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We study the synchronization in a one dimensional array oft@msephson junctions coupled to a common
capacitor, which establishes a long-range interactiowéen junctions and synchronizes them. The stability
diagram of synchronization in a noise-free system is obthinThe current when junctions transform from
resistive state into zero-voltage state, is then calcdlatel its dependence on the shunt parameters and the dis-
sipation of junctions is revealed. In the presence of thenoiae, the synchronized oscillations are destroyed at
a critical temperature and the system undergoes a consmitase transition of desynchronization. A possible
stability diagram of the synchronized oscillations witspect to thermal noise, current, dissipations and shunt
capacitance is then constructed. Finally we investigated§mamic relaxation from random oscillations into
synchronized state. The relaxation time increases wittsyséem size and temperature, but is reduced by the
shunt capacitor.

PACS numbers: 74.50r, 74.25.Gz, 85.25.Cp, 05.45.Xt

I. INTRODUCTION posite oscillations of Cooper pairs and electromagnetiesa
is excited. If the plasma oscillations are in-phase, thertah

Josephson junctions are building elements of many eIeCt_al radiation power is proportional to the number of junoto

. X . : squared. Below a threshold current called retrapping atirre
tronic and electromagnetic d?"'ces as We." as a candidate f(Ehe resistive state becomes unstable and the system ssvitche
quantum computets In practical applications, one usually

. . ; ; into zero-voltage one. Important questions to be addressed
integrates large arrays of junctions on a chip to enhance the

performance, thus coherent operations in these junctimns a

crucial. The synchronization between junctions can be re- 1. What is the retrapping current in the array of point junc-

alized by coupling them to a common resonator, most fre- tions and how a shuntizcts it.

guently through electromagnetic coupling. The common res-

onator establishes long-range interaction between jomsti 2. In what parameter region of junction and shunt where
which then synchronizes them under appropriate condition.  oscillations of junctions remain synchronized in the re-

The junctions arrays have become an extremely important  Sistive state.
playground to understand the synchronization mechanism fo
large population of nonlinear oscillators, partially besa of
the relatively easy experimental realizatfor.

The stability of synchronized oscillations depends cilicia
on interaction between junctions. The junctions in cupsate

i o perconductors interact with each other through neareghnei
The successful observations of coherent emission fromyg, coupling, either inductive or capacitive. These shange

cuprate superconductors renew the interests in undefBand jnteraction however is insiicient to establish a global phase
the synchronization of arrays of Josephson junctibhé  conerenc®23 There are two methods to achieve global syn-
Cuprate superconductors, such as 3iCaCuOgs  chronization by coupling all junctions to a common resonato
(BSCCO), are a natural realization of a stack of Joseph- | the first approach, the cavity formed by the supercon-
son junctions of_ atomic thickne$s'®, known as intrinsic ductors single crystal plays a role of the reson&tst The
Josephson junctions (1JJs). Because of the large supercgynchronization is realized by the excitation of cavity reod
ducting energy gap, these build-in Josephson junctions caf the crysta*25 Alternatively, the synchronization can be
be operated at frequencies in the terahertz region, where thchieved by the radiation fieRfsandor by a shunted circit.
electromagnetic waves have wide applicatf9is The synchronization by a shunted circuit attracts conaioler
Radiation from 1JJs occurs in the resistive state. Sucha stainterests, because it can be implemented easily.
is reached by increasing the bias current above the Josephso Real junctions involve thermal noise, especially for those
critical current and then diminishing it down to the voltage in high-T, superconductors. Generally, one expects thermal
corresponding to the target frequency according to thepdese noise broaden the linewidth of oscillating spectrum, omeve
son relationw = 2eV/7i. The resistive state is preserved down destroys the coherence. Itis preferable to have robustenohe
to the retrapping current below which the system undergoesscillation against noise. To this end, it is important t@kn
transition into the zero-voltage state. Such a procedyress  how thermal fluctuations destroy the synchronization.
sible because the resistivity of 13Js is very large, i.ecfioms The dynamical process of building up the synchronization
are strongly underdamped. Thus the hysteretic behavior als also important for both applications and theoreticalarnd
lows us, in principle, to reach a quite low voltage of the orde standings. For an initial condition that is very close tofthiky
of that corresponding to the Josephson frequerc@.LTHz  synchronized state, the relaxation to synchronized statéde
for BSCCO). In the resistive state, Josephson plasma of conanalyzed based on the standard local stability an&f/&ig®



