover an orbitally ordered insulating ground state for the cubic phase of
this material, which was expected but never found before. This insulating state results from a fine
balance between the tendency of Cu to complete its d-shell and Hund’s rule magnetism. Starting
from the ground state for the cubic phase, we also study tetragonal distortions of the unit cell
(recently reported in experiments) and identify the equilibrium structure. Our calculations reveal
an unexpected richness of possible magnetic and orbital orders, relatively close in energy to the
ground state, whose stability depends on the sign and nature of distortion.

I. INTRODUCTION

Among the transition-metal oxide (TMO) compounds,
CuO shows quite peculiar characteristics. At variance
with other TMOs, which crystallize in a cubic rock-salt
structure (with possible rhombohedral distortions), it is
found to have a lower-symmetry monoclinic cell1–3. Sim-
ilarly to other TMOs, CuO has an antiferromagnetic
ground state1.‘ However, its Neél temperature (TN ≃
220K) is lower than the (expected) linear trend followed
by other TMOs (The Neél temperatures of TMOs are
observed to increase almost linearly, from MnO (TN ≃
116K) to NiO (TN ≃ 525K), with the nuclear charge of
the transition metal). The reduction in TN seems to be
related to the fact that the monoclinic ground state is
stabilized by a Jahn-Teller structural distortion, which
yields lower effective exchange interactions compared to
the cubic structure4.

In spite of the fact that it is not stable, studying the cu-
bic phase of this material is still interesting as a reference
point for the characterization of all the electronic mecha-
nisms correlating to structural deformations. In addition,
CuO has also been recently considered as a proxy struc-
ture for high Tc superconducting cuprates5, to investi-
gate the interplay between “d” and “p” electrons and for
its unconventional, high temperature multiferroic char-
acter6. Although cubic CuO has never been observed
experimentally, a tetragonal phase of CuO (i.e. elon-
gated rock-salt cell along one crystal axis) has recently
been deposited on substrates of SrTiO3 thin films7. The
tetragonal phase of CuO has become a subject of sev-
eral theoretical studies based on density functional the-
ory (DFT) 5,8,9. All the DFT studies have predicted,
in agreement with the experimental results, a distor-
tion characterized by 1.1 <

∼ c/a <
∼ 1.3 5,8,9 (for which

the rock-salt cell is elongated along one of the crys-
tal axis). Among possible magnetic configurations, the
antiferromagnetic-II configuration (AF-II), characterized
by ferromagnetic (111) planes with opposite spins with
respect to their neighbors, and the AF-IV configuration,
characterized by ferromagnetic (110) planes with oppo-
site spins with respect to their neighbors, configurations

compete for minimum energy. Self-interaction corrected
density functional (SIC) based study predicts an AF-II
ordered ground state with c/a ≃ 1.18, while the hy-
brid density functionals predict an AF-IV ordered ground
state with c/a ≃ 1.39 (It is important to remark that
the experimental lattice parameter in Ref. 7, for CuO
grown on SrTiO3 substrate, is lower than the ones used
in computational studies obtained with various function-
als, therefore a direct comparison of calculated c/a values
needs care.). In both studies, a local energy minimum
was also identified at c/a ≃ 0.9. At this local minimum,
the magnetic structure was found to be AF-II. DFT+U,
limited only to the AF-II magnetic ordering, yields an
equilibrium structure with c/a ≃ 1.15. In all these stud-
ies, the cubic phase (i.e. the limit when c/a = 1) is found
to be metallic and corresponding to a local peak in the
energy. However, as pointed out in other studies5, it
seems quite unlikely that the insulating structures with
c/a < 1 and c/a > 1 are ”connected” by a metallic state
at c/a = 1. Instead, an insulating state for the cubic
structure seems more reasonable.
In this paper, we revisit the cubic and tetragonal

phases of CuO to investigate the underlying mechanism
characterizing the electronic, magnetic and structural
properties of this compound using a DFT+U based cor-
rective functional within the AF-II magnetic order. We
find an insulating ground state for the cubic phase of
CuO, that was expected but never found before in the
literature. Starting from this insulating ground state for
the cubic cell, we also study tetragonal distortions and
find an equilibrium structure in agreement with experi-
ments and previous calculations. The properties of this
ground state are controlled by an interesting interplay
between Hund’s rule magnetism and electronic localiza-
tion. We believe that similar effects could also play an
important role in more complex cuprate materials.
The paper is organized as follows: in section II we sum-

marize the DFT+U method we have used. In section III
we discuss the electronic structure of the cubic phase,
from DFT and DFT+U functionals. In section IV, we
introduce an extension of the DFT+U method to include
an effective exchange parameter J (DFT+U+J) and dis-
cuss the resulting electronic structure of the cubic phase.
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In section V we study elongated structures and compare
our results with those from the existing literature. Fi-
nally, in section VI we summarize our findings and pro-
pose some conclusions.

