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We develop anisotropic pseudo-spin antiferromagneticétgerg models for monoclinically distorted dou-
ble perovskites. We focus on theseBB’Og materials that have magnetic moments on4ti@r 5d transition
metal B ions, which form a face-centered cubic lattice. In these etgdve consider locat-axis distortion
of B’-O octahedra, affecting relative occupancytgf orbitals, along with geometric effects of the monoclinic
distortion and spin-orbit coupling. The resulting psesg-1,/2 models are solved in the saddle-point limit of
the Sp(V) generalization of the Heisenberg model. The spim the SU(2) case generalizes as a parameter
controlling quantum fluctuation in the S case. We consider two different models that may be apptspri
for these systems. In particular, using Heisenberg exahaagameters for L& iMoOg from a spin-dimer cal-
culation, we conclude that this pseudo-spif2 system may order, but will be very close to a disordered spin
liquid state.

PACS numbers: 75.10.Jm, 75.10.Kt

I. INTRODUCTION crystal field favors the,, orbitals over the, ones, the tetrag-
onal distortion will split thety, levels. In the case of a local

Geometrically frustrated magnets have been of great receﬁfﬁ‘?l('S compressllon]; the.,, orbital '3 favoreild tfor?e occf;umed,
interest, and are a common starting point in search of exoti/Nile an expansion favors thi.. andd, .. All of these effects

ground state$? One class of such frustrated antiferromagneté’v ill generate the anisotropic interactions that form theuo

is found in the double perovskite oxides, which host a wide®f our models.

range of interesting behaviér® These compounds of chemi-  The role of spin-orbit coupling in the undistorted cubic dou
cal formula ABB'Og feature ordered, interpenetrating face- ble perovskites has been carefully considered by Gieh
centered cubic (FCC) lattices of the B antliBns when the  for materials off* electronic configuratiof? In this work, we
charge difference between these ions is I&reth Band B focus on thetd! and5d' monoclinically distorted double per-
transition metal ions are octahedrally coordinated by exyg ovskites, and consider the quantum pseudo-$pihmodels

A geometrically frustrated FCC lattice is obtained whernyonl that result, as explained in the main body of the paper. We are
the B ions are magnetic. particularly interested in the case of a loca® z-axis com-

A conventional picture of isotropic antiferromagnetic su-
perexchange is insufficient for these materials. Alterimg t
picture are two important effects considered in our worke Th
first effect is spin-orbit coupling, which is relevant foreth
4d and 5d transition metal ions that comprise the magnetic
sites. Spin-orbit coupling has been seen to lead to incdease
correlation effects, particularly in materials contamiy Ir
ions. This is responsible for topological insulating bebat®
particularly in the pyrochlore iridaté$;® the Mott insula-
tor ground state of SirO4,1"23and the potential spin-liquid
ground state of Ndr;0z24~32 and honeycomb compounds
A2IrO3.3 Octahedral crystal fields favor thg, d-orbitals,
which have an effective orbital angular momentigy = 1,
up to a sign difference. Combined with= 1/2 spin angu-
lar momentum, the pseudo-total angular momentum states of
Jet = 1/2 andJeg = 3/2 result. In this case, the quadru-
plet of Jer = 3/2 states form a lower energy manifold than
the other two states ofet = 1/2.3% The second effect is ge-
ometrical distortion from the cubic case; monoclinic disto
tion is commonly seen in double perovskifdsowered sym-
metry from the monoclinic distortion will spoil the exchang
isotropy directly, and introduce new exchange pathway& OnFIG. 1: (color online). Magnetic ordering (Type | antifermagnetic)
particularly important result is the locataxis compression of the spin3/2 Ru in La;LiRuOs (blue, with arrows}i" Also shown
or expansion of the BO octahedra, which we refer to as a areé the non-magnetic Li (light green) atoms, and two of theCQRu
tetragonal distortion of these octahedra. While the octahedral (PUrPle) octahedra, showing the effects of monoclinicafisin.




