
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Theory and simulations on strong pinning of vortex lines by
nanoparticles

A. E. Koshelev and A. B. Kolton
Phys. Rev. B 84, 104528 — Published 30 September 2011

DOI: 10.1103/PhysRevB.84.104528

http://dx.doi.org/10.1103/PhysRevB.84.104528


BF11761

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Theory and simulations on strong pinning of vortex lines by nanoparticles

A. E. Koshelev
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439

A. B. Kolton
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Pinning of vortex lines by array of nanoparticles embedded inside superconductors became the
most efficient practical way to achieve high critical currents. In this situation pinning occurs via
trapping of the vortex-line segments and the critical current is determined by the typical length of
trapped segment. To verify analytical estimates and develop a quantitative description of strong
pinning, we numerically simulated isolated vortex lines driven through array of nanoparticles. We
found that the critical force grows roughly as a square root of the pin density and it is strongly sup-
pressed by thermal noise. The configurations of pinned lines are strongly anisotropic, displacements
in the drive directions are much larger than in the transverse direction. Moreover, we found that
the roughening index for the longitudinal displacements exceeds one. This indicates that the local
stresses in the critical region increase with the total line length and the elastic description breaks
down in the thermodynamic limit. Thermal noise reduces the anisotropy of displacements in the
critical regions and straightens the lines.

I. INTRODUCTION

Introducing large-size nanoparticles of different shapes
emerged as the best practical way to improve current per-
formance of high-temperature superconductors. While in
the first superconducting cables the critical currents were
limited by weak links, in the second generation super-
conducting wires based on aligned YBa2Cu3O7 (YBCO)
films this problem was mostly resolved and critical cur-
rents are determined by vortex pinning. An impres-
sive progress has been made to enhance critical currents
in these films using both isotropic1–7 and columnar8–10

inclusions. In spite of this progress, understanding of
strong pinning mechanisms is far from satisfactory. The-
oretical estimates describing pinning of the vortex lines
by array of strong pins at low temperatures were elabo-
rated by Ovchinnikov and Ivlev.11 This theory was ap-
plied to describe behavior of the critical currents in the
real YBCO films in Refs. 12 and 13. In particular, fre-
quently observed power-law decay of the critical current
as function of the magnetic field with power slightly
larger then 1/2 is naturally explained by this theory.
More recently, it was also argued that strong pins of
unknown origin determine critical currents at low mag-
netic fields in several iron-pnictide compounds.14 It is not
clear, however, to what extent available qualitative esti-
mates describe the real situation. Due to the obvious
importance of strong pinning by large-size inclusions for
real superconducting materials, it is desirable to elab-
orate a quantitative theory describing pinning in such
situation. Moreover, the very important issue of pinning
suppression by thermal fluctuations does not have any
theoretical description in the strong-pinning regime.

In this paper we consider pinning of vortex lines in
a superconductor containing insulating inclusions with
lateral sizes larger than the coherence length. We focus
on pinning of individual vortex lines corresponding to
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FIG. 1. Vortex line trapped by strong pinning centers at zero
(a) and finite (b) current.

small magnetic fields. Pinning occurs via trapping of
finite-size segments of a vortex line11 with the typical
length L, as illustrated in Fig. 1. The critical current is
determined by the length of trapped segment L and the
pin-breaking force Fp,

Φ0

c
jc ≈

Fp

L
. (1)

Therefore in the strong-pinning regime the critical-
current problem is mostly reduced to evaluation of the
trapped-segment length L. In general, trapping of the
vortex lines is a complicated dynamic process controlled
by the competition between the pinning energy, line ten-
sion, and intervortex interactions. Different approaches
may be used to evaluate the trapped-segment length.
One can assume that the pinning center always grabs
a piece of the vortex line when it is energetically favor-
able. This assumption implies that thermal fluctuations
facilitate local equilibration. In this case parameters of
trapped configurations can be obtained from the energy-
balance estimates. We will call this type of trapping the
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equilibrium regime. This energy-balance consideration
determines trapped configurations of static vortex lines
prepared by cooling in finite magnetic field. However,
such consideration is not applicable to the more typical
dynamic scenario when moving lines are trapped after the
driving force is slowly reduced down to the critical value.
In this case the line motion close to the critical force is a
continuous trapping-detrapping process limited by local
instabilities. The driven vortex can be captured when the
line either directly collides with the strong pin or passes
sufficiently close to it. In the second case trapping may
occur due to the long-range pin-vortex interaction as a re-
sult of local instability.11 The line remains trapped until
the force acting from the pin does not exceed the pin-
breaking force. When the line finally stops, the pinned
configuration is expected to be very anisotropic because
the transverse pin-to-pin displacements which are deter-
mined by trapping events are much smaller than the lon-
gitudinal displacements limited by the pin-breaking cri-
teria.

To develop a quantitative picture and verify analytical
estimates, we explore in this paper pinning of the vor-
tex lines by nanoparticles with extensive numerical sim-
ulations. We study the dependence of the critical force
on the density of pins, statistical properties of trapped
lines including average values and distributions of trap-
ping length and pin-to-pin displacements. We study long-
range behavior of line displacements in the direction of
the driving force and in the transverse direction. We also
study in detail suppression of the apparent critical force
by thermal fluctuations and the temperature dependence
of the trapping parameters.