II. DFT+U METHOD

In this study, we employ the Hubbard based DFT+U
corrective scheme, originally introduced in 10–12, that has
become one of the most popular choices to study systems
characterized by strong electronic correlations. Although
not able to capture all the possible correlated ground
states, this corrective scheme has proved to be quite
versatile in the description of the properties of several
transition metal compounds13,14, minerals of the Earth’s
interior13–18, molecular complexes19–22, TMOs10,11,23–25,
magnetic impurities and semiconductors26. Other correc-
tive schemes have also been successfully used in the lit-
erature, including self-interaction corrected density func-
tionals27, hybrid density functionals28, dynamical mean
field theory29 and reduced density matrix functional the-
ory30. Among these, DFT+U has the advantage to
present low computational costs31 and to allow for the
efficient calculation of energy derivatives (e.g. forces,
stresses, elastic constants etc.). The scheme is based on
the addition of a corrective term, inspired from the Hub-
bard model, that favors Mott localization of electrons on
atomic sites. The total energy functional of DFT+U can
be written as23

EDFT+U = EDFT [n (r)] + EU

[

{nI σ
mm′}

]

(1)

where EDFT is a standard approximate DFT functional
and the Hubbard correction EU , according to the simpli-
fied functional by Dudarev et. al.32, is given by

EU =
∑

I,σ

U I

2
Tr

[

n
I σ

(

1− n
I σ

)]

. (2)

In the above equation, U I is the Coulomb repulsion pa-
rameter on atomic site I (usually applied on the d states
of a transition metal) and the occupation matrices nI are
computed as

nI σ
mm′ =

∑

k v

fσ
k v 〈ψ

σ
k v |φ

I
m〉 〈φIm′ |ψσ

k v〉 (3)

where ψσ
k v denote the Kohn-Sham states, fσ

k v represent
their occupations according to the Fermi-Dirac distribu-
tion of their energy, and φIm are the atomic orbitals with
state index m and centered on site I (In this work we use
orthogonalized atomic orbitals, i.e 〈φI σ

m |φJ σ
m 〉 = δI J).

The representation of occupation matrices in terms of
atomic orbitals given in equation (3) is not the only pos-
sible choice. The same scheme can be used with differ-
ent sets of wavefunctions such as Wannier functions33,34,
that may offer a more flexible representation of electronic

localization. For the same purpose, a recent work intro-
duced an extension to the functional of equation (2) to
include inter-site terms35. While we expect that the in-
clusion of these terms (especially those between O and
Cu) might be important to refine structural properties
and to resolve some fine details in the electronic struc-
ture, in this paper we neglect them and focus on the
atomic (on-site) ones.
In our work, the on-site Coulomb repulsion parameters

U Is are determined using the linear response approach
introduced in23. In this work, we have generalized this
approach to include the responses of the s states of Cu
and O treated as a “reservoir” of charge (instead of the
neutralizing “background” of Ref. 23). Our results show
that inter-site interactions (V ) are significantly smaller
than on-site ones (U) and our approximation is justified.
In many cases, the DFT ground state for TMOs have

different properties than the DFT+U ground state. For
instance, DFT+U could stabilize a magnetic ground state
with an insulating gap, while DFT results in a metallic
one. Therefore, a more accurate determination of the U Is
should involve a self-consistent procedure, where the lin-
ear response computation is repeatedly performed on the
DFT+U ground state, until a convergence in their values
is reached19,35. This self-consistent procedure proved to
be necessary in our study due to the qualitative differ-
ences between the DFT and the DFT+U ground states.
In our calculations, we have used the Perdew-

Burke-Ernzherof(PBE)36 GGA functional to model the
exchange-correlation energy. The Cu and O atoms are
represented by ultrasoft pseudopotentials and the kinetic
energy and charge density cut-offs are chosen to be 35 Ry
and 280 Ry respectively. The Brillouin zone integrations
are performed using 8×8×8 Monkhorst and Pack special
point grids37 and a Methfessel and Paxton smearing of
the Fermi-Dirac distribution 38, with a smearing width of
0.01 Ry. We have also tested other smearing techniques
(e.g. Gaussian) and found no quantitative difference be-
tween the results obtained. All calculations were per-
formed by using the plane waves pseudopotential ‘pwscf’
code contained in the Quantum ESPRESSO package39,
where we have implemented the ‘+J’ corrections (as dis-
cussed in section IV) starting from the existing DFT+U
functional.