1. MODEL

Q Arrays of Josephson junctions coupled to a common load
have been extensively studied decades*&§onot only for
. | =i C their importance for the application in electronic devibat
B =g also as a fruitful platform to understand the underlying-syn
chronization mechanism. These models although are less
transparent than the well known Kuramoto mdfetan be
realized experimentalfy-32 much easier than the Kuramoto
model. The latter has been realized experimentally only ver
recently??, long after its proposal. Some specific configura-
tion of the array, such as one dimensional array of Josephson
(b) junctions shunted by a serial RLC circuit, can be mapped into
the Kuramoto modél
- ¥ |C si nd) = CJ IRJ We <_:onsider a stack of 13Js with Ia_teral _sizes_ of order of sev-
eral micrometers. This geometry of junctions is an altéveat
route to strong emissioffsand has attracted lots of attention
recently. In this case, the variation of superconductpftgse
in the lateral direction is small and the junction can be ap-
FIG. 1. (Color online). (a) Schematic view of an array of js@®n  proximated as a point junction. The inductive coupfttié®
junctions shunted with a capacitor. The junctions are bidea dc  between junctions then vanishes under this approximation.
currentlg. (b) The Josephson junction is modeled as a shunt circuifjeanwhile, the capacitive coupliﬁ@% between junctions is
of a capacitor, a resistor and a nonlinear Josephson current weak and short-range, thus it can be neglected in comparison
with the long-range interaction mediated by the shunt dircu
Under these simplifications, a stack of 1JJs reduce to alseria
array of point junctions.
We study a serial array of point Josephson junctions
However, for a complete random initial state, the dynamicshunted by a lumpe@ circuit, which is shown schematically
process is highly nontrivial. The system may even not rein Fig. 1. Each junction is modeled as resistively and capac-
lax into the synchronized state. Two questions naturalfear itively shunted circuit. The total current across the jummet
how to reach the synchronized state in a controlled way anés
what is the relaxation time?

I3 = lcSing, + %qﬁk + %quﬁk, (1)
In this paper, we consider a one dimensional array of point

Josephson junctions coupled to a common circuit. First W& hereV —
provide analytical and numerical study on the stabilityha t
synchronized state and map out the stability phase diagral
Based on the diagram, we derive the dependence of the r
trapping current on the shunt circuit. Then we introduce-the
mal noise into the system and describe tiea on the syn-
chronization. Mean-field critical behaviors are identifiztd
the desynchronization transition, i.e. transition frora the . . ho- oo
synchronized state to the state with random or partially ran Is = Q+ Icsing, + 2R, 56Cadk+ I )
dom oscillations. We reveal the dependence of the transitio

temperature on the shunt circuit and bias current. Based on

zlefbk is the voltage of the junction according to
the ac Josephson relation. Hefigis the gauge invariant su-
erconductivity phase fierence ok-th junction, andR;, C;
nd . are the resistance, capacitance and critical current of
the junction respectively. Using the Kirchtfig loop law, we
obtain the equation of motion

these results, a possible stability diagram of the syndheah o Q
oscillations is constructed taking thermal noise into acto V= % Z Pk = o 3
Finally, we study the relaxation dynamics starting froms di k S

ordered state, where junctions oscillate randomly. whereQ is the charge on the shunted capacitaneis the

o ] ] shunted capacitance amhglis the bias DC current. We have

The remaining part of the paper is organized as follows. INytroduced the Nyquist noise (white noise) currtht
Sec. Il, we introduce the model. In Sec. Ill, we perform dtabi
ity analysis of the synchronized oscillations both nunedhjc (=0, (IPOIRE)) = (4ksT/Ry)o(t —t)s(k—K), (4)
and analytically. In Sec. IV, We study the desynchronizatio
transition of the coherent state and obtain the correspgndi whereksg is the Boltzmann constant afdis the temperature.
transition temperature. In Sec. V, we study the dynamictrela We have also assumed that junctions are identical. In the pre
ation from disordered initial state into the synchronizedes  ence of the common circuit, small spread in the junction’s pa
The paper is concluded by a short summary. rameters will not destroy the coherent oscillations.



We will use dimensionless quantities in the following cal-
culations. The time is in units of Josephson plasma frequenc 0.5

wp = V2el¢/hC;, current in units ofl, capacitance in units - ' . Nume-lrical
of C,, resistance in units d®;. We then arrive at the dimen- £ 04r Analytical
sionless version of Eqgs. (2), (3) and (4) é 03| C,=0.05, =0.02 -
lg = Q+ Singy + B + i + 11, (5) S o2} 1
3 L
N Q % 0.1 =
V= Z ok = o (6) & -0.0085F ]
K S ‘%’ -0.0090 - y
e ) 20 -0.0095 L -
(KO (V) = 26To(t - t')o(k - K), (7) = -0.0100 |
° [
where 8% with 8 = Vh/(Ry V2€I.Cy) is the McCumber & 221?(5)_ L
number which determines the hysteretic behavior of junstio T7000 001 002 003 004 005 0.6
Upon increasing the bias current, the system remains zero- 1