pression, where orbital degeneracy is absentLIMoOg is

a candidate for such a material, while the otherwise isostru
tural SpCaReQ features instead a-axis expansion of the
octahedra. LgLiMoOg shows no magnetic ordering down
to 2 K from either heat capacity or neutron diffraction; how-

ond is the change of orbital orientation due to the geometric
distortion, which affects overlap integrals and the reslin-
teractions. We will derive our models by considering the ef-
fect of distortion and spin-orbit coupling on the interaas
betweert,, orbitals.

ever,uSR measurements show evidence of short-range corre- one motivation for our models comes from a spit®

lations developing below 20 R The Curie-Weiss tempera-
ture is negativeds = —45 K, indicating predominant anti-
ferromagnetic superexchange. In contrastCaReQ shows
spin-freezing behavior below 14 ¥.

In the present work, we use the 3fY generalization of
Heisenberg models to describe these syst®m&This gen-
eralization provides a unifying framework to study the effe
of spin magnitude, from semiclassical ordering at “larga’sp
to possible spin liquid phases for “small spin”.

The ability to capture “large-spin” magnetic order may
help to describe the higher-spin analoguesdbf double
perovskites. In particular, the “sp#)2” analogue of
LazLiMoOyg is the isostructural L iRuOg, whosedd? con-
figuration occupies all threg, orbitals. Since the effective
magnetic moment is close to the sg#iyi2-only moment, there
is only slight renormalization due to spin-orbit coupligd
intra-orbital Coulomb repulsion is the dominant effect & d
termining orbital occupancy. We model this material with a
spin3/2 Heisenberg model, given the lack of orbital degen-
eracy, providing a test for Sp{)-predicted ordering at spin
larger thanl /2. In fact, LaLiRuOg shows type | antiferro-
magnetic ordering below 30 & where spins are aligned on
eachz-y plane but antiparallel on the-z andy-z planes, as

Heisenberg model obtained via spin-dimer calculation for
the isostructural monoclinically distorted double peiates
LayLiMoOg and SsCaReQ.% In this method, the tetragonal
compression (or expansion) of these materials was modelled
by assuming occupation of only tlg, orbitals (or equal oc-
cupation of only thel, ., andd,,. orbitals). This method is also
sensitive to the effect of the geometric changes resultimg f
the distortion. However, spin-orbit coupling was not coRsi
ered, so that the assumed orbital occupation will be sightl
incorrect. The result is an anisotropic= 1/2 Heisenberg
model, with estimates for the relative strengths of the cou-
plings, seen in Table I.

A. Interactions

To understand the effects of the monoclinic distortion and
spin-orbit coupling, we first look at the interactions bedwe
neighboring,, orbitals in the case of cubic symmetry, as have
been considered in detail by Chetral.3* To facilitate this, we
show the six nearest-neighbor directiahsfor the FCC lat-

seen in Figure 1. This is consistent with the results in thdice in Figure 2. Without distortion, the, b andc-axes are

semi-classical (“large spin”) limit of our SP{) model. In
contrast, an appropriate pseudo-spjt2-anisotropic Heisen-
berg model for LaLiMoOg leads to the conclusion that this
system must be very close to a spin liquid state. This may b

consistent with the absence of magnetic order down to 2 K

seen in experimerit

The rest of the paper is organized as followsgllnwe dis-
cuss the effects of monoclinic distortion and spin-orbii-co
pling. This leads us to consider two different models,tee
nar anisotropy andgeneral anisotropy models, each taking the
form of a pseudo-spin Heisenberg model§lh, we solve for
the classical spin ordering of both of these model$I¥h we
describe the Sp{) generalization of the Heisenberg model
and its mean-field treatment. Results of this mean-field-trea
ment are shown i§V for the planar anisotropy model, and in
§VI for the general anisotropy model. An extension to finite
temperature is discussedg¥ll. In §VIII, we summarize our
results and discuss extensions of this work.