III. DFT AND DFT+U CALCULATIONS IN

THE CUBIC PHASE

Previous studies of the cubic phase of CuO, based
on GGA functionals, predicted a metallic and a non-
magnetic ground state. While other TMOs are also pre-
dicted to be metallic within GGA, they have an antifer-
romagnetic ground state with ferromagnetic (111) planes
of transition-metal ions alternating with opposite magne-
tization (AF-II). This magnetic order imposes a rhombo-
hedral symmetry to the cell that sometimes produces a
distortion. In this work, CuO is also described with a
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unit cell of rhombohedral symmetry. The unit cell con-
sists of 4 atoms, of which the two Cu atoms have opposite
spins. We find that the optimized structure has a lattice
parameter of 4.256 Å, which we have adopted for the rest
of the calculations. The density of states obtained with
GGA is shown in Fig. 1. As it can be observed, the GGA
functional yields a non-magnetic (due to the degeneracy
between the two spin states) and metallic ground state
with a finite contribution to density of states at the Fermi
level. This result could be understood in a simple way by
inspecting the splitting of d levels of Cu in a cubic crystal
field, schematically represented in Fig. 2. On each Cu+2

ion, there are 9 electrons placed in the 3d levels. The
d levels are split in the cubic crystal field into a doubly
degenerate eg (higher energy) and triply degenerate t2g
states (lower energy). As illustrated in Fig. 2, the metal-
lic character and the non-magnetic ground state is due to
the degeneracy of the highest energy eg states with either
spin. On these 4 orbitals, Cu hosts 3 electrons, thus lead-
ing to partially filled bands that results in metallic, non-
magnetic ground state. It is important to notice that O
also provides a finite contribution to the density of states
at the Fermi level, thus p states (non-magnetic) are also
partially filled. This scenario is similar to that of para-
magnetic insulators, with the additional complication of
orbital degeneracy. The orbital degeneracy contributing
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FIG. 1: (Color online) The projected density of states calcu-
lated by the GGA functional for cubic CuO.

to the metallic character of this ground state is obviously
a consequence of the cubic symmetry that makes the eg
states equivalent. This degeneracy cannot be broken by
the straight use of DFT+U. The density of states of
the ground state resulting from the GGA+U functional
is shown in Fig. 3 where it is evident that the main ef-
fect of the Hubbard correction consists in the (probably
exaggerated) stabilization of filled d states that shift to
lower energies. Both d states (eg) and p states are left at
the Fermi energy. Owing to the presence of O p states
around the Fermi level, one might be tempted to extend
the Hubbard correction to these states. This was indeed
explored in Ref. 40. Fig. 4 shows the density of states of
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FIG. 2: (Color online) Splitting of d levels in a cubic crystal
field.
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FIG. 3: (Color online) The projected density of states cal-
culated by the GGA + U functional. The on-site Hubbard
parameter is U = 9.79 eV, which is calculated by the linear
response approach23.
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FIG. 4: (Color online) The projected density of states calcu-
lated by the GGA+U +Up functional. The on-site Hubbard
parameters are U = 9.79 eV and Up = 8.47 eV, which are
determined by linear response approach23.

