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We have simulated and analyzed the susceptibility of a series of two-dimensional S=1/2 rectan-
gular Heisenberg antiferromagnetic (as well as mixed exchange antiferromagnetic/ferromagnetic)
lattices as a function of J, J ′ and temperature, where J is the dominant magnetic exchange
interaction and J ′, the orthogonal interaction, is related to J by J ′ = α J , where α can
vary from 0 to 1. Previous studies of the compounds pyrazineformatocopper(II) nitrate
[Cu(pz)(HCO2)](NO3), catena-2-aminopyrimidinedichlorocopper(II) [Cu(2−apm)Cl2], and catena-
pyrazinediazidocopper(II) [Cu(pz)(N3)2] indicated that these systems had two-dimensional mag-
netic spin-spin interactions. However, there were no two-dimensional models that could capture
the behavior of any measurable bulk properties of the compounds. The previous authors fit the
susceptibility data of the respective compounds to a one-dimensional antiferromagnetic chain with
a mean field correction, or did not fit the data at all. We use the simulations to create this fit
function in order to test the two-dimensional model proposed for these spin systems.

I. INTRODUCTION

An S = 1/2 quantum Heisenberg antiferromagnetic
(QHAF) rectangular lattice may be characterized by a
lattice of spin-1/2 particles which interact with each
other via two orthogonal exchange pathways. One path-
way is mediated by a magnetic exchange strength J while
for the other pathway, strength J ′. J is the dominant
exchange and α, the aspect ratio, relates J and J ′ by
J ′ = αJ , where α ranges from 0 ≤ α ≤ 1. The one-
dimensional (1D) antiferromagnetic (AF) chain and the
two-dimensional (2D) antiferromagnetic square magnetic
lattice correspond to α = 0 and 1, respectively. The
Hamiltonian for such systems may be written

~H = J
∑

i

[~Si · ~Si+x + α~Si · ~Si+x′ ], (1)

where ~Si+x (~Si+x′) denotes a spin located adjacently to a
spin Si in the direction of J (J ′). A negative J value indi-
cates a ferromagnetic interaction as aligned spins would
correspond to a lower energy state.
Theoretical interest in rectangular magnets can be

traced back to the Haldane conjecture over 25 years ago.1

Haldane showed that isolated integer-spin chains have a
gap in their excitation spectrum at T=0 and thus do not
exhibit long range order (LRO). Since then it has been
shown that a finite coupling (α ∼ 10−3) between integer
spin chains will lead to LRO through Schwinger-Boson
techniques2 and through spin-wave theory.3 The same
question has been asked of half-integer spin chains, most
notably the S=1/2 spin chain. Does Néel order set in for

infinitesimal intrachain coupling or is there a finite αc

where the order-disorder tranisition takes place? Some
mean field theories2,3 indicate that a spin-1/2 chain will
order at any infinitesimal coupling while spin-wave ex-
pansions and Lanczos techniques4,5 have indicated that
αc < 0.1.

Several compounds that display structural character-
istics of a 2D rectangle have been studied; pyrazinefor-
matocopper(II) nitrate [Cu(pz)(HCO2)](NO3)

6, catena-
2-aminopyrimidinedichlorocopper(II) [Cu(2−apm)Cl2]

7,
and catena-pyrazinediazidocopper(II) [Cu(pz)(N3)2]

8,
where 2-apm=2-aminopyrimidine and pz = pyrazine.
However, at the time of these original publications, there
were no 2D rectangular QHAF models that related any
of the measurable bulk properties of the system to J or
J ′. Instead, the susceptibilities of these compounds were
fit to the model susceptibility of a 1D chain with a mean
field correction or not at all. Since the 1D chain and a 2D
QHAF produce similarly-shaped susceptibility curves, a
reasonable fit was achieved with skewed parameters, most
notably J and α.

The susceptibility of a 2D QHAF has not been solved
analytically for any α greater than 0. However, there
has been a great deal of study on the 2D square QHAF
through monte carlo simulation techniques for both the
isotropic9,10 and anisotropic cases11,12. The susceptibili-
ties of a family of 2D rectangular QHAF have been sim-
ulated and shown to successfully model data13 with the
help of the ALPS software14. We have expounded on
this work by simulating the susceptibility curves of these
systems for several different α values with a finer resolu-
tion and reformulating the curves into a fit function for
general α. We endeavor to show that the aforementioned
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compounds can be modeled as 2D QHAF’s above their
respective Néel ordering temperatures with exchange en-
ergies that are consistent with other compounds belong-
ing to the same family.
We also present high field magnetization data

for known rectangles pyrazinedichlorocopper(II)
[Cu(pz)Cl2]

15 and [Cu(pz)(N3)2], providing further
evidence for their rectangular 2D nature.