The paper is organized as follows. In Section II we de-
scribe parameters characterizing the interaction between
a vortex line and large-size pinning centers. In Section
III we present analytical estimates. This includes formu-
lation of general conditions for stable trapped configura-
tions in subsection IIIA, making estimates for parame-
ters of trapped line in equilibrium, subsection III B, and
in the case of dynamic trapping, subsection III C. In
the Section IV we describe the model used in numerical
simulations. In the Section V we present our numerical
results including the zero-temperature case in subsection
VA and finite temperature in subsection VB In the Sec-
tion VI we discuss our results and make preliminary com-
parisons with experiments.

II. INTERACTION BETWEEN VORTEX LINE

AND PINNING CENTER

We consider first essential parameters describing inter-
action of vortex lines with large-size pinning centers. The
vortex pinning energy by an insulating spheroid inclusion
with the axes b and bz is given by16

Up ≈ 2bzε0Lp, Lp = ln(b/ξab) (2)

with ε0 ≡ Φ2
0/(4πλab)

2.A very important parameter is
the pin-breaking force, the maximum force with which
the pinning center can attract the vortex line. In con-
trast to small defects, the pin-breaking force for large-
size defects is limited by the line tension of the vortices.
With increasing external force the tips of the vortex line
slide along the surface of the insulating inclusion until
they meet near the equator and reconnect leading to de-
pinning of the vortex. For the in-plane current in the
anisotropic layered material, the upper estimate for such
line-tension-limited force can be obtained considering a
simple geometry of equally-spaced pins aligned along the
c-axis and neglecting interaction between vortex tips at
the pin surface. In this case, evaluating the external force
at which tips meet, we obtain the following estimate

Fp . (2ε0/γ) ln(bz/ξmin), (3)

where γ is the anisotropy factor and ξmin = max(ξc, s), ξc
is the c-axis coherence length, and s is the interlayer pe-
riod of a layered superconductor. This force only weakly
depends on the size and shape of the pinning center.
Interaction of the vortex line with a remote pin is long-

ranged, due to the perturbation of the supercurrent flow
around the vortex by the pin,

Ui(r) ≈ − ε0Vp

π(1− ny)r2
, for b ≪ r ≪ λab, (4)

where Vp = (4π/3)bzb
2
x is the volume of the pinning cen-

ter, ni are “depolarization factors”, which depend on the
parameter γbz/b. In particular, in the case bz > b/γ
which includes close-to-spherical inclusions,

nz =
1− ζ2

ζ3
(

tanh−1 ζ − ζ
)

, with ζ =

√

1− b2

γ2b2z

and nx = ny = (1− nz)/2.
Recently, it was demonstrated that the magnetic force

microscopy can be effectively used not only for imaging
but also for manipulation of individual vortices15. This
technique gives principal possibility to measure interac-
tion between the vortex line and individual pinning cen-
ter and extract relevant interaction parameters described
in this section.

III. ANALYTICAL ESTIMATES FOR

TRAPPING OF A VORTEX LINE

A. General condition for static pinned line

Consider a general vortex-line configuration trapped
at the points (un, zn). For simplicity, we assume that
the forces from the pins are applied locally at the points
z = zn. In between the trapped points, zn < z < zn+1,
the displacement obeys the following equation

ε1
∂2

u

∂z2
+ fex = 0, (5)
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where f is the driving force applied along the x axis and
ε1 = (ε0/γ

2)L1 is the line tension with L1 being the log-
arithmic factor L1 = ln(rmax/rmin).

17 The displacement
can be found as

u(z)=un+(un+1−un)
z − zn

zn+1−zn
−ex

f(z−zn)(z−zn+1)

2ε1
.

(6)
The force acting from the pin on the vortex line at z = zn
is given by

Fn=−ε1

[

∂u

∂z
(zn + 0)− ∂u

∂z
(zn − 0)

]

and can be evaluated as

Fn=−ex
f(zn+1−zn−1)

2
−ε1

(

un+1−un

zn+1−zn
−un−un−1

zn−zn−1

)

.

(7)
The stability condition for the trapped line is given by

Fn < Fp for all n, (8)

while the critical state corresponds to the condition that
at least one local force reaches the pin-breaking force

max
n

(Fn) = Fp. (9)

One simple consequence of Eqs. (7) and (8) is that for
“behind” sites, ux,n < ux,n−1, ux,n+1, the line tension
force adds with the external force meaning that they,
in average, have shorter trapping segments zn+1 − zn,
zn − zn−1.

B. Equilibrium trapping

Consider trapping of a single vortex line by strong pin-
ning centers with concentration np and pinning energy
Up, Eq. (2). Assuming the local equilibrium, the typi-
cal trapping length L and transverse displacement u are
determined by the energy-balance condition12

ε1
u2

L
= Up,

and by the condition that the average number of impu-
rities in the trapping volume should be of the order of
one,

npu
2L = 1.

These equations give

Leq =

√

ε1
npUp

, u2
eq =

√

Up

npε1
. (10)

Strictly speaking, above conditions are obtained for zero
current. Assuming that the trapping length does not
change much when current is applied, we obtain an esti-
mate for the critical current for the equilibrium trapping

Φ0

c
jc,eq ≈ Fp

Le
≈ Fp

√

npUp

ε1
. (11)

It is expected to increase with the pin density as
√
np.
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FIG. 2. Upper figures illustrate a trapped vortex line in the
metastable regime (side and top views). The typical displace-
ment in the direction of force ul is much larger than the typical
displacement in the perpendicular direction ut. Lower figure

is a visualization of the pinned line configuration obtained in
simulations (only a short section of the line is shown). Shade-
like projections on the axis planes illustrate line displacements
in the different directions. Short scale line wiggling is due to
the thermal noise. The definitions of the trapping parameters
Lt, ul, and ut are also illustrated.