B

voltage until the bias current exceeds the critical cutréhen
the junctions switch into resistive state. The system keeps
sistive even when the bias current is reduced below theatiti FIG. 2. (Color online). The largest Floguet exponent caitad by
current for a junction with smai®. In the resistive state, the 9etD = 0 with D given by Eq. (18) [red line], and by numerical
superconductivity phasg is rotating accompanied by small €alculation using the Floguet theory in Eq. (21) [symbolsar the
oscillations. The angular velocity of the rotation fwris the exponent smaller than 0, the uniform oscillations are stabl
same for all junctions determined by the voltage, but thespha
¢x may vary from junction to junction. We will consider the o ] )
synchronization of the phase of the junction arrays in the fo tions,T = 0. The local stability is determined by the dynamics
lowing. of thg system in the vicinity pf the tra;ectpry of the uniform
In this model, all junctions are coupled to the capacitorselution. We consider the uniform oscillatiops= ¢o, where
Cs, which establishes mutual interaction among all junctions . ) )
Thus the &ective dimensionality of the system is infinite, (NCs + 1)¢o + Bo + singo = I, (8)
which is crucial for the synchronizatié#’®. Another conse-
quence of this mean-field behavior is the permutation symmewith N being the number of junctions. The junction coupling
try. i.e., all junctions are biased by the same externalerurr strength is enhanced by a factor Nf in accordance with
and the current in the shunt circuit. The exchange of any paithe typical behavior in the mean-field theory. We then add
of junctions in the circuit does not change the topology ef th small perturbationsy to the uniform solution and determine
circuit. If configuration é1, ¢z, ..., ¢i, ..., j, ..., ¢n) iS @ solu- the time evolution of the perturbations. The equationstier t
tion to Eqgs. (5), (6) and (7), the{, ¢2, ..., j, ..., ¢i, ..., pn) is  Perturbations read
also a solution. This symmetry greatly simplifies the stgbil
analysis as will be shown below. . . N
Apparently, Egs. (5), (6) and (7) always have a trivial so- Ok + Bok + COSkho)dk + CSZ 6 =0. 9)
lution that all junctions oscillate out of phase, and theaiyn i=1
ics of each junction is independent because the currengin t . . .
shunt circuit vanishes. However suppose at some instanc ,he permutation symmetry k_)etweenjunct_u_)ns allows us to de-
a small population of junctions oscillate with the same pghas couple Egs. (9) by introducing the quantitits = dic1 — i
then the capacitaneg; acquires energy, which is proportional ando = %
to the number of in-phase junctions squared. Now the capac- i
itance is able to attract more junctions to oscillate atlitage . :
and in turn its energy increases further. This is a positeeelf A+ BA + cosgo)A = 0, (10)
back process with explosive increases of energy in the eapac
itance and an avalanche of junctions oscillating coheyentl
Therefore we expect in certain parameter space, the out-of- 0 + Bo + cosfpo)o + CsNg- = 0. (12)
phase oscillations lose stability and synchronizatios get
The qualitative picture will be elaborated in subsequent se If A diverges with time, the uniform solution becomes unsta-
tions. ble. On the other hand, i diverges whileA decays with
time, the synchronization is kept and the system transits in
another synchronized state if it exists. We are interesiélod
II1. STABILITY OF THE SYNCHRONIZED STATE coherent oscillation, and we will only focus on Eq. (10) in
the later analysis. We will solve Eq. (10) for weak oscilla-
In this section, we analyze the local stability of the cohére tions both analytically and numerically based on the Floque
oscillations of all junctions in the absence of thermal flaet  theorem.

N
> 6k We obtain equations faxy = A ando:
=1



A. Analytical treatment

2.0

We consider the region where the amplitude of Josephson If'
oscillation is small. The solution of Eq. (8) in linear appiro K
mation can be written as 1.5 ;
f

¢o = wt + Aexp(wt) (12) [/’

with @ 0 Zero-voltagg S{ate
i ; . Complete synchronization
A= — < 1. 13 - - )

“(CN + D)o + iBw (13) 1,
The frequencyw is determined by the DC current conserva- P
tion 0.0 - - -

0.0 0.5 1.0 1.5 2.0
Is = fw + Re[A]/2. (14) L

Substituting Eg. (12) into Eq. (10), we get the equation/or FIG. 3. (Color online). Stability diagram of the uniform atibn

in the absence thermal fluctuations. Light Bhiek/orange region
A=0. (15) denotes complete synchronizatipero-voltage statpartial synchro-
nization. The blue line is the stability boundary of the onif solu-
. . I . . tion calculated by the Floquet thedry and the open red circle is the
The cou.pllng of perturbations to_ the oscillation expf In- retrapping currenk, determined by direct calculations of Egs. (5-7).
duces higher frequency harmonics. The general solution fofhe dashed line the retrapping current determined by Equke

Rophr |3 (@4 et) - 3 (- 1)A

Alis the dotted line is the retrapping current for a single jucti Here
o Cs=3/N.
A= e—iQt Z akeikwt. (16)
ke with solutions
The stability is determined by the spectrum of perturbation . > N 1
Q. In the framework of the Floquet thedfy we call ImQ) —IBx =B+ N 2
as the Floguet exponent. The uniform solution is stabledf an Q= 2 ‘ (20)

only if the largest Floquet exponent is negative, i.e.(dnk . _
0. One may easily identify Ingf) as a relaxation time and We see that the uniform oscillations are always stable far no

Re(Q) as an energy gap of perturbations. zeroCs in the region ofw > 1. In the limitw ~ 1g/8 — 0,
To obtainQ, we plug Eq. (16) into Eq. (15) and compare the largest Floquet exponent approaches zero, and thésolut
each frequency component. Then we have the following lineaPecomes neutrally stable.

