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In this brief report, we show that in a 1D insulating system with periodic boundary conditions,
the coefficient of the f-term in the effective theory is not only determined by the topological in-
dex, [ Y coce (Uka| 2 [Ura) dk. Specifically, the relative position between the electronic orbitals
and the ions also alters the coefficient, as one would expect when one identifies (—ef/27) as the
polarization. This resolves a paradox when we apply our previous result to the Su-Shreiffer-Heeger
model where the two ground states related by a lattice translation have 0 differed by m. We also
show that the static dielectric screening is the same with or without boundaries, contrary to what

we have commented in our previous paper.

I. INTRODUCTION

In our previous paper!, we argue that in a setting with-
out boundaries, the topological insulator in one dimen-
sion (1D) and three dimensions (3D) can still be charac-
terized by a 6-term in the effective theory, which in turn
gives measurable consequences. Specifically, in 1D there
is a term (ef/27)E in the effective Lagrangian, where
(—ef/27) is usually identified as the polarization P, by
comparing the term to the energy density (—P - E). For
non-interacting systems, 6 is given by

0:/i > <u;m|(%|uka>dk. (1)
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We have shown that this term results in a constant elec-
tric field 29—: in the bulk, provided that the electric field
is confined in one dimension.

This observation, however, seems puzzling when one
considers the well-known Su-Schreiffer-Heeger (SSH)
model?. If we consider spinless electrons, the two ground
states in this model will have the effective §-term with 6
which differs by 7. A naive application of Eq. (1) sug-
gests that the two ground states have different electric
fields. On the other hand, the two states are related by a
lattice translation of a (where the doubled unit cell is of
period 2a) and are physically identical. They thus can-
not have different electric fields. In this report we will
resolve this issue.

Another related conceptual problem is whether the
static electric field can be screened in a setting with-
out boundaries. Intuitively, one might imagine that the
dielectric screening comes from the accumulated charges
at the two ends. Without boundaries these charges are
absent, and there seems to be no way to screen the elec-
tric field. We will, however, show in the following that
the electric field in the bulk is screened by the dielec-
tric constant, in the same way as if there are boundary
charges. There are two ways to understand the effect. we
can either take the screening effect into account from the
start, by including the dielectric constant in our formal-
ism. This way we then can derive that it is e which is
quantized in integer multiples of e with a shift of —fe/27.
We can also consider instead the feedback of the gener-

ated electric field to the #-term separately, which is more
intuitively like a "screening” effect. In this case we find
the shift in quantization of E is still given by 6, but the
effective 0 is shifted back a little bit by the finite electric
field it generates. The two description in the end gives
the same ground state electric field.

In Sec. IT we look into the SSH model, verify the topo-
logical index of the ground states. We then explain how
we can resolve the apparent contradiction. In Sec. III we
explain the dielectric screening effect in the 1D setting
without boundaries.

II. THE SSH MODEL, TOPOLOGICAL INDEX,
AND THE STATIC ELECTRIC FIELD

The SSH model is given by the following Hamiltonian
in 1D?:

H = Z(—t + (=1)°A)e!_¢it16 + hec, (2)
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A takes either positive or negative values for the two
ground states which spontaneously break the lattice
translation symmetry. Suppose we plug in the wave func-
tion

Vi = ag Z c;f |0) exp(ikz;) + by Z c;- |0) exp(ikz;),

icodd
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The Hamiltonian can be put into a matrix form:

Hy, ( Z: ) = (—2tcos(ka)o, + 2Asin(ka)oy) ( Z: ) ;
(4)

o, and oy are Pauli matrices and a is the lattice spacing.
Notice that Hy, is not periodic in 7/a; nevertheless vy is
periodic (up to a phase.) When we apply a small elec-
tric field, the coupling enters via Peierls substitution, and
directly results in Hy — Hpy.a, where A is the spatial
part of the gauge field. At half filling where the system is
insulating, following our previous discussion, we can cal-
culate the Berry’s phase accumulated when we adiabati-
cally turn on the electric field until the system reaches the



state related to the initial state by a large gauge trans-
form of winding number one, A — A+2n/eL:3 (hereafter
when we write ”the Berry’s phase” we refer to the Berry’s
phase of this procedure)
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with |ug) = b ) , and we choose the phase convention
k

such that 1 periodic in k. If we take x,, = na, we can
parametrize our solution as

= e (B )Y (1) @

with

tan(f(k)) = '% tan(ka). (7)

The important thing here is to notice that f(k) = 0 at
k=0and f(k) = +7n/2 at k = £7/2a. We therefore get
T
9Berry = Sgn(A)§7 (8)

for each spin.