C. Dynamic trapping

The equilibrium estimates for the trapping parameters
(10) are definitely valid for the line configurations pre-
pared by cooling at fixed field and at zero transport cur-
rent. However, it is clear that they can not be applied
to the vortex lines in the critical state at low temper-
atures when moving lines are trapped after the driving
force dropped below the critical value and equilibration
does not take place. The critical current in such dy-
namic regime has been estimated in Ref. 11 for high fields
when the intervortex interactions are essential. These
estimates can be directly generalized to trapping of in-
dividual vortex lines at small fields.18 When the vortex
line moves close to the pinning center, it may be trapped
and the line remains trapped until the force acting from
the pin on the vortex line do not exceed the pin-breaking
force. In this regime two typical trapping distances, in
the direction of motion, ul, and in the transverse direc-
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FIG. 3. Trapped segment interacting with pinning center.
The upper right plot illustrates the energy profile for the value
of R below which the trapping becomes energetically favor-
able but separated by the energy barrier. The lower right
plot illustrates the energy profile near the trapping instabil-
ity point.

tion, ut, are very different and have very different ori-
gins, see Fig. 2. These distances and the trapped-segment
length L are connected by the geometrical relation

npLulut = 1. (12)

The longitudinal trapping distance, ul, is determined by
the pin-breaking condition,

ε1
ul

L
= Fp. (13)

This condition can be obtained from x component of Eq.
(7) assuming that the two terms in the right hand side
are of the order of the pin-breaking force.
The transverse displacement between the pins ut is de-

termined by the trapping events. The simplest assump-
tion is that in most cases trapping occurs when the lines
directly collide with the pins18 meaning that ut ≈ b. This
immediately gives estimates for other trapping parame-
ters,

ul =

√

Fp

npε1b
, L =

√

ε1
npbFp

. (14)

This corresponds to the following result for the critical
current

Φ0

c
jc,tr = F 3/2

p

√

npb

ε1
. (15)

Note that in this situation the estimate is somewhat sim-
ilar to the equilibrium case, Eq. (11), and has the same
dependence on the pin density, ∝ √

np. The physical as-
sumptions behind the two estimates, however, are com-
pletely different.
The above simple assumption, however, may underesti-

mate ut. Due to the long-range pin-vortex interaction (4)
a pinning center may capture the vortex line even without

direct collisions. When the line passes sufficiently close
to the pinning center it may be trapped by this center
due to instability. To estimate the maximum transverse
trapping distance ut, we consider interaction energy of
the segment of length L with pinning center located at
distance R ≫ b,11 see Fig. 3,

E(u) = ε1
2u2

L
− Aε0Vp

(R − u)2
.

with A = 1/[π(1− ny)]. This gives the interaction force

F (u) = ε1
4u

L
− 2Aε0Vp

(R− u)3

Introducing the reduced variables

x =
u

R
, W =

Aε0LVp

2ε1R4
,

we rewrite the energy and force as

E = ε1
2R2

L

[

x2 − W

(1− x)2

]

,

F (x) = −ε1
4R

L

(

x− W

(1 − x)3

)

.

The equilibrium points are determined by

x(1 − x)3 = W.

The instability point corresponds to the value ofW when
the equilibrium points vanish which happens at W >
Wmax = max[x(1−x)3] = 33/44. Therefore the condition
for the instability can be written as

Aε0LVp

2ε1u4
t

=
33

44
,

which determines the maximum trapping distance ut as

ut = 4

(

Aε0LVp

54ε1

)1/4

. (16)

The vortex line will be trapped by the pinning centers
located closer than this distance in the direction perpen-
dicular to the driving force. Note that the numerical
coefficient in this equation should not be taken too liter-
ally because it is only correct for the simplest geometry
illustrated in Fig. 3. Using this result, we find from Eqs.
(12) and (13)

Ltr =

[

ε
5/4
1

npFp (ε0Vp)
1/4

]4/9

, (17)

ul =

[

F
5/4
p

npε1 (ε0Vp)
1/4

]4/9

, (18)

ut =

[

ε20V
2
p

npε1Fp

]1/9

. (19)
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This gives the following estimate for the critical current

Φ0

c
jc,tr =

n
4/9
p F

13/9
p (ε0Vp)

1/9

ε
5/9
1

(20)

Comparing this result with the critical current for the
equilibrium regime (11), we can see that two regimes are
characterized by somewhat different dependence on pa-
rameters. However, dependences on the pin density occur
to be close, the exponent in the power low, jc ∝ nα

p in this
dynamic-trapping regime is somewhat smaller than the
power 1/2 for the equilibrium regime, α = 4/9 ≈ 0.444.

D. Typical pin-breaking force at finite

temperatures

At finite temperature the line is moving at all driv-
ing forces but at small forces the very slow motion oc-
curs due to the rare thermally activated jumps (creep
regime). The creep and flow regimes are separated by
the effective critical force which can be evaluated using
a velocity criterion. Such defined the effective critical
force is temperature dependent and thus differs from the
sharply defined zero-temperature critical force of the de-
pinning transition, but it has the advantage that it can
be directly compared with experimental estimates. We
do not consider creep in this paper and our purpose is
to evaluate suppression of this critical force by the ther-
mal noise. The main mechanism of thermal suppression
is reduction of the effective pin-breaking force. At finite
temperature the trapped vortex segment has a finite life
time on the pin even if the pinning force F is smaller
than the maximum pin-breaking force. To quantify this
effect, we can introduce the temperature-dependent force
F̃p(T ) < Fp at which the trapped segments is typically
released from pins.
To evaluate this force, we assume that the line motion

in the crossover region consists of segment jumps, mean-
ing that the average line velocity can be estimated as v ≈
ul/τ, where τ = τ0 exp [U(F )/T ] is the typical time dur-
ing which the vortex segment remains pinned and U(F )
is the typical energy barrier for detrapping. When the
force F acting from the pin is only slightly smaller than
the maximum pin-breaking force, the barrier behaves as
in the single-particle case,19 U(F ) = aFUp(1−F/Fp)