equations for the caBcientsay Near the stability boundary where the largest In(
changes sign, one has to keep higher harmonics in Eq. (16)

o 1 A becausevs ~ 1. But forCsN > 1, one can still use the linear
—(kw—-Q) ak+l(kw—9)/3ak+§ (k-1 + ak+1)—z (ak2-a)=0 expansion in Eq. (12). Under these conditions, the stgbilit
(17)  boundary can be determined by the numerical calculation of
The existence of nonzero solution&f requires the determi- detD = 0.
nant of the cofficient matrix vanishes, dét = 0 with

B. TheFloquet theory

-2 1 ¢, L ooo
2i 2A 1 2 1
D= 0 -5 2, Clo 2 (1) 0 (18) Equation (10) can also be interpreted as a particle moving in
0 0 -3 2, Cll 2 (1) a periodic potential with perio@. Then we can apply the Flo-
0 0 -5 3 @3 guet theorem (Bloch theorem) to extract the exponents. The
e solution has the form
andcy = —(kw — Q)% +i(kw - Q)8+ A/(2i). The solution gives A(t) = exp@at)ya(t) + expat)ya(t), (21)

the spectrum of the perturbation. . . : .
In the region ofv > 1, the frequency modes with= 0, +1 wherey; (t) andy,(t) are periodic functions with periot, and

are dominant and higher harmonics may be truncated. W€ €xponents; and 1 follow 4; + 4, = - according to

obtain a second order equation for the Floquet theorerff When no dissipation is presefit= 0,
the dynamics is time reversal ang + 1, = 0. When the

1 CsN 1 dissipation is involved, the volume of phase space is siink

A
2 H _
QO +1pQ = o (19) " With a rates, thus the two exponents follow + A, = —B.

2 " 202 T CN+1) 202



The exponents can be computed numerically as follows.

We first calculate the trajectory @fy in Eq. (8). Then we 1.0 . . . .
calculate two trajectories af,(t) and Ap(t) with two differ- 09 ml;?ggﬂseﬁn N .
ent initial conditionsAa(to) = 0, Aa(to) = 1 andAp(to) = 1, o8l =~ - ]
Ap(to) = 0. These two trajectories ob¥y 0.7 frreeeedl:

0.6
Ag(t+T), Ap(t+T) Aqa(t), Ap(t) SL_p=0s
RS IR BT Fetbe ) NI :

with F being a cofficient matrix, which can be evaluated by W

inverting Eq. (22) because the trajectories\gfand A, are p=0.02
known. 1; and A, are just the eigenvalues of the matkx
We have compared the results obtained by Eq. (22) and those

by analytical calculations. Both methods give the consiste 0000 0.002 0.004 0.006 0008 0.010
results as shown in Fig. 2. C,
C. Stability diagram FIG. 5. (Color online). Dependence of the boundary retrageur-

rentl, on the shunt capacitance for sevesal. Lines are obtained
_with the Floquet theory and symbols are direction simuretiof Egs.
5-7). The region above the line corresponds to the unifosnilla-
lons while zero-voltage state below the line. Hake- 200.

The stability analysis above does not tell us what the fi
nal state is when the uniform solution becomes unstable. T
answer this question, we solve Eq. (5) and (6) wjth= 0
directly by numerical simulation. The stability diagraneth
is constructed, and is depicted in Fig. 3. For fisient large
Ig thusw > 1, the uniform solution is stable as described by
Eq. (20). For a smaB, upon decreasinig, the uniform oscil- N
lations become unstable below the retrapping curkert I r(t) explio(t)] = 1 Z exp(s)). (23)
and the system evolves into zero-voltage state. For a large N 7
B, the uniform oscillation loses stability & > I, where no
zero-voltage state is available for the system to go. In thidlerer is positively defined. We compute the average(of
case, the system becomes partially synchronized with a frac .
tion of junctions oscillating in-phase, while the othersald- (ry = 1/ dt r(t). (24)
of-phase oscillation. Whehy is reduced further, the partial ts
synchronization becomes unstable and the system is retlapp
into zero-voltage state &g = |.. and takett — +oo.

order parameter which is widely used in literatifes

Let us discuss the transition from the complete synchro- ThelV and the corresponding order parameter are shown in
nization to the partial synchronization whgnis large. To  Fig. 4. When the complete synchronization becomes unsta-

characterize the partially synchronized state, we intcedhe ~ Ple, a sharp jump of voltage is observed, associated with de-
crease of the order parameter. The reduction of voltage when

the system becomes partially synchronized can be understoo
as follows. At a given voltage, the shunt capacitor reduces

3 : : : : the plasma oscillation amplitude depending on the number of

\ —Tgrder Y 10 the synchronized junctions, as described by Eq. (13). For
\ P the uniform oscillations, the suppression is largest ardx8
N 108 current induced by the Josephson oscillation is reduced sig
2r N , nificantly according to Eq. (14). For the partial synchreuiz
! nstabiiy of complete 106 osc!llat!ons, the DC current is Iarge_r than that of the_ umrfo_

o ! synchronization @ oscillations. Therefore when one biases the array with afixe
L ! 104 current, the voltage of the uniform state increases congpare
N with that in partial synchronized state.