Il. MODEL

In modelling monoclinically distorted double perovskites
with 4d or 5d magnetic ions, there are two important effects
of the monoclinic distortion that should be considered in-co
junction with spin-orbit coupling. The first effect of mono-
clinic distortion is localz-axis compression or expansion of

simply the Cartesianr, y andz-axes. The strongest interac-
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FIG. 2: Nearest-neighbor lattice vectafs and associated nearest-
neighbor couplingd,, for the FCC lattice.

tion is antiferromagnetic superexchange, involving sied
orbitals lying in the same plane. For instanég, orbitals on
neighboring sites along the-y plane will interact antiferro-
magnetically. Ferromagnetic interactions between sitea o
plane will couple orbitals lying on that plane to orbitalily
perpendicular to i#* Along thex-y plane,d,., orbitals inter-
act ferromagnetically with neighboring,, andd,. orbitals.
Quadrupole-quadrupole interactions also exist betwdéenal
orbitals on neighboring sites, due to different orientagiof

the B-O octahedra, which affects orbital occupation. The secthe quadrupole moments of these orbitals.



3

Material | Jy |Jo| Js | Ja | Js | Js mated to be on the order of 0.1 é4/The effect of spin-orbit
LazLiM0Og |0.14/1.0{0.014/0.014 0.000430.00043 coupling on thefy, orbitals of octahedrally coordinated ions
Sr,CaReQ (0.87/1.0| 0.16| 0.16| 0.25 | 0.25 is a well-studied problem. When the octahedral crystal field

splitting is significantly large compared to the spin-odmti-
TABLE I: Relative strengths of Heisenberg couplings, giverfrig-  pling, we may project out the, states. Upon projection, the
ure 2, from the spin-dimer calculation of Aharetral ** L = 2 orbital angular momentum for th&orbitals looks like
a L = 1 pseudo-angular momentum operatarp to a sign
change, wher& — —1. This L¢g = 1 pseudo-orbital angular
B. Monoclinic Distortion momentum combines with th& = 1/2 angular momentum
of the single electron to create states of effective totglan
The first effect of monoclinic distortion is the local  lar momentumJes = 3/2 and1/2. The spin-orbit coupling
axis distortion of theB’-O octahedra, a compression for AL - S breaks the degeneracy of these states, where the four
La,LiMoOg¢ and an expansion for StaReQ. This splitsthe  Jegr = 3/2 states have an ener@)/2 lower than the two
degeneracy of the threg, orbitals. Thed,. andd,. orbitals  Jer = 1/2 ones. Thesde = 3/2 states are written in terms
will remain degenerate, but thg,, orbital will have a lower of thet,, ones as
energy for a compression and a higher energy for an expan-
sion. Consequently, the occupation of thg orbital will be 3 3 1
favored or disfavored compared to occupation of the other tw ‘—, —> =—(—|yz, 1) +ilzz,]))
orbitals. This is taken as a very important effect in the spin 22 V2

dimer calculation to explain the relative anisotropies haf t 31 1 .
. R — = —— (— 2
two mater|a|§6 23 92 \/6 ( |yza\l’> +Z|I27\L> + |Iy7T>)
The second important effect of the monoclinic distortion 3 1 1 '
is a globalc-axis elongation, and rotation of the-B octa- ’5, —§> =7 (lyz, 1) +ilzz, 1) + 2|2y, L))

hedra, affecting the overlap of the occupied orbitals, Wwhic

are now tilted out of plane. An example of this, in the case 33 - 1 ;
s : = : ; (lyz, 1) +ilzz, 7). (1)

of LasLiRuOs, is shown in Figure 1. Thé,, orbitals, for 20 2 V2

instance, are tilted out of the-b plane, and will have some

inter_action withd,, orbitals on neighboring planeg. In this \with ad! configuration, the occupancy of thg, orbital upon

fashion, many new exchange pathways will contribute at th%rojection to these states is giversby

nearest-neighbor level.