CuO obtained with a Hubbard correction extended to O
p states. The Hubbard U on O p states (Up) was eval-
uated using the same linear response method of Ref. 23,
that yielded a value of Up ≃ 8.47 eV (vs 9.79 eV of Cu).
As evident from the density of states, while the metal-
lic character is preserved, a magnetic ground state now
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emerges from the lifting of the spin degeneracy. This new
situation is schematically illustrated in Fig. 5, where an
exchange splitting between opposite spin levels has re-
sulted in a magnetic ground state. With GGA+U, the
non-magnetic ground state results in an effective cubic
symmetry, therefore the lower energy t2g states are de-
generate (In fact, all Cu atoms are equivalent in spite of
the rhombohedral symmetry). The rhombohedral sym-
metry, induced by the antiferromagnetic order, lifts this
degeneracy and splits them into a non-degenerate state
with A1g symmetry and a doublet of eg symmetry as
illustrated in Fig. 5. However, the material is still metal-
lic due to the degeneracy of minority spin eg states. It
is important to notice that O p states still contribute
to the metallic character (thus resulting in a partially
filled p band) with equal contributions from the two
spins, in spite of the polarization of the d states. The
magnetic ground state in GGA + U + Up is not directly
due to Up but, rather a consequence of the redistribu-
tion of electrons. It is instructive to compare at this
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FIG. 5: (Color online) Splitting of Cu d states in a rhombo-
hedral field with the onset of magnetic ordering.

point, the occupations of d and p orbitals (i.e. traces
of nI σ

mm′ i given in equation (3) ) between the two cases
(with GGA + U and GGA + U + Up). For GGA + U ,

we obtain n↑
Cu(eg) = n↓

Cu(eg) ≃ 1.84, while nOp
≃ 4.94.

In the case of GGA+ U + Up we obtain n↑
Cu(eg) ≃ 1.96,

n↓
Cu(eg) ≃ 1.40, while nOp

≃ 5.27. The main conse-
quence of using Up consists in the increase of nOp

and the
consequent depression of the population of the d orbitals.
Thus, the magnetic ground state seems to be promoted
by the partial (and numerically marginal) decrease in the
population of d-orbitals. This picture is corroborated by
Fig. 4, which shows the explicit contribution to the den-
sity of states around the Fermi level from minority spin
dz2 (one of the eg) states, that accounts for half of the
density. It is also important to notice how the peak in the
dz2 density of states correlate with those of the p states,
suggesting partial hybridization between Cu and O.

The emergence of the magnetic, albeit metallic ground
state is due to the rhombohedral symmetry and cannot
be broken by the Hubbard corrections. Thus, the metal-
lic character is a consequence of the crystal symmetry,
similar to the case of FeO23. The effective equivalence
between the eg states dictated by the cubic or rhom-
bohedral symmetry could be understood as effectively
recovered by the superposition of two (or more) equiv-
alent ground states (of lower symmetry) having either

of the eg orbitals occupied. To check this hypothesis
and to obtain one of these states, we have set the cal-
culation in a larger unit cell of lower symmetry. This
unit cell is described by the lattice vectors given by
v1 = (−0.5, 0.5, 0), v2 = (0, 1, −1), v3 = (0.5, 0.5, 1)
and contains 4 Cu and 4 O atoms. Each magnetic (111)
plane contains two Cu atoms in this unit cell and they
are treated as of different kinds, albeit associated to the
same pseudopotential. This artifact removes the effec-
tive equivalence of eg states even for the 8 atoms cell de-
scription of the cubic structure. A similar trick was also
used for FeO to stabilize a broken symmetry (orbitally or-
dered) phase that reproduced the structural distortions
of the material under pressure23. The ground state ob-
tained in the 8 atoms cell has slightly lower energy per
Cu-O pair (∆E ≃ 1.88 eV/CuO) compared to the rhom-
bohedral 4 atoms unit cell, and thus the broken symme-
try configuration is energetically favored.
It is important to remark that even in the broken sym-

metry phase, an energy gap appears only if a finite Hub-
bard correction Up is used on the O p states. Without
a Hubbard correction on O p states, the material is pre-
dicted to be non-magnetic and a metallic ground state
still emerges from the degeneracy of the eg orbitals with
opposite spin. This correction stabilizes the O p states
and increases their occupancy at the expense of lowering
Cu d state occupancies. Thus, Cu d-orbitals are left with
9 electrons. Hund’s rule magnetism favors the localiza-
tion of the hole in this shell on one of the minority spin
eg states. The calculated d and p occupations reflect the

localization of the hole: n↑
Cu(eg) ≃ 2.0, n↓

Cu(dz2) ≃ 0.0,

n↓
Cu(dx2−y2) ≃ 1.0, while nOp

= 5.51. These occupations
also show that the Cu atoms acquire a finite magnetiza-
tion which results in an AF-II ground state. The density
of states of this ground state is shown in Fig. 6.
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FIG. 6: (Color online) The projected density of states in the
broken symmetry phase. The on-site repulsion terms are Ud =
9.79 eV and Up = 8.47 eV (calculated from the response of
GGA ground state).