—40.2
0 0.0 03 0.6 0f9 172 150'0 D.  Retrapping current
Voltage o

According to Egs. (13), (14) the amplitude of Josephson os-
. cillation increases with decreasihg To achieve the strongest
parameter on the voltage(red) jo= 2.0 andCs = 3/N. achieve in order to support the resistive state.
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FIG. 6. (Color online)1V curves for (a3 = 0.02 and (b)3 = 1.0 for 02
several typical values @s. HereN = 200. ’
0.0 L
0.00 0.01
For a single junction, the dynamics is equivalent to a parti- C, C,

cle sliding down in the damped inclined washboard potential

It shows hysteretic behavior for smgl] i.e. the system re- g, 7. (Color online).Same as Fig. 5 but with a shunt RC dircu
mains resistive evely < Ic. The system evolves into the su- parameters are indicated in the figures.

perconduction state at a currépt- 0, where the input power

is insuficient for the phase particle to move in the damped

tilted washboard potential. The retrapping current for akve ¢ the mass makes the system more vulnerable to the oscil-
damping is given by, ~ 1.483.%* On the other side, the dy- latory potential cosfs)A2/2, therefore tends to increase the
namics becomes overdamped for a lagyeand the system oi40n5ing current. For the junction array with weak dargpin
comes back to zero-voltage state orge< lc. The depen- o grect of the reduction of mass dominates and the retrap-
dence ofl, on/ for a single junction is shown by dotted curve ing cyrrent is increased by the shunt capacitor. On the othe
in Fig. 3. hand, for the junction array with strong damping, the reduc-

_ Forjunction array shown in Fig. 1, if the uniform solution 4, of the damping by the shunt capacitor dominates and the
is always stable in the whole current region, the retrappingetrapnping current is decreased.

current will be the same as in a single junction case with an
effective’ = B/ VCsN + 1 normalized by the shunt capacitor

(dashed line in Fig. 3). In fact, the uniform solution IosesViate from the asymptotic linear behavity ~ w/g at small

tsrgizbzlllet?/oitl)sl tg)ll:,\esltgtz mTilgr'e?()j ansdt;[]hee Sgﬁa?:; ?gzlz\j‘/esi:?to w, which indicates strong plasma oscillations accordinggo E
9 . 2 9 bpIng "i‘a 4). Forp = 0.02 thelV curves in Fig. 6(a) behaveftir-

current for the present junctions array, and can be measur tly near the trapping point f@s = 0 and for nonzeres,

experimentally. where in the latter case th¥ is linear down to the retrapping

How to decreases or is it possible to shift the stability . : .
boundary in Fig. 3 leftward? One recalls that the shunt Capaccurrent. This linear dependence near the retrapping patht w

itor induces interaction between junctions. By increasirey w ~ 1is due to the_ suppression of the oscillation amplitude
coupling constants, one would expect thai the stable region by th(_e shunt_ capacit@,. However, .fOEB - .1'0 thelV curves
enlarges and the s?t’ability boundary shift leftward. We gtud remain nonlinear near the retrapping point even for the same
the dependence df on Cs, and the results are présented in Cs. For alarges, the retrapplng voltage is much sr_nall_er than
Fig. 5. ForB > 0.5, the retrapping current decreases viith that of small, thus results in stronger plasma oscillations.
while it increases witlCs for smallers. A qualitative picture
for this unexpected non-monotonic dependence is as follows

Equations (8) and (10) wit€s = O can also describe the E. RCcircuit
stability of the resistive state for a single junction, winéne

retrapping current is enhanced by the dissipation as shown |, 1ea| devices, the shunt circuit also carries finite resis-

by the dotted line in Fig. 3. We rewrite Eq. (8) 10 @ (znce  \We perform similar analysis of the stability diagram

form equivalent to the single junction case by rescaling the,,q the retrapping current, when a resistor with resist&ce
timet « VNCs+1t', and with an reduced dissipalih = g serjally connected to the capacitor in the load circuihet

B/ VNCs+ 1. The dynamics of the perturbations Eq. (10)erm QR should be added to the right-hand side of Eq. (6).

then acquire a form The resulting stability diagram is qualitative the same as
1. Fig. 3. For a giverR, the retrapping current increases with
NC.+ 72+ A+ cosfo)A = 0. (25)  for a smallg while decreases for large as depicted in Fig. 7.
Comparing Fig. 7 with Fig. 5, we can see that the shunt resis-
Thus the presence of shunt capacitor reduces bottiigtige  tor increases the retrapping current, because the dissipt
mass of perturbations and damping fméent. The reduction the system is increased by the resistor.

ThelV curves for several typical values Gf are shown in
Fig. 6. As seen in Fig. 6 , thB/ curves withC; = 0 de-
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FIG. 8. (Color online).Stability of the uniform oscillatis when an  FIG. 9. (Color online). Dependence of the order parametdeon
array of Josephson junctions are shunted by an LRC circuite T perature with dferent system sizes. Inset is a double-logarithm plot
region below lines are stable. of the reduce temperatufig,— T and order parameter. Helg= 1.5,

B =1.0andCs = 3.0/N.