3/2,

where aF = 4
√
2F

3/2
p /(3Up

√

|F ′′

p |) and F ′′

p is the sec-

ond derivative of the interaction force with respect to
the line displacement at the maximum-force point. The
velocity criterion for the effective critical force can be
written as ηv = Cffc where η is the viscosity coefficient
and Cf ≪ 1. At small temperatures this gives us the

following relation for F̃p

τ0
η
exp





aFUp

T

(

1− F̃p

Fp

)3/2


 ≈ ul

Cffc
.

Using the estimate fc ≈ F̃p/Lt, geometrical relation (12)
and assuming for simplicity that ut ≈ b, we obtain

F̃p(T ) ≈ Fp



1−
(

T

aFUp
ln

η

Cfτ0F̃pnpb

)2/3


 . (21)

We expect that at small temperatures the effective criti-
cal force and trapping parameters can be roughly evalu-
ated using simple replacement Fp → F̃p(T ).

IV. MODEL FOR NUMERICAL SIMULATIONS

To develop quantitative understanding of the strong
pinning by the array of inclusions, we numerically simu-
lated motion of the vortex line described by the dynamic
equation

η
∂u

∂t
= ε1

∂2
u

∂z2
+
∑

j

F(u−Rj)δ(z−zj) + exf + FT (z, t).

(22)
Here f is the driving force along x direction from the
current, (Rj, zj) are the random pin coordinates, FT (z, t)
is the Langevin thermal force

〈FT,α(z, t)FT,α′ (z′, t′)〉 = 2ηT δαα′δ(t− t′)δ(z − z′),

and

F(u) = −∂U(u)

∂u

is the interacting force with a strong pin. We model the
interaction potential by the function

U(u) = −Upb
2Gcut(u)

u2 + b2
, (23)

where the cutoff function Gcut(u) is introduced for nu-
merical convenience, Gcut(u) = (1 − u2/R2

cut)
2 for u <

Rcut and Gcut(u) = 0 for u > Rcut with Rcut ≫ b. An
important feature which never was taken into account in
modeling is the long 1/u2 tail in the interaction potential.
However, this model does not describe the line-tension
limited pin-breaking force. In our model the pin-breaking
force from an isolated pin is given by Fp = (3

√
3/8)Up/b

which is achieved at u = b/
√
3. The model in its original

form has an unrealistic feature. For improbable configu-
rations when many pins are located at distances smaller
than b, the vortex interaction with such a cluster may
increase without limit. This, of course, does not happen
in real superconductors. To bring our model somewhat
closer to reality, we renormalized the total pin-vortex in-
teraction force as Fv−p(u) =

∑

j F(u−Rj) as

Fv−p → Fv−p
tanh(Fv−p/Flim)

Fv−p/Flim
,
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so that the maximum force can not exceed Flim. This
modification has only minor influence on the interaction
of the vortex line with an isolated pin.
For numerical implementation of the model, we use the

reduced variables

u = bũ, z =
ε1b

2

Up
z̃, t =

ηε1b
4

U2
p

t̃,

f =
U2
p

ε1b3
f̃ , F̃(ũ) =

∂

∂ũ

Gcut(ũ)

ũ2 + 1
,

in which the equation takes the simpler form

∂ũ

∂t̃
=

∂2
ũ

∂z̃2
+
∑

j

F̃(ũ−R̃j)δ(z̃−z̃j)+exf̃+F̃T (z, t) (24)

with
〈

F̃T,α(z̃, t̃)F̃T,α′(z̃′, t̃′)
〉

= 2T̃ δαα′δ(t̃− t̃′)δ(z̃ − z̃′)

T̃ = T/Up

In this dimensionless form, the equation depends only
on the reduced temperature and reduced pin density
ñp = (ε1b

4/Up)np. The condition of strong pinning
regime is np < Up/ε1b

4 corresponding to ñp < 1. For
typical parameters γ = 5, bz = b = 10nm, and np =
(100nm)−3 = 1015cm−3, the reduced pin density can be
estimated as ñp ≈ npb

4/(bzγ
2) ≈ 10−4. In simulations

we mostly used F̃lim = 1. For an isolated pin this gives
the pin-breaking force F̃p = tanh(3

√
3/8) ≈ 0.57. We

also used R̃cut = 50 in the cutoff function Gcut(ũ). We
consider systems of size Lx × Ly × Lz, where Lz is the
vortex-line length, Lx is the size in the direction of dis-
placements and Ly the size in the transverse direction.
One of our tasks is to compute the dependence of the

critical force on the density of pinning centers. The cal-
culation of the steady-state critical force is not as trivial
problem as it may look. For a finite-size system there is
always a metastable configuration giving the maximum
depinning force. Assuming that such configuration is al-
ways reachable from any initial condition at long times
this would be the critical force we seek. In a large system
this configuration is however determined by rare nontyp-
ical configuration of pins. As a consequence, the max-
imum depinning force slowly grows with the increasing
the system sizes Lx and Ly, meaning that it is not a self-
averaging parameter for a fixed line length Lz. To avoid
this a carefully chosen (anisotropic) thermodynamic limit
in all directions was proposed for d+1 dimensions25. The
maximum depinning force of the very large system is also
very difficult to compute. Simulations of Eq. (24) at zero
temperature are not very suitable for this purpose, be-
cause when the external force is close to critical value,
the vortex line traps forever in the first metastable state
it finds and it is not clear how representative is this state
and how close the corresponding critical force to the max-
imum value. In addition, neither the maximum critical
force nor depinning forces for few accidental metastable