If we consider the spinful case as in the original SSH
model, the total Berry’s phase is 20perry, which differs 27
from each other for the two ground states, implying that
both would have the same properties. However, since
0 = m for both states, we would naively predict that
there is a electric field E ~ +e/2 in both states. This
prediction seems rather unlikely. For the spinless case,
the situation is even worse, as the 6 differs by m between
the two states, generating a different static electric field.
Yet, the two states are related by a lattice translation of
a, and should be physically equivalent.

These paradoxical observations can be resolved, if we
realize that the charged ions can also have a Berry’s
phase. It is somewhat surprising in the sense that the ions
are considered to be stationary localized charges and be-
have rather trivially. To see how the Berry’s phase comes
about, we have to recall how the Berry’s phase is properly
defined. In order to define the Berry’s phase when the
state adiabatically transforms into another state which
is related to the original state by a large gauge trans-
form, we first have to identify the two states as two dif-
ferent descriptions of the same physical state.! There-
fore they have to correspond to the same physical state
up to a definite phase. Consider a Bloch wave function
V() = ug(z) exp(ika), under the large gauge transform
of winding number one, it becomes

Un(z) = Yu(a) = ¥(z) exp(—i2nz/L)
= up(z) exp(i(k — 2m/L)x);  (9)

L is the size of the lattice. Without loss of generality, let
us identify the two wave functions (that is, to assume the

two wave function describe the same physical state with
identical phases):

up(z) exp(ikz) ~ ug(x) exp(i(k — 2w /L)x). (10)

For consistency, this identification should stay the same
for any ug(z).
Now let us shift both wave functions by z¢:

Wi (z) = ug(z — o) exp(ik(z — x0))
(uk(x — x0) exp(—ikxo)) exp(ikx)
= () explika) (11)
() = uk(w — o) exp(i(k — 2/ L)(x — 20))
= u}(z) exp(i(k — 27/ L)) exp(i27xo /L) (12)
We can regard uj,(z) as the periodic part of some other

wave function. Therefore, with the identification Eq.
(10), we must have

Ur (@) ~ up(x) exp(i(k — 27/ L)x) =

’JJ;C (x)e—i2wwo/L;
(13)
that is, following the same identification, the translated
wave function is identified with the translated gauge
transform with an additional phase ¢ = (—2mxo/L)!
This phase shows up in the calculation of the Berry’s
phase. We have

T/a )
egcrry:/ <uk| |uk> dk

—m/a

= Opersy + 27 (IO) (14)
a

The extra Berry’s phase is compensated by the extra
phase in Eq. (13), after summing over (L/a) states in
the Brillouin zone.

This “non-invariance” of the identification under trans-
lation” arises from the fact that the gauge transform does
not commute with translation. The discussion above
shows that this Berry’s phase for a single charged wave
function is not a physical quantity. It depends on how
one identifies the wave functions related by a large gauge
transform; however, for a given identification, the wave
functions are identified differently when they are trans-
lated.

Nevertheless, the total phase difference in the identi-
fication for a product of single particle wave functions
when the state are translated by xg equals N¢, where N
is the total charge. For a charge-neutral system, the total
Berry’s phase is therefore invariant under the translation
of the whole system. Since the translation changes the
position of the ions, the Berry’s phase, or the coefficient
of the f-term, is not determined only by the ”topology”
of the occupied bands, but also reflects their relative po-
sition to the ionic lattice. A translation of only the elec-
trons or only the ions will result in a different Berry’s
phase, and a different ground state electric field.