II. EXPERIMENTAL

A. Synthesis and characterization

Each compound was prepared according to the re-
spective syntheses given in the original papers6–8,15.
IR(infrared spectroscopy) spectra were recorded on a PE
Paragon 500 spectrophotometer while powder XRD(x-
ray diffraction) data were collected on a Bruker AXS D8
Focus X-ray diffractometer at angles of 5◦ up to 54.5◦

at room temperature. The purity of each compound was
confirmed by comparing the XRD data to the published
structures. IR spectra are consistent with this result.

B. Magnetic Measurements

Magnetic data were collected using a Quantum De-
sign MPMS-XL SQUID magnetometer. Crystals were
powdered and packed into a #3 gelatin capsule. The
magnetization of the sample as a function of field was
collected from 0 to 5 T at 1.8 K. Susceptibility data were
taken over the temperature range from 1.8 to 300 K in
an applied field of 1000 Oersteds.
High pulsed field magnetization data were taken for

Cu(pz)Cl2 at the National High Magnetic Field Lab
(NHMFL) at Los Alamos National Labs (LANL) using
a 65 Tesla short pulse magnet at temperatures between
0.4 and 4.0 K.
High field magnetization data was taken for

Cu(pz)(N3)2 at the NHMFL at Florida using a 35
Tesla Bitter magnet at a temperature of 1.3 K.

C. Simulations

Simulated reduced magnetic susceptibility (χ∗ =
χJ/C) data for a series of antiferromagnetic rectangu-
lar magnetic lattices were generated as a function of re-
duced temperature T/J by means of quantum monte
carlo simulations using the SSE looper code application
of the ALPS libraries.14 Simulations of the susceptibility
for α = 0.5 employed square lattices with L2 number of
spins, where L = 8, 16, 32, 64 were studied (Fig. 1). For
the L = 8 and L = 16 lattices, the susceptibility ap-
proaches 0 at low temperature, indicative of a gap. This
can not be correct in the gapless rectangular model; there
must be too few spins to capture the properties of a 2D

system. Small deviations in the L = 32 and L = 64 sus-
ceptibilities at T/J = 0.02 suggests that 4096 spins is
sufficient to simulating the rectangular system, at least
above T/J = 0.02 which is sufficiently low enough to
compare to real systems within the limit of experimen-
tal temperatures. Simulations on L > 64 lattices take
a prohibitively long time on our processors. Data were
generated for temperatures in the range 0.01 − 2 T/J
in increments of 0.01 T/J , 2 − 10 T/J in increments of
0.25 T/J , and 10− 25 T/J in increments of T/J for α 0
to 1 in 0.05 increments.
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FIG. 1. Dimensionless susceptibilty of antiferromagnetic rect-
angles as a function of reduced temperature for α = 0.50 and
of increasing numbers of spins.

The simulated susceptibility in the limiting case of
α = 0 reaches a maximum value of χmaxJ/C = 0.587644
±.000001 at Tmax/J = 0.64± .02, where C is the Curie
constant. This is consistent with the previously calcu-
lated value16 of χmaxJ/C ∼ 0.58770511(6) at Tmax/J
= .6408510(4) for the 1D antiferromagnetic chain. We
can also fit the simulated curves to the known suscepti-
bilities in the 1D and 2D square case as a further check
of accuracy. Figure 2 shows the simulated 1D chain and
2D square susceptibilities. The susceptibility for the 2D
square is consistent with previously reported simulated
data9,10 as it uses the same methods. The known 1D17

and 2D18 susceptibilities are fits to the simulated curves
with errors less than 1 part in 105 in each case.

It is possible that α can take on negative values. In this
case the rectangular magnetic lattice is said to be mixed
exchange; If J is antiferromagnetic, then J ′ is ferromag-
netic (FM). This will be referred to as an AF/fm lattice,
the stronger exchange is capitalized. In this regime, the
1D antiferromagnetic chain and the isotropically mixed
exchange AF/FM lattice correspond to α = 0 and -1, re-
spectively. If J is ferromagnetic and J ′ is antiferromag-
netic then the lattice is labeled FM/af. In this alternate
regime, the 1D ferromagnetic chain and the isotropically
mixed exchange FM/AF magnetic lattice correspond to
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FIG. 2. The simulated susceptibilities of the 1D(α = 0) and
2D(α = 1) limits for the antiferromagnetic rectangles. Previ-
ously reported susceptibilities are shown as solid lines. There
is no difference within the error bewteen the simulations and
the known susceptibilities.