These effects generate a significant amount of exchange
anisotropy in the spin-dimer calculatiéh. The relative
coupling strengths estimated by spin-dimer calculation fo
La;LiMoOg and SgCaReQ can be seen in Table I.
Interactions between-y planes in LaLiMoOg are relatively ~ The occupation operators for the ottigy orbitals are given
weak, as expected from dominant in-pladig -d,., antifer- by cyclic permutation of ther,y, » indices, and the single-
romagnetic interaction and-axis elongation. We note that 0ccupancy constraint; .., + n; .. + ni . = 1 is satisfied.

further in-plane anisotropy is significant, due to the styef: The effect of projection onto thigs = 3/2 subspace, due
fect of Mo-O octahedra rotation upah,, orbital overlap. In  to large spin-orbit coupling, has been considered by Gien
Sr,CaReQ, intra-plane interactions are still larger than inter- g|. for the cubic material® The Hamiltonian can be writ-
plane interactions, even though the superexchange betwegsn in terms of the orbitally-resolved spin operators, sash
d.y orbitals is not present. The only in-plane superexchanggiymy = S;n; .. Upon projecting to theler = 3/2 states,
processes occur through tilteld. or d,. orbitals. Neverthe-  these orbitally-resolved spin operators contain termk kot
less, the inter-plane interactions are significantly gesithan  ear and cubic inj. The resulting Hamiltonian, containing

in La;LiMoOg. The length of the unit cell along theaxisis  terms of 4" and @" order inj, leads to interesting multipo-
significantly larger than along theor b axes, which could ex- |ar behaviof?

plain the smaller inter-plane coupling compared to theaintr
plane one. For both materials, however, the planar anigptro
of the couplings is clear, and effects of both geometricad di
tortion and orbital occupation are important.

(57)*. )

Ni,ay =

]
W =

When spin-orbit coupling is much larger than the logal
axis crystal field, theJer = 3/2 states provide the relevant
starting point, rather than the, orbitals. However, one can
consider the general splitting 6f, orbital degeneracy in the
presence of both spin-orbit coupling and the locaixis dis-
tortion. We can model each site with a local Hamiltonian

C. Spin-Orbit Coupling Hioe = A [(1%)? — 2/3] — AL- S, whereA > 0 is the strength
of the crystal field splitting due to localaxis compression.

Beyond monoclinic distortion, we now consider spin-orbit The case for a locat-axis expansion has been considered
coupling, which can be important in thel and5d magnetic by Jackeli and Khaliullir?® We proceed in a similar manner,
ions commonly seen in the double perovskites. For instancédentifying the relevant low-energy eigenstatesthf.. Di-
spin-orbit coupling in octahedrally coordinated Mois esti-  agonalization ofH,,. determines the lowest-energy Kramers



pair to be given by D. Planar-Anisotropy and General-Anisotropy Models
sin (0) . ; The first, and simpl fthe t del idered in thi
_ 1)+ |2z, 1) —icos (0 ), , pler, of the two models considered in this
e V2 (Hlyz, 1) + |ez, 1)) = icos (6) ey, 1) paper is concerned primarily with the effects of the tetrag-
sin () , . _ onal crystal field splitting. Without spin-orbit couplingie

e = o (=ilyz, 1) + |zz, 1)) —icos (0) [zy, 1), see easily from (4) that preferentid}, orbital occupation

leads to anisotropic interactions that are stronger oncthe

tan (260) = 2v2)/(A +24). planes. In this case, we have a true spi2-antiferromagnetic