states are very interesting quantities from the practical
point of view. The maximum critical force is essentially
property of an isolated vortex line. A more interesting
quantity is the typical pinning force for the finite density
of the vortex lines. Indeed, even at low densities when
vortex-vortex interactions can be neglected, we expect
a typical pinning force rather than an extreme non-self
averaging force value determines the observable critical
current.
To evaluate a typical pinning force at zero temper-

ature, instead of fixed-force approach, we employ the
fixed-velocity simulations using approach suggested in
Ref. 20. Namely, we replaced the fixed external force
f̃ in Eq. (24) with slowly moving parabolic potential,

f → K [W (t)− ux(z, t)] , W (t) = W0 + V t (25)

Such potential forces the vortex line to move with the av-
erage velocity V . Every time the line finds a metastable
pinned state and stops, the dragging force starts to in-
crease with time until it exceeds the critical force for
this state and line will resume motion. This trick allows
us to explore many metastable states and to avoid the
extreme value statistics of the sample-dependent critical
force. The typical critical force is then evaluated as the
average force acting on the vortex line in the critical con-
figurations,

fc = 〈〈K [W (t)− ux(z, t)]〉z〉t (26)

where 〈. . .〉t implies averaging over the local maxima of
the instantaneous force. The spring constant K and the
drag velocity V have to be taken sufficiently small so that
they do not influence calculation of the critical force. We
typically use K ∼ 10−5 − 10−6 and V = 0.001 − 0.002.
The spring constants satisfy K ∼ L−2

z in each case, as-
suring a proper thermodynamic limit for the critical force
and associated critical configuration20, and the velocities
are small enough to assure a quasistatic stick-slip motion.
Figure 4(left) illustrates the typical dependences of the
force acting on the line on the displacement of its center
of mass for different pin densities np and line lengths Nz.

We also explore the velocity-force dependences at fi-
nite temperatures using the direct fixed-force simulations
described by Eq. (24). Even though the term “critical
force” is widely used in the experimental community,
at finite temperatures the concept of the critical force
does not have exact meaning because the velocity is fi-
nite at all forces due to the thermal creep. Nevertheless,
one can still introduce the characteristic force describing
crossover between the flux-flow and flux-creep regimes
using some average-velocity criterion. At low temper-
atures near such critical force the line motion becomes
very uneven, see Fig. 4(right). It spends considerable
time in metastable traps waiting for a strong fluctuation
which would allow it to continue the motion. Such line
motion is illustrated by animation21. As a consequence,
a proper averaging over such events requires huge simula-
tion times and/or averaging over many realization of the
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FIG. 4. Left: Representative dependences of the force acting
on the line versus its center of mass location obtained using
the fixed-velocity simulations for different pin densities np and
line lengths Nz (the curves are marked by np/Nz). The verti-
cal segments correspond to trapped states. The typical criti-
cal forces, fc, are obtained by averaging of over local maxima
of these curves. Right: Examples of the displacement-time
dependences used to evaluate average velocities at fixed tem-
perature for the parameters shown in the plot and for different
forces. Each force is represented by three curves correspond-
ing to different realizations of the random potential. The line
motion becomes more and more uneven with decreasing force.

random potential. In addition to the critical force, we
explore statistical parameters of trapping which allow us
to understand better the pinning mechanism. We eval-
uated the average length of trapped segment Lt, typical
displacements along the motion direction ul and in the
perpendicular direction ut. We studied the distribution
of these parameters and their evolution with temperature
and force. We also studied the long-range wandering of
the line in the direction of motion and in the transverse
direction.
For numerical solution the reduced equation (24) has

to be discretized both in time and in z-coordinate. We
typically used dt = 0.05 − 0.1 and dz = 1 for the dis-
cretization steps. To study finite-size effects, the equa-
tion was solved for the different numbers of slices in z
directions, Nz ≡ Lz/dz, ranging from 512 to 2048.

V. NUMERICAL RESULTS

A. Behavior at zero temperature

We systematically studied behavior of the critical force
and properties of trapped line configurations within the
pin density range spanning two orders of magnitude, from
2.7 ·10−5 to 2.7 ·10−3. Figure 5 presents the dependences
of the critical force fc on the pin density np for different
systems sizes Nz. We found that fc increases with np ac-
cording to the power law fc = f0n

α
p . The fit gives for the

power index the value slightly smaller than 1/2, α ≈ 0.48
and the coefficient f0 ≈ 0.61. In fact, a square-root de-
pendence fc ≈ 0.71

√
np also provides reasonable descrip-

tion of the data. The power is, however, clearly larger
than the value 0.44 suggested by the dynamic-trapping
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FIG. 5. The dependence of the critical force on the pin den-
sity. The plot contains data obtained for different system
sizes, the legend shows Nz/Lx/Ly . The finite-size effects in
the critical force are weak.
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FIG. 6. Summary of pin-density dependences of trapping pa-
rameters for different system sizes. As in the previous plot,
the legend shows Nz/Lx/Ly . Upper plot: The dependences of
the average trapped-segment length Lt. For comparison, we
show the expected trapping length extracted from the critical
force. Lower plots: The pin-density dependences of the av-
erage pin-to-pin displacements in the directions of the force
(longitudinal) and in the perpendicular direction (transverse).
The longitudinal displacement, 〈ul〉, has considerable finite-
size effect with respect to the line length Nz.

estimates in the case when trapping occurs due to insta-
bilities. For the used line lengths Nz ≥ 512 a noticeable
finite-size effect becomes visible only for small pin densi-
ties np < 3 · 10−4.