α = 0 and -1, respectively. Note that the isotropically
mixed exchange AF/FM and FM/AF lattices are equiv-
alent. Simulations for the AF/fm lattices and the FM/af
lattices were also run with identical parameters to those
mentioned for the antiferromagnetic lattices.

III. RESULTS AND DISCUSSION

A. Simulations

The susceptibilities as a function of reduced temper-
ature for the AF/af lattices (Fig. 3) at different alpha
values show rounded maxima before descending to finite
values at low temperature, as expected for gapless sys-
tems. The temperatures at which these maxima occur in-
crease systematically as alpha increases while the heights
of the maxima decrease. The T=0 values that each curve
approaches decreases as alpha increases.
The susceptibilities as a function of reduced tempera-

ture for AF/fm lattices (Fig. 4) also show rounded max-
ima before converging to finite values at low temperature.
The temperature of these maxima as well as the values
of the maxima increases systematically as alpha increases
due to the introduction of increasingly strong ferromag-
netic interactions. At low temperatures the curves cross
each other and head towards finite susceptibilities with
no clear pattern in values of α. The low temperature
finite susceptibility values as well as the values for the
maximum susceptibility are greater than in the AF/af
case (Fig. 5) for the same values of |α|.
The susceptibilities as a function of reduced temper-

ature for FM/af lattices (Fig. 6) show rounded max-
ima before approaching finite values at low tempera-
tures. The topmost curve, the isolated ferromagnetic
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FIG. 3. Dimensionless susceptibilty of AF/af magnetic rect-
angles as a function of reduced temperature for several values
of α. The bottom curve is the 2D square. Curves lie on top
of the square lattice sequentially in order of decreasing α all
the way to the 1D antiferromagnetic chain which is the top-
most curve in increments of roughly 0.15. The numerically
calculated coefficients from table I are shown as lines over the
respective susceptibility curves.
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FIG. 4. Dimensionless susceptibilty of AF/fm magnetic rect-
angles as a function of reduced temperature for several values
of α. The botttom curve is the isolated antiferromagnetic
chain while the top curve is the isotropic AF/FM lattice.
Lines have been drawn through the data as a guide to the
eye.

chain which diverges at low temperature, is added for
comparison. The temperature of these maxima as well
as the value of the maximum susceptilities decrease in
magnitude as alpha increases. The susceptibilities are
suppressed overall as alpha increases for any given tem-
perature.

It is easy to characterize a FM/af compound because
one can find two unique and characteristic maxima from
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FIG. 5. Dimensionless susceptibility vs reduced temperature
for AF/fm and AF/af rectangles of with |α| = 0.5. The sus-
ceptibility is always greater for the AF/fm case for same |α|.

bulk magnetic properties. Since the temperature of the
maximum χ value, Tmax(χ), and the temperature of the
maximum χT value, Tmax(χT ), are not proportional to
each other we can use the ratio of the two maxima to
determine the relative exchange strengths of the two ex-

changes. Plotting the unitless ratio Tmax(χ)
Tmax(χT ) vs α reveals

linear behavior over the whole range of α > 0 described

by the equation Tmax(χ)
Tmax(χT ) ≃ −0.43α+ 0.42(Figure 7).
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FIG. 6. Dimensionless susceptibilty of FM/af magnetic rect-
angles as a function of reduced temperature for several values
of α. The topmost curve is the isolated ferromagnetic chain
while the bottom curve is the isotropic AF/FM lattice. No-
tice the large difference in magnitude of this vertical scale
compared to those of Figures 3 and 4.

The trend seen in the susceptibilities of these systems is
consistent with what one would expect. As antiferromag-
netic interactions increase or ferromagnetic interactions
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FIG. 7. The ratio of the temperatures of the maximum χ

values and maximum χT values for the FM-af rectangles as a
function of alpha. The ratio displays roughly linear behavior
in the region between 0.15 < α < 0.85. This relationship
provides a quick and easy estimate of the relative strengths
of the interactions in a system.

are decreased, the value of the maximum susceptibility
decreases. However, increasing the interaction strength
in any way (antiferromagnetic or ferromagnetic) scales
with the temperature of the maximum.