Although the application of a Hubbard correction Up

on non-correlated O p states is questionable, this compu-
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tational experiment is an indication of the fact that this
system is characterized by a competition between two op-
posite tendencies: full occupation of Cu d states and the
stabilization of a magnetic ground state through Hund’s
rule coupling. If the number of electrons on d states
is lower than a certain treshold value, then the Hund’s
rule magnetism is dominant, otherwise a non-magnetic
ground state will appear. This competition is due to two
factors: a number of d electrons between 9 and 10 and
O p states close in energy to the d states which are able
to act as a charge “reservoir” for them. It is important
to remark that the conventional GGA+U functional re-
sults in a metallic and non-magnetic ground state even
in the 8 atoms cell, and the system has effectively cubic
symmetry. The localization of the hole in the d states
of Cu, driven by Up, breaks this effective symmetry and
leads to an insulating antiferromagnetic ground state. In
the next section we further test this hypothesis by an
extension to the +U corrective functional that explicitly
includes a magnetic coupling J to encourage a magnetic
ground state on each Cu atom.

IV. DFT+U+J FUNCTIONAL AND ITS

APPLICATION TO THE CUBIC PHASE

The DFT+U functional introduced in equation (2)
contains only a minimal set of on-site interaction param-
eters. In this section, we propose an extension of the
DFT+U functional, that includes magnetic (exchange)
interactions (DFT+U+J). While this is not new in litera-
ture (a review of previous approaches is given in Ref. 41),
the functional we propose here deviates from previous
formulations. The new corrective scheme can be obtained
from a general second quantized expression for electron-
electron interactions (derived in equation (6) of Ref. 35)
given by

V̂int =
1

2

∑

I, J,K,L

∑

i, j, k, l

∑

σ, σ′

〈φIi φ
J
j |Vee|φ

K
k φ

L
l 〉

×ĉ†I i σ ĉ
†
J j σ′ ĉK k σ′ ĉL l σ (4)

where capital letters {I, . . .K} represent site indices,
lowercase letters {i, . . . k} represent state indices, {σ, σ′}
are spin indices; Vee denote the (screened) Coulomb in-
teraction kernel between electrons and φIi denote the
atomic wavefunction corresponding to state i centered

on site I. The operators ĉ†I i σ, ĉI, i σ create/annihilate
electrons with atomic wavefunction φIi and spin σ. As-
suming that on-site interactions are dominant (especially
for the localized d states of transition-metal ions) we
keep only terms with I = J = K = L in the above
sum. Moreover, we approximate the on-site effective in-
teractions by the atomic averages of Coulomb and ex-
change terms: U I = 1

(2l+1)2

∑

i,j〈φ
I
iφ

I
j |Vee|φ

I
jφ

I
i 〉 and

JI = 1
(2l+1)2

∑

i,j〈φ
I
i φ

I
j |Vee|φ

I
i φ

I
j 〉. As a result, we ob-

tain:

EHub =
∑

I, σ

U I

2

[

(

nI σ
)2

+ nI σ nI −σ − Tr
[

n
I σ

n
I σ

]

]

+
JI

2

[

Tr
[

n
I σ

n
I σ + n

I σ
n
I −σ

]

−
(

nI σ
)2
]

(5)

where the occupations nI σ
i j = 〈ĉ†I i σ ĉI j σ〉 are computed

using the expression given in (3); nI σ = Tr[nI σ] and
nI =

∑

σ n
I σ. We introduce a double counting term to

be subtracted from EHub that is evaluated as the mean
field approximation of (5) in the fully localized limit42,
where each atomic orbital is either filled by a single elec-
tron or totally empty. In this approximation we have:

Tr[nI σ
n
I σ] → nI σ , Tr[nI σ

n
I −σ] → nI σmin

where σmin denotes the minority spin. The above ex-
pression is true for both magnetic and non-magnetic sys-
tems (for non-magnetic systems σmin = σ, since spin up
and down densities are equivalent). In the fully localized
limit, the entire double counting term thus reads

Edc =
∑

I

U I

2
nI (nI − 1)−

∑

I, σ

JI

2
nI σ (nI σ − 1)

+
∑

I

JI nI σmin . (6)

The first term in the above equation is already included
in the standard DFT+U functional given in equation (2).
After some algebra, we easily obtain the expression of the
corrective functional as

EHub − Edc =
∑

I, σ

U I − JI

2
Tr[nI σ (1− n

I σ)]

+
∑

I, σ

JI

2
{Tr[nI σ

n
I −σ]− 2 δσ σmin nI σ}.