To understand statistical properties of trapped config-
uration, we plot in Fig. 6 the pin density dependences
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FIG. 7. Examples of distribution functions of trapping pa-
rameters at one pin density and for different system sizes.

of the average trapping parameters defined in Fig. 2, the
trapping length Lt, the pin-to-pin displacements along
the direction of force ul and in the transverse direction
ut. In the plot Lt(np) we show the expected value of
the typical trapped segment extracted from the value
of the critical force Lt,f = Fp/fc. We can see that
the real trapping segments extracted from the config-
urations are indeed follow closely the expected values.
We also see that the average trapping segments are sys-
tematically smaller that the segments which determine
the critical force. This a natural behavior because one
can expect that the critical force is determined by “weak
spots” where the trapping segments are longer than av-
erage along the line. The difference, however, is not very
significant. The trapping length shows a weak but unex-
pected size effect, it slightly decreases with the increasing
total line length. We found that the product npLtulut

which on general ground is expected to be of the order
unity is, in fact, slowly decreases with np from ∼ 0.18 to
∼ 0.14.

From the plots of the pin-to-pin displacements we
can see that the pinned configurations are strongly
anisotropic, the average displacement along the direc-
tion of the driving force ul significantly exceeds the dis-
placement in the transverse direction ut. This is con-

sistent with the dynamic-trapping picture described in
Sec. III C. The difference grows with decreasing pin den-
sity np. In addition, the longitudinal displacement shows
a significant size effect, it grows with increasing system
size Nz. Further analysis shows that this is an indica-
tion of growing local stresses with increasing line length
and suggests destruction of the vortex lines by the pin-
ning potential in the critical state for the sufficiently large
systems. This behavior is not anticipated by the simple
estimates. It is interesting to note, however, that this
size effect in ul does not lead to the significant size de-
pendence of the critical force. On the other hand, the
average transverse displacement ut does not show any
size effect. It slowly grows with decreasing np from 1.24
at np = 0.0027 to 2.54 at np = 2.7 · 10−5. As ut remains
comparable with the defect size, the regime in which the
transverse trapping is determined by the long 1/r2 tail of
pin-vortex interaction is not quite realized. This explains
why the power index in the force-pin density dependence
is larger than suggested by the metastable-regime esti-
mates which assume ut ≫ 1. To obtain further insight
on properties of trapped lines we show in Fig. 7 examples
of the distribution functions of trapping parameters for
fixed density np = 2.67 · 10−4 and different system sizes.
One can see that these distributions are characterized by
the long exponential tails. There is a noticeable proba-
bility to find segments with very large ul and Lt. Note
that the tails have opposite size effects for these parame-
ters, probability to find large ul increases with Nz while
probability to find large Lt decreases with Nz. The last
trend is opposite to naive expectations.
To characterize the long-range displacements of the

line, we studied behavior of the structure factors, the
Fourier transforms of the displacement correlation func-
tions,

Sl,t(q) =
1

Nz

〈∣

∣

∣

∣

∣

Nz
∑

z=1

ux,y(z) exp(−iqz)

∣

∣

∣

∣

∣

2〉

. (27)

The examples of these quantities are presented in Fig. 8
(left) for two pin densities. Similar to local quantities, the
long-range displacements are also strongly anisotropic.
Such anisotropic scaling of displacements is a general
property of the driven lines in the critical regime inde-
pendent of pinning mechanism.22 For both components
we clearly observe two regions of q characterized by dif-
ferent power-law dependences Sl,t ∝ q1+2ζl,t . For small-
est q’s we found the roughness exponents ζl ≈ 1.14 and
ζl ≈ 0.45. The value of ζt < 1 for the transverse direc-
tion corresponds to the line displacements increasing as
〈[uy(z)− uy(0)]

2〉 ∝ z2ζt at large z. On the other hand,
the found value of ζl > 1 for the longitudinal displace-
ments implies that the assumed elastic approximation is
not self-consistent in the thermodynamic limit, the aver-
age local stress 〈(dux/dz)

2〉 increases with the line length

Lz as L
2(ζl−1)
z . In this case the longitudinal line dis-

placements grow quadratically 〈[uy(z)− uy(0)]
2〉 = Clz

2

with the coefficient increasing with the line length as
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Cl ∝ L
2(ζl−1)
z .23 This provides a natural explanation for

the strong size dependence of the longitudinal pin-to-pin
displacement ul in the lower plot of Fig. 6. The negative
size effects for the trapping lengths in the upper plot of
the same figure also can be understood. Growing local
stress with increasing Nz forces the line to travel longer
distances in the longitudinal direction which increases the
probability to find a pin separated by smaller distance in
z direction.
The found exponents are slightly different from the

values ζl = 1, ζt = 0.5 obtained in Ref. 22 from the ap-
proximate functional renormalization group calculations.
However, a similar situation was found for elastic lines in
a plane where numerically computed index ζ = 1.2524,26

also exceed the predicted value ζ = 1. We see that the
transverse displacements somewhat reduce the exponent
value in the 3D case. Since the small-q exponents are
expected to be universal, i.e., independent of the pin-
ning mechanism, our results suggest that the elastic de-
scription will break down also for the weak pinning case.
Although we have considered the linear approximation
for the elastic forces, this conclusion is expected to hold
for the full non-quadratic energy of the deformed vortex
line.24