Fig. 8 is a plot of the normalized susceptibility tem-
perature product (χ∗T/C) as a function of reduced tem-
perature for representative values of |α| ranging from
the isolated ferromagnetic chain to the isolated antifer-
romagnetic chain. In the regime where the antiferromag-
netic interactions are stronger than the ferromagnetic in-
teractions, χ∗T is always less than C. In the comple-
mentary regime, as temperatures increases, χ∗T always
rises above the Curie constant and asymptotically settles
back down to C at high temperatures (Fig. 9). When
the antiferromagnetic strength equals the ferromagnetic
strength, the χ∗T curve never exceeds C at any tem-
perature. An experimental χ∗T curve with a maximum
indicates dominant ferromagnetic interactions.

It would be useful to have a fit function that charac-
terizes all of the simulated data. Such a function can be
compared to experimental susceptibility data of a sample
suspected of fitting the model of a Heisenberg rectangular
magnetic lattice. From the quality of fit, we can extract
the pertinent parameters; α, J , and C. We have formu-
lated the fit function for the Heisenberg antiferromag-
netic rectangular model using a modified Padé rational
approximation to Curie’s law in powers of J/T. The func-
tion for the reduced susceptibility (χ∗) as a function of
α and temperature for an antiferromagnetic Heisenberg
rectangular antiferromagnet is
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FIG. 8. Dimensionless susceptibility × temperature vs re-
duced temperature for Heisenberg magnetic rectangles of var-
ious α values. The isolated ferromagnetic chain is the top-
most curve. As antiferromagnetic interactions are introduced
the susceptibilities of the curves are supressed all the way to
the isotropically mixed square AF/FM lattice. Each curve
below the mixed square shows successively decreasing ferro-
magnetic interactions all the way down to no ferromagnetic
interactions, the 1D antiferromagnetic chain.
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FIG. 9. Dimensionless susceptibility × temperature vs re-
duced temperature for Heisenberg magnetic rectangles of var-
ious α values. For strong ferromagnetic interactions, the χT
data will always have a maximum and it will be greater than
C.

χ∗(α, T ) ≡
χ(α, T )J

Ng2µ2
β

=
1

4T

6∑

n=0

[Nn(J/T )
n]

6∑

n=0

[Dn(J/T )
n]

, (2)

where N is the number of spins, g is the gyromagnetic

ratio, µβ is the Bohr magneton and the coefficients are

N0 = D0 = 1,

Nn(α) =
4∑

m=0

Nnmαm, (3)

Dn(α) =
4∑

m=0

Dnmαm.

We used this function to fit the surface of data pro-
vided by the whole set of simulation data taken for the
AF/af rectangles. The fitting coefficients are given in ta-
ble I. The solid lines in Fig. 3 were generated with this
function.

The fit function also accurately fits the known extreme
cases of the 1D antiferromagnetic chain (α = 0) and the
2D uniform square lattice (α = 1).
No equivalent fit function has been found that can

characterize the simulated AF/fm or FM/af data.
Simulations of the magnetization as a function of ap-

plied field were also run using the ALPS dirloop code14.
These simulations were compared to the high field mag-
netization data taken for Cu(pz)Cl2 and Cu(pz)(N3)2 at
temperatures of 0.4 K and 1.3 K respectively. Using the
values of J found through susceptibility modeling, the
simulations were run at a temperatures of T/J = 0.016
and a T/J = 0.083, respectively.

B. Rectangular systems

1. Cu(pz)Cl2

The synthesis and structure for Cu(pz)Cl2 have been
previously reported.15 Cu(pz)Cl2 crystallizes (Fig. 10)
in the monoclinic space group C2/m and contains planar
centrosymmetric Cu − X...Cu µ-bibridged chains along
the c-axis that are linked together by −Cu − pz − Cu−
units along the b-axis, forming a rectangular structure.
We have previously measured the susceptibility of this
compound and modeled it as an AF/af rectangle of α =
0.30 with parameters13 J = 28 K and Curie constant(C)
= 0.426.

2. Cu(pz)(N3)2

The synthesis, structure and magnetic susceptibil-
ity for Cu(pz)(N3)2 has been previously reported8.
Cu(pz)(N3)2 crystallizes (Fig. 11) in the monoclinic
space group C2 and consists of chains of Cu-pz units
connected by end-on azido bridges. The previous study8



6

parameters m = 0 m = 1 m = 2 m = 3 m = 4

N1m 1519.2 533.43 -77.687 153.13 -169.91
N2m -215.7 100.15 124.18 -127.28 169.16
N3m 218.14 -57.494 10.684 169.44 82.555
N4m -10.769 12.189 -227.21 45.305 -79.075
N5m 0.094304 0.26961 27.093 128.89 -21.344
N6m -0.00089531 0.0093003 -0.17427 0.46488 0.38915
D1m 369.44 126.42 13.757 -126.75 10.215
D2m 179.27 254.16 234.59 69.668 -154.58
D3m 50.271 106.25 -500.56 114.28 67.521
D4m 95.893 -39.055 548.28 190.2 41.573
D5m -4.1906 13.921 -234.91 -242.49 -24.395
D6m -.00059343 -0.43284 27.795 117.38 43.919

TABLE I. Coefficients for equation 2, the AF/af rectangle fit function.