F. LRCcircuit

the attractor attracts defines the basin of attraction ofthe
Another interesting case is an array of Josephson junctiongﬁgt&ré Johenggfst?e?velggﬁ Lsagavgfrzgrgégis}gia(l)regtgscg?n
shunted by a LRC circuit, which introduces a characteris- u y ' lonl P

tic frequencywe = 1/ VL:Cs. The LRC circuit can repre trix. For a smallg, we have already identified two attractors
c — S\~s- - . - .
sent the cavity intrinsically formed by the single crystél o with one being the zero-voltage state, and the other uniorm

BSCC?2134243 oscillation state. l_:or_a larg® additional attractor with partial
synchronous oscillations appears.
Suppose the system initially at the uniform-oscillaticatst

and then we turn on thermal noise. The noise perturb the sys-
tem away from the uniform state. However, the deviation from
the attractor is penalized by the acti® The comparison
of the actionS for the system moving from the attractor to

i the separatrix with the noise strength defines three distnc
A= (26)  gions.

Nw?

—w? + |,8(,¢) - Lsimg—mzhmiR
The stability is determined by Eq. (19) and the results are

The stability of the uniform oscillations can be obtained
similarly. We consider the case with > 1 andg8 <« 1 so
the analysis in Sec. llI(A) is applicable. The dynamics for
small perturbations is still given by Egs. (10) and (12) véth
modified amplitude

shown in Fig. 8. Whemw < w¢, the LRC circuit behaves 0.020 : : :
as a RC circuit, which always stabilizes the uniform solutio —a— N=3200
for a smallR as given by Eq. (20). On the other hand, for | —e—N=1600

w > we, the LRC circuit behaves as a LR circuit which makes 0.015
the uniform solution unstable for a largge. Whenw ~ w,

the stability depends on the quality fac®rmof the LRC cir-

cuit. Small quality factor (larg®) makes the synchronization - 0010
difficult. o

0.005
IV. EFFECT OF THERMAL NOISE

. . . . . . .. 0.000 . . .
Real circuits inevitably involve noise because of resistiv 0.01 0.02 0.03 0.04 0.05

ity caused by quasiparticles. This leads tfiuive dynamics T

in the phase space and destroys the synchronization at a cer-

tain critical point. To study theffect of noise, knowledge

of attractors in the phase space is necessary. An attraetor & /G- 10. (Color online). Dependence of the fluctuationson the
tracts trajectories nearby and the volume of phase spate thigmperature. Hers = 1.5, 5 = 1.0 andCs = 3.0/N.
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FIG. 11. (Color online). (al), (b1) and (c1): dependenc&pbn the bias current, shunt capacitance gmdspectively. (a2), (b2) and (c2)
are the corresponding largest Floquet exponent. Othenyedesis used are shown in the figure.

1. kT < S, in this case the possibility of thermal escape bations are described by Eq. (9). These perturbations

is extremely small and this region is described by the
reaction-rate theof{. Especially, when the thermal ac-
tivation between two attractoesandb is asymmetric,
that is the actiors, > Sy, the system will spend much
longer time in the attractdn. This is the situation of
retrapping from resistive state to zero-voltage state for

broaden the linewidth of the frequency spectrum. The
linewidth atw > 1 can be estimated as follows. For
w > 1, thelV is linear, so the noise currettinduces

a noise voltagd"/B. From the ac Josephson relation
o0ip = 2eV/#, one easily obtain that the linewidth in-
creases linearly witfl for Gaussian white noise.

smallg <« 1 discussed before. When the bias current
Ig is close to the retrapping currehd — I, < 1, the In the presence of noise, the equations of motion become
resistive state is about to lose stability. So the presencstochastic, and it is natural to describe the dynamics im ter
of weak noise will destabilize the resistive state and thedf a probability density in the phase space. The flow of the
system evolves into the zero-voltage one. On the otheprobability density is governed by the Fokker-Planck equa-
hand, the energy barrier for the system to transforntion. However analytical calculations of the coupled non-
from zero-voltage state to resistive one again is largdinear partial diferential Fokker-Planck equation isfiiult.
whenlg < I, and the noise are not strong enough toln this section we will use numerical simulations as a main
promote such a transition. So the system remains zerovorkhorse, and we will also provide qualitative analysis to
voltage. Thus the thermal noise increase the retrappingnderstand the numerical results. We first consider therdesy
current®. chronization transition of the synchronous state and thie cr
cal behavior at the transition. We then find a correlation be-

. kT > S, in this region the thermal energy is large tween the largest Floquet exponent and the transition tempe

enough to kick the systemffothe attractor of the co-  ature. Finally a stability diagram of the uniform osciltais
herent oscillation, and the synchronization is destroyedyith respect to noise is constructed.