(7)

Comparing (2) and (7), one can see that the on-site
Coulomb repulsion parameter (U I) is effectively reduced
by JI for interactions between electrons of parallel spin
and a positive J term further discourages anti-aligned
spins on the same site. As a result, the functional given
in equation (7) encourages magnetic ordering. Within
the simple Dudarev model32, the inclusion of J has only
been considered as the effective renormalization of U (i.e.
U I → U I − JI) and the terms in the second line of (7)
were not included. The quadratic term in the second line
of equation (7) can be explicated as

∑

I, σ

JI

2
nI σ
mm′ nI −σ

m′ m. (8)

Since the occupations can be understood as the expecta-

tion value nI σ
m,m′ = 〈ĉ†I mσ ĉI m′ σ〉, this term describes an
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“orbital exchange” between electrons of opposite spins
(e.g. up spin electron from m′ to m and down spin elec-
tron from m to m′). It is important to notice that this
term is genuinely beyond Hartree-Fock. In fact, a single
Slater determinant containing the four states m ↑ , m ↓,
m′ ↑ , m′ ↓ would produce no interaction term like the
one above. Therefore, this contribution to the corrective
functional can be understood as resulting from the in-
teractions between configurations that differ from each
other by two single electron states. In this context, the
use of occupation numbers computed as in equation (3)
is not legitimate (these configurations do not contribute
together to any single term of the electronic charge den-
sity). Thus the expression of the J term given in equation
(7), based on a product of nI σ and n

I −σ is an approxi-
mation of a functional that would require the calculation
of the 2-body density matrix. Based on this reasoning,
we argue that these interaction terms are not captured
by approximate DFT functionals, where the total energy
is a functional of the one-body electron density. There-
fore, we can suppose that they are completely missing
from the DFT functional and we can neglect them in the
double counting term that thus leads to

Edc = EU
dc −

∑

I, σ

JI

2
nI σ (nI σ − 1) (9)

where EU
dc = 1/2

∑

I U
I nI (n1 − 1). The double count-

ing term in Eq. (9) was previously considered in43,44.
It corresponds to the sum over like-spin electron pairs
multiplied by the exchange parameter, and takes into ac-
count the total exchange energy in an average way. As a
matter of fact, we have verified that that both dc terms
(6) and (9) yield the same ground state for CuO. How-
ever, the one in equation (9) is numerically more stable
and we have adopted it in all calculations presented here.
Although never included in corrective DFT-based func-

tionals, terms like in equation (8) were introduced in nu-
merical studies those based on model Hamiltonians45,46.
In order to calculate the Hubbard exchange parame-

ter J , we have extended the linear response approach23

used in the previous section and we have computed the
responses of on-site magnetizations mJ = nJ ↑−nJ ↓ to a
magnetic perturbation β mI . Modeling the total energy
of the solid with the double counting term (either equa-
tion (6) or (9)), and rewriting it in terms of the on-site
occupations nI and magnetizations mI , we can calculate
the exchange parameter JI from ∂2E/(∂mI)2 = −JI/2.
The second derivative of the energy with respect to on-
site magnetizations are calculated using the response ma-
trices χI J = ∂mI/∂βJ so that JI = −2[(χ0)−1

II − (χ)−1
II ].

In this equation χ0 denotes the bare response matrix
which is computed from the non-interacting Kohn-Sham
problem, which needs to be subtracted from the response
of the interacting system to obtain the value of JI as de-
scribed in23.
In this work, the J parameter was computed using 32

atoms supercell and we found that J ≃ 2.5 eV (The 16

atoms supercell employed for the calculation of U proved
to be insufficient for obtaining linearly behaving mag-
netic response matrices). We would like to stress that
the values U ≃ 9.79 eV used in the previous section and
J ≃ 2.5 eV are obtained by the response of the GGA
ground state, and are used as “test” values in the pre-
vious and current sections. More precise values are ob-
tained by a self-consistent procedure (i.e. by recomputing
the responses using the GGA + U ground state) for the
discussion of elongated structures in the next section.