Cu1
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C1

C2 C3

C4

FIG. 10. Structure for Cu(pz)Cl2. Chains of Cu-pz-Cu units
are linked together through bibridged chlorides.

concluded that weak ferromagnetic interactions are me-
diated by the azido bridges while stronger antiferromag-
netic interactions are mediated by the Cu-pz units.

3. Cu(2− apm)Cl2

The synthesis and structure for Cu(2 − apm)Cl2 has
been previously reported7. The crystal structure (Fig.
12) consists of 4+2 coordinate Cu2+ ions that are con-
nected through two syn-anti 2-apm ligands as well as
through bibridged chlorides through two short bonds and
two long bonds. The authors7 predicted that antiferro-
magnetic interactions should be mediated through both
the 2-aminopyrimidine ligands and through the bibridged
chlorides by analyzing the 2-apm/coordination plane di-
hedral angle but made no attempt to fit the susceptibility
to a 2D QHAF model. It has been shown that the 3D

N4 Cu1

N1

N2

N3

C1C2

C3
C4

N3

FIG. 11. Structure for Cu(pz)(N3)2. Cu-pz chains are con-
nected through end-on azido bridges.

ordering temperature, Tn, of Cu(pz)(N3)2 is 2.8 K19.

4. [Cu(pz)(HCO2)](NO3)

The synthesis and structure for
[Cu(pz)(HCO2)](NO3) has been previously reported6.
[Cu(pz)(HCO2)](NO3) crystallizes (Fig. 13) in the
orthorhombic space group Pnma and consists of five-
coordinate Cu2+ ions that are connected through
syn-anti bridging µ-HCO−

2 and µ-pz ligands. The
fifth coordination site is occupied by a terminal NO3

group. Susceptibility data shows a maximum around
6.5K which indicates the presence of antiferromagnetic
interactions. χT data also shows a maximum; as the
sample is cooled the χT value rises before it falls rapidly
towards 0 at low temperature. As discussed in Section
III, this indicates a system with stronger ferromagnetic
interactions and weaker antiferromagnetic interactions,
the FM/af rectangle. The previous authors modeled
the 2D spin lattice as an antiferromagnetic chain with
a mean-field correction to account for interchain inter-
actions. This apporach yielded an antiferromagnetic
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FIG. 12. Structure of one layer of Cu(2 − apm)Cl2. Chains
are coupled together through bibridged chlorides.

intrachain coupling of JAFM = -5.4 K and ferromagnetic
interchain coupling of JFM = 8.17 K.
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N1
C3

C3

N1
Cu1

O2

C1

O1

Cu1

Cu1

FIG. 13. Structure for [Cu(pz)(HCO2)](NO3). It forms a
2D network of Cu2+ bridged by both pyrazine and HCOO−

ligands. The terminal NO3 groups(not shown) do not mediate
any interactions and sit in the empty space between adjacent
HCOO− and azide units.

C. Magnetic Data

1. Cu(pz)Cl2

The magnetic behavior of Cu(pz)Cl2 was initially re-
ported by Hyde et al. who used the Ising linear chain
model to model their data20. The magnetic behavior

was reexamined by Inoue et al. using both susceptibil-
ity measurements and 1HNMR measurements. Inoue et
al. modeled the system as a Heisenberg linear chain with
J = 29.2K21. The authors acknowledged that Cu(pz)Cl2
mediates two orthogonal exchange pathways but that the
lack of a 2D model prevented them from determining
what the strength of the exchange is. They also note that
the exchange strength through the bibridged chlorides
must be significantly stronger than through the pyrazine
bridges.

Subsequently, we13 modeled the susceptibility data for
Cu(pz)Cl2 to the antiferromagnetic rectangle α = 0.30
simulation that was discussed above with J = 28 K,
αJ = 8.2 K, and Curie constant(C) = 0.426. Cu(pz)Cl2
is known22 to undergo antiferromagnetic 3D ordering at
3.2 K. The 2D rectangular simulations ignore 3D in-
teractions and are not appropriate in the 3D limit so
the data were fit from 7.5 − 325 K which is a range of
temperatures greater than twice the ordering tempera-
ture. The value of αJ = 8.2 K is identified as being
mediated by the pyrazine bridges. This makes sense
when we look back to a number of coordination com-
pounds consisting of 2D layers of pyrazine that have
been previously studied23–25 by us as well as by oth-
ers. The 2D square QHAF compounds [Cu(pz)2(2 −
pyridone)2](ClO4), [Cu(pz)2(ClO4)2], [Cu(pz)2(BF4)2],
and [Cu(pz)2(NO3)](PF6) have in common that all the
exchange interactions are mediated through pyrazine
bridges only. The strengths of the exchanges range from
8− 17.5 K24,25, which is consistent with αJ = 8.2 K for
Cu(pz)Cl2.