At larger q’s we observe the regime where both com-
ponents behave as Sl,t = At,lq

−4 giving the short-scale
indices ζl = ζt = 3/2. This corresponds to displacements
induced by a short-correlated random force and such be-
havior is actually similar to the static Larkin regime for
weak pinning. However, the random forces in our case
clearly has very different origin.
The crossover between different regimes occurs at the

wave vector which scales approximately as
√
np. This

allows us to approximately collapse the structure factors
at different pin densities into a single curve using scaling

Sl,t(q) = n
−αl,t
p Gl,t(qn

−1/2
p ). We found αl ≈ 1.32 and

αt ≈ 0.9. These scaled dependencies are shown in the

right part of Fig. 8. Scaling works better for the longi-
tudinal structure factor. This scaling is consistent with
the identification of the trapping parameter Lt(np) as a
geometrical crossover length at qLt ∼ 1, between a short
distance roughness regime with exponents ζl = ζt = 3/2
and the large distance universal regime with exponents
ζt ≈ 0.45 and ζl ≈ 1.14. This behavior is again very
similar to the crossover between the Larkin regime and
the random-manifold regime established for the case of
weak collective pinning even though disorder is not weak
in the present case.
We can also see from Fig. 8(left) that the both struc-

ture factors increase with the pin density for all wave vec-
tors. This means that, in contrast to elemental pin-to-pin
displacements ul,t plotted in Fig. 6, the line displace-
ments at fixed z grow with increasing pin density. This
behavior can be easily understood. The displacements
at small distances are determined not only by behavior
of ul,t but also by behavior of the trapping length Lt.
All these parameters decrease with increasing pin den-
sity, meaning that smaller displacements occur at smaller
length scale. The net increase of the line displacements
at fixed z coordinate with increasing np is a consequence
of faster Lt(np) decrease than ul,t(np), as it can be seen
from Fig. 6.

B. Dynamics at finite temperatures

In this section we consider influence of thermal noise on
dynamic response and configurations of vortex lines inter-
acting with strong pins. Figure 9 presents the tempera-
ture evolution of the velocity-force dependences and trap-
ping parameters in the critical region for two very differ-
ent pin densities, np = 5.33×10−5 and np = 1.33×10−3.
We remind that we use the pinning energy of single pin
as the temperature units. At finite temperature the crit-
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and (b) provide the approximate real temperature scales computed for spherical particles with radius b = 5 nm assuming

λab = 140nm/
√

1− (T/Tc)2 with Tc = 90 K.

ical force does not have exact meaning, because the line
velocity is finite at all forces due to the thermal creep.
Nevertheless, we can introduce the typical force corre-
sponding to the crossover between the flow and creep
regimes, similar to voltage criterion widely used in ex-
periment. We use the criterion v = 0.05f for this force.

The first important observation is that, independently
of criterion, the apparent critical force is quite strongly
suppressed by the thermal noise. For example, as we can
see in Fig. 9, for small pin density np = 5.33 × 10−5 at
temperature only 5% of the pinning energy, the appar-
ent critical force is already suppressed about four times.
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the direction of drive and increase the line displacements in
the transverse direction.

As one can see from the trapping parameters plots, the
longitudinal pin-to-pin displacement ul in the critical re-
gion very rapidly decreases with the temperature while
the transversal displacement ut slightly increases with
the temperature. As a consequence, at some tempera-
ture they become of the same order. The longitudinal
displacement typically has nonmonotonic dependence on
the driving force and reaches maximum at some force
in the critical region (the maximum-stress force). The
trapping length decreases with decreasing line velocity
and its value at v = 0.05f slightly increases with the
temperature.

Figure 10(a) shows the temperatures dependences of
the apparent critical forces for a wide range of pin densi-
ties. We can see that these dependences are quite similar.
However, plots of the relative critical forces in Fig. 10(b)
clearly show that thermal suppression weakens with in-
creasing pin density. This is consistent with the estimate
for the temperature renormalization of the effective pin-
breaking force, Eq. (21), due to the np dependence un-
der the logarithm. For illustration, we also present the
real-temperature scales on the top axes of plots in Fig.
10(a,b) computed for spherical particles with b = 5nm
and typical YBCO parameters. This scale, however, is
very sensitive to the value of b. For example, the liq-
uid nitrogen temperature T = 77K corresponds to the
reduced temperature T̃ ≈ 0.041 in the plot. For par-
ticles with b = 10nm the same real temperature would
correspond to much smaller value T̃ ≈ 0.011.

As we found approximately fc ∝ √
np at T = 0,

according to estimate (15) we also expect the relation

fc ∝ F
3/2
p . This means that, according to Eq. (21), we

expect the dependence [fc(T̃ )/fc(0)]
2/3 = 1 − (βdpT̃ )

2/3

with βdp = (1/aF ) ln(np0/np). This is directly verified

in Fig. 10(c) where we observe the approximate linear

dependencies of [fc(T̃ )/fc(0)]
2/3 versus T̃ 2/3. Moreover,

as shown in the inset, the coefficient βdp found from the
linear fits for different pin densities indeed has logarith-
mic dependence on np, βdp ≈ 1.6 ln(0.115/np). These
observations provide justification to our assumption that
reduction of the typical pin-breaking force is the main
source of thermal suppression of the effective critical
force.
We consider now the influence of thermal noise on the

long-range behavior of the line displacements. Figure
11(a,c) presents evolution of the structure factor with in-
creasing temperature for pin density np = 1.33 × 10−4.
We can see that the slope of the small-q dependences
does not change indicating that the roughening indices
ζl and ζt are temperature independent. However, the co-
efficient is significantly reduced for the longitudinal dis-
placements and is enlarged for the transverse displace-
ments. Correspondingly, as one can see from the line
wandering plots shown in Fig. 11(b,d), the components of
displacements in the critical region have opposite tenden-
cies: the longitudinal displacements decrease and and the
transverse displacement increase with increasing temper-
ature. As the longitudinal displacements dominate, the
lines become more straight in the critical region. Another
important observation is that the random-force regime
Sl,t ∝ q−4 at large q is rapidly washed out by ther-
mal noise for both components and is replaced by the
isotropic fluctuational line wandering Sl,t = T/q2.