In agreement with the discussion at the end of the
previous section, the explicit account of magnetic inter-
actions through the new functional results in an insu-
lating and antiferromagnetic ground state (with a bro-
ken symmetry phase). The resulting density of states
is shown in Fig. 7. The exchange interaction parameter
J enhances the splitting between opposite spin electrons
and favors a magnetic (insulating) state. As can be seen
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FIG. 7: (Color online) The projected density of states in the
broken symmetry phase. The Hubbard parameters for the
Cu-d states are U = 9.79 eV and J = 2.50 eV (calculated
from the response of GGA ground state).

in Fig. 7, the GGA+U + J functional localizes a hole in
the dz2 state on each Cu atom, while all other d states
are filled an lie below the gap. This result suggests that
the insulating ground state is stabilized by magnetic in-
teractions. It is important to remark that, this ground
state is not stable in the conventional GGA+U since the
on-site magnetic interactions included in the extended
corrective functional of Eq. 7 play a key role in the emer-
gence of the insulating state. Recently, the importance
of the exchange coupling J in favoring metallic or insu-
lating ground states of correlated systems has also been
verified using the dynamical mean field theory47. How-
ever, magnetic and non-magnetic ground states are very
close in energy. We hypothesize that this balance could
be inverted by doping. We have also checked that it is
possible to localize the hole on the dx2−y2 orbital or a
configuration with mixed occupations (i.e. one hole lo-
calized on dx2−y2 on one Cu atom and one hole localized
on dz2 on the other Cu atom of the same (111) plane).
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These configurations have slightly higher energies than
the ground state we have discussed above (the state with
mixed occupations is about 0.3 eV/cell higher in energy
than the ground state, and the configuration with the
dx2−y2 hole is about 0.5 eV/cell higher in energy than
the ground state). The relatively low energy difference
between them is due to symmetry that makes eg states
almost degenerate.
As pointed out in the introduction, the broken symme-

try insulating state in the cubic phase was never found
before, and the degeneracy between the eg levels was
lifted through a tetragonal distortion in other works 5,8,9.
We have shown instead, that the symmetry can be broken
even for the cubic cell (with a lower symmetry 8 atoms
unit cell, effectively corresponding to the cubic structure)
and that an insulating state can result from magnetic in-
teractions. In the next section, we study elongated struc-
tures and determine their ground state properties using
the 8 atoms cell.

V. TETRAGONALLY DISTORTED

STRUCTURES

In this section we discuss the ground state properties
of the tetragonally distorted structures. We limit our
study only to the case of AF-II ordering (unlike some
previous studies8,9, which also considered other magnetic
configurations) and determine the value of the tetrago-
nal distortion c/a corresponding to lowest energy. To do
so, we have calculated the Hubbard parameter U at each
value of c/a between 0.9 and 1.2 using the linear response
approach in a self-consistent procedure, while the J pa-
rameter was fixed to the value obtained from the cubic
cell and just with the GGA response (we assumed its
variation to be less important). In fact, the value of the
parameter J must be calculated from the response of a
non-magnetic ground state (i.e. the GGA ground state of
cubic phase of CuO), since the linearity of the response
matrices is not preserved when the ground state is mag-
netic (i.e. GGA+U+J ground state, or any tetragonally
distorted phase). Therefore, we have limited the calcu-
lation of J to the non-magnetic phase. The U param-
eters on the other hand, are computed self-consistently
until their value converges within an accuracy of about
0.2 eV . The value of the lattice parameter a was fixed,
so the volume of the cell varies between different calcu-
lations. However, we have also studied a deformation
at fixed volume and obtained very similar results, which
will not be discussed in this work. In Fig. 8 we show the
calculated values of Hubbard U parameter as a function
of c/a. We show both the values calculated from GGA
response (the green line) and the values that are calcu-
lated self-consistently (the red line). The self-consistent
values of the U parameters are smaller than the ones cal-
culated from the GGA response, especially around the
region close to c/a ∼ 1 (i.e. the cubic phase). This dif-
ference is due to the fact that the GGA ground state in

the cubic structure is metallic and paramagnetic, while
the GGA+U + J ground state is insulating and antifer-
romagnetic. This effect is also visible at large tetragonal
distortions, however it is less dramatic than for c/a ≃ 1,
since GGA yields ground states that are antiferromag-
netic for c/a >