Now that the simulations have been combined into
a model for susceptibility data for general α it is pru-
dent to refit the Cu(pz)Cl2 data to check for consis-
tency. Cu(pz)Cl2 was fit to the 2D AF/af rectangular
model (Eq.2) (Fig 14a) with parameters α = 0.259±.002,
J = 28.46±0.05 K, αJ = 7.37±0.05 K, C = 0.418± .001
emu/mol · K, paramagnetic impurity = 1.57% ± 0.02%
with a least square regression of R2 = 0.9999. Again the
fit was resolved over a temperature range of 7.5−325 K to
stay well above the 3D ordering temperature. These re-
sults are consistent with the previously reported result13

and provides evidence that Eq. 2 is valid.

As a magnetic field is applied to a spin system, there is
a torque on the spins that tends to make them align along
the field direction. If this field is large enough, then it is
possible to align all the spins, reaching a maximum net
magnetization. This field is called the saturation field,
or HSAT . HSAT has an associated magnetic energy com-
mensurate to the sum of all the magnetic exchange en-
ergies in the lattice26, as overcoming all the neighboring
exchange strengths of each spin will allow all the spins to
point freely in the direction of the field. For a rectangular
system, every spin must gain enough energy to overcome
two J components and two J ′ components and thus

gµβHSAT = (2J + 2J ′)kB = 2J(1 + α)kB . (4)
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FIG. 14. (a): 2D QHAF model (Eq. 2) fits for Cu(pz)(N3)2
and Cu(pz)Cl2 shown as curves superimposed with the data
points. (b): 2D QHAF model (Eq. 2) fit for Cu(2−apm)Cl2.
The scale is an order of magnitude smaller than in (a) due to
a very large antiferromagnetic interaction strength.

where kβ is the Boltzmann’s constant. This equation
affords us an alternate way with which to determine the
exchange strengths of an antiferromagnet.
High field magnetization data taken at 460mK for

Cu(pz)Cl2 (Figure 15, in units of the saturation field
and magnetization) show a curve of steadily increasing
slope up until a critical field where the slope of the curve
dramatically flattens out. HSAT is observed at 50.6 T.
A Monte Carlo simulation is superimposed on the data
at a T/J = 460mK/28.46K = 0.016 with α = 0.258.
The simulation undershoots the experimental curve from
H/HSAT of 0.3 up until about 0.9. We believe this dis-
crepancy to be due to a significant background that can
not be properly accounted for. More importantly, the
simulated HSAT meets the experimental HSAT at an
H = 2.53J , very close to the T=0 H/J = 2.516 cal-
culated using equation 4. Plugging into equation 4 the
values α = 0.258, J = 28.46 K, as well as the previously
reported13 gave = 2.128, the T=0 HSAT = 50.2 Tesla is
estimated, in excellent agreement with the experimental
value.

2. Cu(pz)(N3)2

The susceptibility data for Cu(pz)(N3)2 were previ-
ously fit8 to an S = 1/2 1D Heisenberg chain model with
a mean field correction to account for the 2D interactions
yielding an exchange energy J = 6.69 K and J ′ = - 0.21
K. The authors8 comment that for complexes with dou-
ble end on azido bridging µ1,1−N3, it has been proposed
that for Cu-N-Cu angle values smaller than 105◦, the cou-
pling should be ferromagnetic27. Even though the angle
is 99◦ for Cu(pz)(N3)2, an AF/fm model does not fit
the data well at all. However, an AF/af rectangle model
fits the susceptibility data very well (Fig. 14a). Since
Tn = 2.8, the data was fit above 2Tn = 5.6K with pa-
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FIG. 15. High field pulsed magnetization data for Cu(pz)Cl2.
A simulation of the system is superimposed with the data.

rameters α = 0.46±0.01, αJ = 6.95± .1 K, J = 15.1± .1
K, and C = 0.431 ± .001 emu/mol with a least square
regression of R2 = 0.99965.