The temperature at which the synchronization is de-
stroyed is the synchronization-desynchronization tran-

sition temperatur&m. A. Synchronization-desynchronization transition

. forT < Ty, the uniform oscillations survive. The noise

current excites perturbations and the system frequently To study the synchronization-desynchronization tramsiti
deviates from the attractor. The dynamics of the perturwe evaluate the order parameter defined in Egs. (23) and (24),
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and its standard deviation In Fig. 9, we obtain3. ~ 1/2 which is consistent with the
mean-field theory.
o = (%) = (r)%, (27) We then study which factors determifig and how to en-

which is similar to the susceptibility defined in spin syseem hanceTn. As discussed at the beginning of this sectibg s

We solve numerically Egs. (5), (6) and (7), and dekie  given by the action for the system moving out of the attractor
ando, at differentT. The results are presented in Figs. 9 Thus knowledge about the whole basin of attraction is needed
and 10. We also check the finite-sizgest with diferentN’s. However, it is still conceivable that the local slope near th
The finite size &ect is prominent aroundl,,. The synchro- attractor may to certain extent reflect the global strucafre
nized oscillations is continuously suppressed by the thérm basin. The local slope is just the largest Floquet exponient o
fluctuations. AT, the synchronized oscillations become un- tained in the previous section. Therefore one expects tieat t
stable, and the system undergoes a continuous transition insmaller the exponent, the highgs. We find numerically that
random oscillations. Since, serves as a measure of the fluc- it is indeed the case, as shown in Fig. 11.
tuation dfect, it reaches maximum @f,, as shown in Fig. 10. The correlation between the largest Floquet exponent and
Practicallyo, provides a convenient way to determifiges-  Tm can be understood in terms of the local stability analysis.
pecially for a small system where the transition is obscbged The small perturbations to the uniform oscillation deGay

the finite-size &ect. exp(l2t) with A, < 0 being the largest Floquet exponent. This
Once we identify the desynchronization transition as a critiS equivalent to the relaxation of a particle in the paraboli
ical phenomenon, we can define the exponent potential ;g = —4V/dq with V(@) = —1,G%/2. The slope
-2 > 0 measures the depth of the potential. Thus it is more
() ~ (Tm = TY™. (28)  ropust against noise for a largen,.

B. Stability phase diagram with noise

Based on the previous analysis, we discuss the stability
phase diagram of the synchronization in the presence of ther
mal noise. For a give@s, when the bias current is increased,
the system approaches the synchronous state, where the asso
ciated Floguet exponent changes from positive to negative a
the stability boundary. If the current increases furthaeach
the maximal value-8/2. For a sticient large current, the sys-
tem becomes neutral stable according to Eq. (20). Therefore
the critical temperature first increases and then decredtes
the current. The corresponding stability diagram is shawn i
Fig. 12(a). Meanwhile, the shunt capacitance plays a role
of coupling strength, s@,, increases witlCs. Keep in mind
that the current at the stability boundary is the retrapping
rent. At a givenT, the retrapping current increase with for
a smallg , while it decreases for a largg Based on these
observations, we construct the phase diagram of the coheren
oscillations for a gives, which is sketched in Fig. 12(b). The
region enclosed with green surface represents a stable syn-
chronization.

To enhanc@ ,, a largerg is helpful since the maximal Flo-
guet exponent is-3/2. One should also adjust the current
accordingly to ensure that the maximum is reached. For a
given operating frequency, one may incre@seto enhance
the thermal stability, at sacrifice of the oscillating arhplee.

V. DYNAMIC RELAXATION

So far we have concentrated on the stability of the uni-
form oscillation, and investigated the dynamics of perddrb
tions around the uniform state. However, in most applicegtjo

FIG. 12. (Color online). Possible stability diagram of thefarm  the initial condition cannot be guaranteed as the state ief un
solution (a) at a givels, and (b) at a givep. The region inside the  form oscillations. For instance, when we ramp up the current
green surface corresponds to stable uniform oscillations. and bias all junctions in the resistive state, the initiatestmay
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T=0.0005

In[P()]

In[P({)]

FIG. 13. (Color online). Time evolution of the distributiaf phase dference Eq. (29), starting from completely random state \a&raé
temperatures. Hegg= 0.02, g = 1.5 andCs = 3/N.

be far away from the uniform state in the phase space. Therestate isout of equilibrium.

fore it is important to understand how the system approaches To reach the uniform state, the initial state must be in the
the uniform state. In the present study, we focus on the relaxbasin of attraction of the uniform state. This can be redlize
ation from disordered state (all junctions oscillate ob&ge) by operating all junctions at resistive state. We prepagdérth

into ordered state (all junctions oscillate uniformly). rR tial state with arbitrary nonzerg) <« 1. We also give initial
system whose final ordered state isefuilibrium, this is a  velocity to all junctions, as such the system falls into thsib
phase ordering phenomenon. The kinetics of phase orderinaf attraction of the uniform state. Let us first consider dyira
has been extensively studied decades ago in spin systeths, atal relaxation obtained by computer simulation. We intraelu
they can be described by universal scaling beh&iddow-  the distribution of the phaseftiérence between junctions

ever the relaxation dynamics is not very clear when the final
P() = > 8¢ — Ay) (29)
i

300 : 400 : : with Aj; = ¢ — ¢;. The time evolution oP(¢) is depicted in
@ ® Fig. 13. Initially the distribution is flat indicating a distered
/ | phase. This flat distribution does not change with time too
- much at the beginning, but then it suddenly becomes sharp.