Let us now return back to the original problem. In the
spinless case, the ions should have the same density as
the electrons, which is half a charge per unit cell. If the



ions are localized, they would have a 2a period. For the
two degenerate ground state, the ionic states are related
by a shifted of a. Now that we know that a half-period
shift of the ions will also give a Berry’s phase differed by
m, the total Berry’s phase is indeed the same for the two
ground states.

One might wonder how this argument applies for a
jellium-like ionic state. The translated ions can look very
similar to the original state, and it seems paradoxical
for them to have such different Berry’s phases. Here we
argue that, despite the similarity in the density profile,
since we only have one ion per two lattice spacing, the
translated state is always very different from the original
state, as long as the ions are localized. This is most ev-
ident when we look from the single-particle perspective.
The center-of-mass positions of the ions must differ by
2a, and the product wave function is different if we shift
it by a. On the other hand, if one thinks about the op-
posite (unphysical) limit, where the ions are completely
delocalized and are described by plane waves, to get rid
of any 2a periodicity, the ionic state then becomes gap-
less, and the Berry’s phase procedure does not apply. We
thus conclude that for an inert ionic lattice with one ion
per two lattice spacing, it can only be 2a-periodic, and
a translation of a gives a different state, with a Berry’s
phase differed by 7.

When we derive Eq.(8), it is as if we implicitly assume
the ions are setting right at z,, = 2na (so that they do
not contribute to the Berry’s phase.) If we place the ions
at the places where most electrons are, z,, = sgn(A)a+
2na, the total Berry’s phase for both ground states are
zero. Fig. (1) summarizes the result.

For the spinful case, since the number of ions are dou-
bled, the difference between the Berry’s phases of the
two states is also doubled. The lattice contribution for
the two states therefore differs by 27, which implies that
shifting the lattice by a does not change the ground state
property, as expected. To get the correct expression for ¢
however, we still have to consider the ionic contribution
to the Berry’s phase. The 7w Berry’s phase we obtained
eariler does not include the ionic contribution, which is
equivalent to assuming they are placed at x,, = 2na, with
two ions at the same site. If we shift half of the ions by a,
forming the usual lattice with period a, the total Berry’s
phase will again be shifted by 7, and there will be no
ground state electric field.

Closing this section, we note that if we view 6 as the
polarization®*, it seems almost trivial to say that it must
depend on the ionic lattice. Nevertheless, prior to this
work it is unclear how one recovers this dependence on
the ionic lattice with periodic boundary conditions, along
with Eq. (1). Our argument thus provides a simple pic-
ture which complements the conventional view of polar-
ization with open boundaries conditions. It is especially
helpful with unit cell doubling, as in the conventional
view, the termination of the crystal with doubled unit
cell complicates the problem.
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FIG. 1. (a)-(d) refers to the spinless case. (a) One of the
electronic ”ground state”, without considering the ions. It is
predicted in this state there is a -e/4 static electric field. (b)
The other ”ground state”, without changing the lattice. Evi-
dently the two state are different. (c¢) The other ground state
with ions shifted. Now the physics is identical to (a). Even
though we draw point-like ions here, the argument actually
works for any charge distribution, including jellium as a lim-
iting case. (d) If the ions are at the lowest energy positions,
the ground state electric field is zero. (e) For the spinful case,
a simple consideration would show that this configuration will
have zero ground state electric field.

III. THE DIELECTRIC SCREENING

In a one dimensional world, a electric field with mag-
nitude e/2 is huge. In a topological insulator with § = m,
it is thus natural to ask whether the generated electric
field can somehow be screened to lower the total energy,
with periodic boundary conditions. In addition, if the
electric field is not screened, it then becomes an univer-
sal signature of the 1D topological insulator. With open
boundary conditions, the static electric field is screened
by the dielectric constant. This screening corresponds to
a net displacement between the electrons and the ions.
With periodic boundary conditions, no charges are ac-
cumulated from such displacement; however, from the
discussion in the previous section, we now know this dis-
placement changes the 6. We therefore are set to an-
swer the question, whether the screening with periodic
boundary conditions is the same as with open boundary
conditions.