It was demonstrated27 that the determination of the
coupling through the µ1,1−N3 bridge as ferromagnetic is
not a hard and fast rule by citing that many compounds
within this geometric range have J values (through the
µ1,1−N3 bridge) that range from -24 to 16.8 K. This still
leaves the question of whether the stronger exchange is
through the pyrazine bridge or the µ1,1−N3 bridge. The
values of J = 15.1 K and αJ = 6.95 K are both reason-
able values for the exchange strength through either the
µ1,1−N3 bridge or the pyrazine bridge as shown earlier in
this paper. Bulk magnetic measurements of the system
are not enough to resolve this question though it seems
plausible that the weaker exchange pathway (6.95 K) is
through the µ1,1 −N3 bridge as the Cu −N distance is

quite long (2.001 Å).

High field magnetization data for Cu(pz)(N3)2 at 1.3
K (figure 16) produce a curve of increasing slope up until
around 26 Tesla where the curve starts to flatten out hor-
izontally. At 32 Tesla the curve turns over and has almost
reached magnetic saturation. The y-axis for the data was
measured as a voltage, uncalibrated to emu/mol. This
data was calibrated by comparison to 0-5 Tesla magneti-
zation data taken on Clark University’s SQUID magne-
tometer, where the y-axis is calibrated to emu/mol. At 32
Tesla the magnetization has a reading of 6280 emu/mol,
corresponding to a g-factor of 2.26. The saturation value
of a mol of spins with a g-factor of 2.14 (as is the case for
this compound8) is 5975 emu/mol. We can not account
for this curious discrepancy.

A Monte Carlo simulation is superimposed on the data
at a T/J = 1.3 K/15.1K = 0.083 with α = 0.46. The sim-
ulation was scaled up to the units of the experimental
data for comparison as the experimental data could not
be scaled down to dimensionless units due to the fact that
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saturation was not reached. The parameters for the sim-
ulation are in excellent agreement with the data, giving
two independent measures of the exchange parameters of
the system.
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FIG. 16. High field magnetization data for Cu(pz)(N3)2. A
simulation of the system with α = 0.46, J = 15.1 K, αJ = 6.9
K, and gave = 2.26 is superimposed with the data.

The fact that magnetic saturation has not been
reached by 32 Tesla shows that the previously re-
ported values for the antiferromagnetic exchange inter-
actions(6.69K and -0.21 K) can not be correct as these
values estimate an HSAT = 10.1 Tesla based on Eq. 4,
clearly inconsistent with the data. We ignore the J ′ term
in Eq. 4 as a ferromagnetic interaction would not influ-
ence the saturation field. Using our exchange parameters
of J = 15.1 K and αJ = 6.95 K and Eq. 4 we calculate
an HSAT = 32.3 Tesla, consistent with our high field
magnetization data.

3. Cu(2− apm)Cl2

Figure 14b shows the susceptibility as a function of
temperature for Cu(2 − apm)Cl2. The temperature of
the maximum occurs at about 70 K while the value of
the maximum is an order of magnitude smaller than in
the cases of Cu(pz)Cl2 and Cu(pz)(N3)2, indicating very
strong antiferromagnetic interactions. The susceptibil-
ity data for Cu(2 − apm)Cl2 were fit (Fig. 14b) to a
2D QHAF rectangular model (Eq. 2) with parameters
α = 0.084± 0.002, J = 116.3± 0.2 K, C = 0.448± .001
emu/mol, and paramagnetic impurity = 2.85± .05% and
a least squares regression of R2 = 0.99921. A kink in the
data can be seen near 10 K. It is likely that the material
3D orders near this temperature and thus the suscepti-
bility was only modeled over the range 20-150 K.
There have been many studies13,28,29 done on

substituted-pyrazine compounds where bibridging chlo-
ride groups mediate antiferromagnetic exchanges be-

tween adjacent copper atoms. For the six compounds
studied, the strengths of the antiferromagnetic exchanges
through the bibridged chlorides range from 23.7-28 K. It
is hard to believe that either the weaker(αJ = 9.7 K) or
stronger exchange(J = 116.3 K) in Cu(2 − apm)Cl2 is
mediated by the bibridged chlorides. To our knowledege,
nothing in the literature refers to structures with bridg-
ing 2-apm ligands. At the moment, there is not enough
information to even make a reasonable guess as to which
pathway mediates the stronger exchange interaction.