Finally it reaches a steady distribution with finite width-de
pending on the temperature.

Qualitative picture of the relaxation can be obtained based
] on the local stability analysis presented in Section llpSase
—e—C3N we have a small synchronized cluster of junctions with pop-
‘ . e ‘ ulation N; and the rest of junctions oscillate randomly. This
20 100 10000000 000l . 0002 0003 small cluster serves as a seed of the nucleation, and deliver
: : : : : : energy into the shunt capacitor, which in turn attracts mgar

© o002 ] out-phase oscillators into the cluster. The growth ratehef t
synchronized population can be estimated by the locallstabi
300 ] ity analysis by replacinl with n(t), wheren(t) is size of the
cluster at timd. The time evolution of the population of the
250 . 1 cluster follows

‘ ‘ ‘ n(t + dt) = n(t) expAadt) ~ n(t)(1 - A(n)dt), (30)

’ wheredt is a small time step and(n) < 0 is the largest Flo-
guet exponent with cluster size of Then the time required
FIG. 14. (Color online). (a) Dependence of the relaxatioreton the  for the system achieves global synchronization is
system size with dierent temperatures. Symbols are humerics and
lines are the best fitting. (b) Dependence of the relaxafime bn N 1
the temperature with the system sizeNof= 200 and with diferent Tg=~ j,; dnm. (31)

shunt capacitance. (c) Speedup of the relaxation by inicrggdle
shunt capacitance. Here the system siz¥ is 200 and temperature Several observations are in order. First, the synchranizat

T = 0.002. All these results are obtained wgh= 0.02 andlg =  time 74 increases with the total number of junctioNs Sec-
0.15. ondly, sinced(n) < O decreases monotonically withand

350
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then saturate atB/2 [see Eq. (20)], the initial relaxation is phase diagram of the uniform oscillation is constructed:. Fo
slow and it gradually speeds up, in accordance with Fig. 13strong damping, after the uniform solution becomes unstabl
Thirdly, in the presence of thermal fluctuations, thermasaeo the system evolves into partially synchronized state. When

may kick oscillators out of the synchronized cluster. Thest bias current is reduced below the Josephson critical cyrren

increase rate is reduced and relaxation time increases. the system becomes zero-voltage. For weak damping or mod-
To quantify the relaxation process, we define the linear reerate damping, after the instability of the uniform solatithe
laxation functioft’ system evolves into the zero-voltage state. At transitien t

current is the experimentally measurable retrapping otirre

M' (32)  The retrapping current is increased by the shunt capaaitor f

(r(@)) —(r(e0)) weak dampingg < 0.5), while it decreases for moderate and

strong dampingd = 0.5). Thus transport measurement pro-

vides a convenient probe of the underlying dynamics. Simila

results are obtained when a resistor is serially conneottabt

°° shunt capacitor.

T = fA(t)dt_ (33) In the presence of strong thermal noise, the coherent os-
cillation is destroyed through a second order phase tiansit

The critical exponent for the order parameter j& in accor-

For an exponential decay, the definition above is equivalerdance with the mean-field theory. We also find the fluctuations

to the conventionally defined relaxation time. Two-stage re of the order parametershowing a maximum at the transition,

laxation for A(t) is found atT = 0. Firstr increase from 0 which may serve as a convenient quantity to locate the transi

to a value close to 1, where the local stability theory ajgplie tion temperature. For a smaller relaxation time in the cédise o

Then the system relaxes into the ordered state expongntialliveak perturbations, the transition temperature is highke

with the exponent given by the Floguet exponents. Thermalesults suggest several possible ways to enhance the therma

fluctuations smear the distinction of the two-stage relaxat  stability.

We numerically calculaté(t) and compute. The depen- The dynamic relaxation from a disordered phase to ordered
dence ofr on the number of junctionsl, temperature and state is then investigated. The relaxation time increasts w
shunt capacitor is plotted in Fig. 14increases wittN as ex-  the system size by a power law. It also increases when the sys-
pected from the qualitative estimate above. Furthermage thtem approaches the transition temperature from below. One
relaxation time follows a power law ~ N?. The exponent may speed up the relaxation with a larger shunt capacitance.
Z(T) increases witlT.  increases with temperature. A, Finally, a possible phase diagram of the uniform solution is
it diverges and then drops. (the relaxation time abBvés  proposed when thermal fluctuations are involved. Our result

not very meaningful because the final state is also disoddere are of importance for the design of useful superconducting
Critical behavior is also identified farnearTm. On the other  devices based on Josephson junctions arrays.

hand,r decreases witlCs which suggests a practical way to

speed up the relaxation. This can be explained by regarding

Cs as a coupling strength of the system. A lar§ettherefore

increases the rigidity of the uniform solution. VIl ACKNOWLEDGEMENT
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