We first start from an effective theory with a built-in
dielectric constant:

el
Lip=—<(Fu)*+ 2

1 27 ¢

pv _ g2 ﬁ
OuA, 2E +27TE. (15)

Let us again write down the ¢ = 0 sector of the partition
function following our previous paper!:
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again, ¢ is the initial value of (eAl(g = 0)). Note that
we now choose ¢ to be the eigenvalue of the operator
(eE'(q = 0)/eL), hence the factor of ¢ in the denom-
inator of the exponent. Notice that with the modified
Lagrangian, it is now (eE'(g = 0)/eL) which is conju-
gate to (eAl(q = 0)). Therefore,

(¢ + 2rm|l) = exp(i(¢p + 27wm)l) (17)

remain unchanged.
Now we can follow through the same calculation, real-
izing that it is £ that is quantized. The ground state elec-
tric field, following the same argument, should instead

be
po_te

5o T < 0 <. (18)

This matches the situation with open ends. The ground
state electric field is thus screened as well with peri-
odic boundary conditions and does not take an universal
value.

On the other hand, one should also be able to start
from vacuum, and understand the screening as a dynam-
ical effect. In the last section, we have found that 6 shifts
by 27 as we shift the electronic wavefunction by a lattice
period. It is thus intuitive to think, that the electrons
will shift a little bit, responding to the electric field gen-
erated from the f-term, and make 6 smaller. Here we are
going to show that this intuitive picture gives precisely
the same effect as above.

From the point of view of the charges, 6 is the Berry’s
phase when the system slowly transit from its ground
state to another state which is related by a large gauge
transform. In the adiabatic limit, we derive that the
phase is just the topological index. However, since the 6-
term in turn predicts that there in a finite electric field in
the ground state, the procedure is actually far from the
adiabatic limit, and there can be some extra dynamical
phases.

Instead of calculating the dynamical phases in detail,
let us switch and suppose we already have the effective
theory, with some parameter § and e. From the effec-
tive theory point of view, the accumulated phase in the
presence of a finite field is just the first derivative of the
electronic action with respect to the electric field. This
gives

— 2?”(6 1B (19)

We then proceed with the quantization of the gauge field
in vacuum with this modified Operry. We get

o eBerrye_ fe
B=-22f _ % (c-1)E, (20)

and we recover the same result as Eq. (18). This calcu-
lation matches our intuition that the wave function can
adjust itself a little bit (a compromise between a rigid
shift and the ionic potential, characterized by the dielec-
tric constant €) to reduce the electric field.

We have to note that the second treatment does not
work at finite temperature, as witnessed by the different
quantization of the electric field in the two methods. At
finite temperature, the electric field fluctuates from the
average value. Once the electric field fluctuates around,
it would be wrong to identify the contribution from the
dielectric constant as a phase, instead of an energy. Nev-
ertheless, one can still expect that treating it as a phase
should give correct ground state properties at zero tem-
perature. Physically this is because in the ground state
the partition function is dominated by the states with
the average electric field. When one calculates the phase
accumulated when the gauge winding increases with a
fixed electric field, there is no real distinction between
the contribution from the geometric Berry’s phase and
the dynamical phase.

IV. SUMMARY

In this report, we clarified two issues about the ground
state electric field in 1D topological insulators.

We showed that in a unit-cell doubled system, it is
possible for two states related by a lattice translation,
to have a different ”topological index” characterizing the
electronic band structure. It is still a topological index in
the sense that we cannot smoothly change from one state
to another without breaking the discrete symmetry (in
the SSH model, the inversion symmetry.) However, since
the translation of ions also changes the Berry’s phase, the
two states are physically equivalent. With the ions placed
properly, there will be no #-term in the effective theory,
and no ground state electric field. For a tight-binding
model without unit-cell doubling and when the electron
orbitals are always tied to to the ions, such as the topo-
logical insulator in 1D defined under charge conjugation,
the topological index of the electronic band does give a
ground state electric field, and the topological state and
the trivial state are intrinsically different.

We also showed that, unlike our previous comment,
the electric field is not perfectly quantized in a system
without boundaries. The screening effect, can be either
viewed as a change of the quantization of the static elec-
tric field in the presence of the dielectric constant, or as
a shift of 6 in the presence of the field it generates.
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