4. [Cu(pz)(HCO2)](NO3)

Our susceptibility measurements of
[Cu(pz)(HCO2)](NO3) (Fig 17) show a maximum
value of 0.0448 emu/mol at 6.5 K before asymptotically
heading to the value of 0.036 emu/mol at 1.8 K, con-
sistent with the published6 maximum value of 0.0438
emu/mol at 6.6 K and low temperature value of 0.033
emu/mol at 2 K.
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FIG. 17. Quantum Heisenberg FM/af model fit of both the
χT and χ data for [Cu(pz)(HCO2)](NO3). The maximum
seen in the χT data indicates dominant ferromagnetic inter-
actions.

The χT data reach a broad maximum near 26 K be-
fore heading towards zero at low temperatures. The sus-
ceptibility simulations for the FM/af rectangles are the
only simulations to show a maximum in the χT data,
therefore we fit the susceptibility to a FM/af model. For
Cu(pz)(HCO2)(NO3) the ratio of the temperatures of

the maximums of χ and χT is Tmax(χ)
Tmax(χT ) = 6.5

25.31 = 0.26

and corresponds to α = −0.35 by use of the fit in Figure
7. The ordering temperature has been shown to be Tn =
3.66 K30 and thus the simulations are only valid above
that temperature. Data were fit between 7.4 K and 150
K to ensure that the simulation didn’t attempt to model
any part of the 3D ordered phase. χT data were also
modeled using the product of the simulated susceptibili-
ties and reduced temperature. This technique affords us
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a unique and alternate way to fit FM/af rectangles. The
parameters yielded for both fits should be equal to each
other.
This estimate of the relative exchange strengths (given

above) of α = −0.35 for [Cu(pz)(HCO2)](NO3) is
very good as the fitting parameters for χ and χT are
extremely close to each other (see below and Table
II). Attempts to fit the data at surrounding α val-
ues (α = −0.30,−0.40) result in largely incommensu-
rate fit parameters (Table II). Figure 17 shows the
model fit for [Cu(pz)(HCO2)](NO3) of an FM/af rect-
angle of α = −0.35. χT data was fit with parame-
ters α = −0.35 ± 0.002, C = 0.426 ± 0.001 emu/mol,
J = −21.16±0.2 K, paramagnetic impurity = 5.16±.05%
while χ data were fit with parameters α = −0.35±0.002,
C = 0.424±0.001 emu/mol, J = −20.98±0.2 K, param-
agnetic impurity = 3.81± 0.05%, both in stark contrast
to the previously reported values6 of JAF = 5.4K and
JFM = −8.17K. This shows that the mean field approx-
imation used6 is innappropriate for this system.

The previous authors estimated the relative strengths
of the two exchange pathways30 by performing spin
dimer analysis31 on the basis of extended Huckel tight
binding calculations32. The analysis showed that the
HCO−

2 bridges mediate ferromagnetic interactions while
the pyrazine bridges mediate antiferromagnetic interac-
tions, consistent with the absence of any known fer-
romagnetic pyrazine bridge. Ferromagnetism has been
observed33 in compounds with bridging HCO−

2 units of
certain configuration. Thus the HCO−

2 units mediate
the ferromagnetic interactions while the pyrazine bridges
mediate the antiferromagnetic interactions. The J value
through the HCO−

2 bridge is J = −21.2K while the J
value through the pyrazine bridge is J = 7.4. The value
of the exchange strength through the pyrazine bridge is
consistent with the range of pyrazine exchange strengths
(8-17.5 K) discussed in III.C.1 of this paper.

IV. CONCLUSIONS

We have investigated several 2D QHAF rectangular
molecular magnets ([Cu(2 − apm)Cl2], [Cu(pz)(N3)2]
and [Cu(pz)Cl2]) through susceptibility and high field
magnetization measurements. A 2D rectangular QHAF
model has been found through a combination of simula-
tions as well as theoretical techniques and is shown to
be consistent with experiment. It has also been demon-
strated that a real mixed exchange FM/af lattice exists
([Cu(pz)(HCO2)](NO3)) and that susceptibility simula-
tions successfully model it.
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α = -0.30 α = -0.35 α = -0.40
χ χT χ χT χ χT

C(emu · K/mol) 0.408 0.416 0.422 0.424 0.432 0.414
J(K) -23.7 -24.81 -20.6 -20.9 -18.1 -16.1

TABLE II. χ and χT fitting parameters for [Cu(pz)(HCO2)](NO3). The ratio of the temperatures of the maximums ( Tmax(χ)
Tmax(χT )

)

correspond to α = −0.35. This estimate is on mark as the fitting parameters for χ and χT are extremely close to each other
and the Curie constant is closest to the accepted value for copper of 0.42. Attempts to fit the data at surrounding α values
(α = −0.30,−0.40) result in inconsistent fit parameters as well as fit curves that miss key features of the data.
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