VI. DISCUSSION AND COMPARISON WITH

EXPERIMENT

Using the square root fit of the pin-density dependence
of critical force in Fig. 5, we can restore np-dependence
of the critical force in real units

fc = 1.9F 3/2
p

√

npb

ε1
(28)

This coincides with estimate (15) which is obtained as-
suming that the transverse trapping distance ut is of the
order of pin size b. This does not contradict too much
our numerical results, because our average values of ut

only slightly exceed the pin size. Note that in our sim-
ulations the pin-breaking force Fp is fixed by interaction
with the pin while in real superconductors for large-size
inclusions it is determined by the in-plane line energy,
see Eq. (3). Substituting this estimate, our result leads
to the following estimate for the critical force

fc = Acε0

√

npb/γ,

where, assuming ξc < s, we estimated Ac .
5.4[ln(bz/s)]

3/2[ln(Lt/s)]
−1/2.

For preliminary comparison with experiment we use re-
sults of the recent paper 7 in which approximately spher-
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ical (Y-Gd)2O3 particles with radius ∼ 4 nm were em-
bedded into the YBCO films. The typical concentra-
tion of particles was 5 × 1016cm−3. For estimates, we
assume the temperature-dependent London penetration
depth as λab = 140nm/

√

1− (T/Tc)2 with Tc = 90K
and the anisotropy γ = 5. Such parameters correspond
to the reduced concentration ñp ≈ 1.3 × 10−4. From
the above zero-temperature result, we estimate Ac ≈ 3.9
and the critical current jc ≈ 1.7× 107 amp/cm2 which is
close to the low-field experimental value at 5K, 2.08×107

amp/cm2. The reduced temperature can be evaluated as

T̃ ≈ (T/5.3 × 103K)/(1 − (T/Tc)
2). At 55K this gives

T̃ ≈ 0.017. According to Fig. 10(b), at this temperature
thermal suppression of the critical current is expected to
be around 50%. Taking this factor and the temperature
dependence of parameters into account, we expect criti-
cal current jc ≈ 5.2× 106 amp/cm2, which again is quite
close to the experimental value 6.22× 106 amp/cm2. We
can conclude that the our strong-pinning result for the
critical current is in reasonable agreement with experi-
ment.

Our results show that the wandering of dynamically
pinned lines is strongly anisotropic, displacements in the
direction of motion are much larger than displacements
in the transverse direction. In principle, experimentally
this can be directly demonstrated using flux visualiza-
tion techniques, such as scanning SQUID or Hall probes.
With these techniques individual vortices can only be re-
solved at small fields. Usually statically pinned vortices
are visualized after cooling in fixed magnetic field. Nev-
ertheless it should be also possible to visualize shapes
of the dynamically-pinned vortices near the boundary
of the Bean profile which is formed when the magnetic
field is applied after cooling of superconducting sample
in zero field. We expect that the vortex field profiles to
be strongly elongated along the direction of motion. The
elongation length along the direction of motion is given
by the longitudinal displacement ul at the distance of
the order of the London penetration depth. This length
is expected to decrease with increasing temperature.

In conclusion, we developed quantitative description of
individual vortex lines pinned by array of nanoparticles.
We found that the critical force grows roughly as a square
root of the pin density. This result is consistent with
qualitative estimate assuming that for our pin-density
range trapping events mostly occur as a result of di-
rect collisions with pinning centers. The apparent critical
force is strongly suppressed by thermal noise. Relative
suppression reduces with increasing pin density. The con-
figurations of pinned lines are strongly anisotropic, dis-
placements in the drive directions are much larger than
in the transverse direction. The displacement anisotropy
is rapidly reduced by thermal noise mostly due to rapid
reduction of the longitudinal displacements. This leads
to straightening of the lines in the critical region. An-
alyzing behavior of the structure factors at small wave
vectors, we found that the roughening index for the lon-
gitudinal displacements exceeds one. This means that

the local stresses in the critical region increase with the
line length indicating break down of elastic description
in the thermodynamic limit. Behavior of the structure
factor at large wave vectors for both directions is typical
for the displacement induced by random force. At finite
temperature this random-force regime is rapidly replaced
by the thermal displacements.
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22 D. Ertaş, and M. Kardar, Phys. Rev. B 53, 3520 (1996).
23 H. Leschhorn and Lei-Han Tang Phys. Rev. Lett. 70, 2973

(1993).
24 A. Rosso, A. K. Hartmann, and W. Krauth, Phys. Rev. E

67, 021602 (2003).
25 C. J. Bolech and A. Rosso, Phys. Rev. Lett. 93, 125701

(2004).
26 A. B. Kolton, A. Rosso, E. V. Albano, and T. Giamarchi,

Phys. Rev. B 74, 140201(R) (2006).
27 T. Nattermann, S. Stepanow, L.-H. Tang, and H.

Leschhorn, J. Phys. II 2, 1483 (1992); O. Narayan and
D.S. Fisher, Phys. Rev. B 48, 7030 (1993).