∼ 1.1 and c/a <
∼ 0.9. From our calculations,

we find that the hole in the d states of Cu atoms is lo-
calized on the dx2−y2 orbitals for c/a > 1 and on the
dz2 orbitals for c/a ≤ 1. These orbital configurations
are expected, since the elongation of the z-axis lowers
the Coulomb repulsion energy of electrons localized on
dz2 orbitals. Therefore, the localization of the hole in
the dx2−y2 orbitals (or, equivalently, the localization of
an electron on the dz2 orbitals) is energetically favor-
able for c/a > 1 and vice-versa. The minimum energy
configuration was found to be at c/a ≃ 1.15 as shown
in Fig. 9. The energy differences for different values of
c/a are in overall agreement with the findings of previous
studies5,8. We have also calculated the energy band gaps
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FIG. 8: (Color online) Calculated Ud for each value of c/a.
The green line shows the linear response values calculated
from the GGA response and the green line shows the self-
consistently calculated values.

for each structure, which lie between 1.4 eV (c/a = 0.9)
and 0.4 eV (c/a = 1.2) and decreases with c/a. The en-
ergy band gap for monoclinic CuO was determined to
lie between 1.21 eV and 1.7 eV experimentally48,49. The
largest value of 1.4 eV we have obtained is within the
experimental range, but for larger values of c/a, the gap
becomes lower than the experimental one. The difference
is probably related to fact that the structures we are con-
sidering have different symmetry than the ones studied
experimentally.
The value of the tetragonal distortion we found for the

most stable configuration (c/a ≃ 1.15) is lower than the
experimentally observed value of c/a ≃ 1.35. This differ-
ence could be related to the fact that our calculations do
not take into account surface effects (strains) which are
important for ultrathin films of tetragonal CuO grown on
the SrTiO3 support. Indeed, it was recently shown that
when surface effects are taken into account, better agree-
ment with experimental results are obtained50. The c/a
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we found is in agreement with the results of Refs5,8, how-
ever it is lower than c/a ≃ 1.377 of Ref.9. This difference
may be related to the different localization properties
of the hybrid-density functionals used in9 and DFT+U.
The functional used in this work strongly localizes the
electrons on atomic sites, and is less accurate in repre-
senting hybridization effects that could be important in
CuO. The disagreement could be removed with the use
of the inter-site interactions, which was shown to im-
prove structural properties35. In addition, a structurally
consistent calculation of the Hubbard parameters as was
done in14, is expected to result in more precise structural
properties. Finally, we would like to stress that the local
minimum located at c/a ≃ 0.95, which was identified in
some previous works8,9, has disappeared in our calcula-
tions, as can be seen in Fig. 9. Based on our results, we
think that the local minimum was the consequence of the
artificially high energy of the metallic cubic phase com-
pared to the distorted ones. We argue that the metallic
state obtained with the approximate DFT functional for
c/a = 1 results from the degeneracy of eg orbitals which
is the result of cubic symmetry.

VI. SUMMARY

In this work we have studied the electronic structure
of CuO both in the cubic and tetragonal phases. We

have identified the insulating state in the cubic structure,
which was expected but never found before. The emer-
gence of the cubic insulating state requires the breaking
of symmetry in the electronic structure and leads to an
orbitally ordered ground state. We have found that the
insulating ground state results from a delicate balance
between two tendencies: filling the d shell of Cu with
(nearly) 10 electrons and localizing a hole on one of the
eg states to stabilize a magnetic ground state. After sta-
bilizing the magnetic ground states, we have identified
several local energy minima in the cubic configuration
(paramagnetic, with holes localized on dx2−y2 orbitals,
on dz2 orbitals and with mixed type of localizations) at
slightly higher energies. We have also studied tetrago-
nal distortions in the system and found the lowest en-
ergy configuration to be at c/a ≃ 1.15. Our findings
are in reasonable agreement with experimental results,
although inclusion of inter-site interactions in the func-
tional could improve the agreement. Finally, we clarified
the transition (through the cubic phase with c/a = 1)
between the two different localization regimes of Cu d
electrons ( on dx2−y2 orbitals for c/a ≤ 1 and on dz2 or-
bitals for c/a > 1) and suggested that the metallic state
predicted by approximate DFT functionals for c/a = 1 is
an artifact of the degeneracy between eg states, enforced
by the symmetry of the crystal. We believe that the in-
terplay between orbital ordering and magnetism and the
interaction between the d and p electrons, highlighted in
this work, will be of interest in studying high Tc super-
conductors, where similar electronic dynamics and com-
petitions between charge and spin degrees of freedom are
believed to play an important role.
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