(3) Heisenberg model. However, considering spin-orbit caupli
) ] _and tetragonal distortion leads to the pseudo-dpihantifer-
The energy difference between the ground and first excitefomagnetic Heisenberg model in (5), with a similar form of
doubletsis given by-A+(A+2A)(1+1/ cos (20)) /4, which  anisotropy. From this, we are motivated to study the pseudo-
goesto zeroaa — 0, and approaches—A/2whenA > X. gpin /2 antiferromagnetic Heisenberg model where coupling
We consider the case where this separation is large enoug{pong thez-y plane differs from the coupling along thez
to focus on the lowest-energy doublet. This will require theanq,.- planes. Thelanar anisotropy model is given in terms

tetragonal crystal field to be significantly larger than the e o pseudo-spin-1/2 operators (henceforth referred ®; aby
change coupling, regardless of the relative strength of spin-

orbit coupling. By projecting out the higher-energy states —J S..S.
obtain a pseudo-spin-1/2 model. Hon=iJn > Si:8;

- . L . . <ij> in x-

Within this projection, we consider the form of the interac- Y g
tions in an otherwise cubic double perovskite, beginnirtty wi +Jout Z Si - S; + Jout Z Si-S;.  (6)

the quadrupole-quadrupole interaction. Due to the fixed or- <ij>iny-z <ij>inx-z

bital occupation in (3), this interaction is constant antl mot

contribute to our models. The orbitally off-diagonal famag- ~ BOth Jin and-Jou are antiferromagnetic, and one can consider

netic interactions, of strengtl, generate pseudo-spin inter- Fhis model as a generalization of the antiferromagneticehod
actions that are both spatially and spin-anisotropic. For o " EQ- (5). The ratio/ou/Jin depends on the strengths of the
models, we will focus on the antiferromagnetic interacsion SPin-orbit coupling and tetragonal distortion of the oesfa,

Nearest-neighbor interactions along the undistostad z-= seen inA/\. In add_iti_on, _it captures certain geometricgl ef-
andy-z planes are given by fects of the monoclinic distortion, such as the globailxis

elongation, contributing to the particular planar anispirin

1 (6).
Har = J Z (Si -S; — Z) N4 oy N zy The other model considered in this paper will include in
<ig>inxy full the geometrical effects of the monoclinic distortioFhis
+(zy = y2) + (zy — x2), (4)  Wwill generate many other anisotropic interactions, bnegki

the symmetry of thec-y plane. Effective pseudo-spin ex-

wheren; ., is the occupation operator of tiig, orbital at site ~ change energies will become intrinsically anisotropi@iali-
i.34 Upon projection to the lowest-energy doublet, we obtaintion to the effects of orbital occupation. We will model thes

of the nearest-neighbor couplings shown in Fig. 2. Due to

J . spin-orbit coupling, the particular parametefs in Table |
H =N (_Z> + > cos(6)"JP;-P;  will not be quantitatively correct. Nonetheless, we wilheo
<ij>inxy sider them as a starting point to understand the effect of fur
. 4 J . 4 J ther anisotropy in the interactions. Estimates for coroest
+ Z sin (0) 2P Pit Z sin (6) 2P Pi- due to spin-orbit coupling are given fVIB. The general
<ij>inx-z <ij>iny-z anisotropy model is given by

(5)
Hoa =D _ > JuS(r:) - S(ri + ). 7)

For A < A, this result reduces to the one obtained by Chen
et al. in the easy-plane limit of the cubic perovskite model
with J’ = 0.3 Without an accurate estimate for the strength  To analyze the model Hamiltonians (6) and (7), we will use
of Hund’s coupling to Coulomb repulsion, the ratié/.J is  the Sp(V) generalization of the Heisenberg model, which of-
difficult to ascertain. However, we note that the easy-ptane fers several advantages. The first is that the paranétak
sult of Cheret al. is an antiferromagnetic state fat < J.>*  |ows for a controlled expansion, beginning from the saddle-
Consequently, we consider the physical picture of antferr point solution asV — oco. The second is that quantum fluctu-
magnetic interactions, and as a first-order approximatien wations can be controlled by a parametefwherex = 25
ignore the ferromagnetic contributions to the Hamiltonian  in the SU(2) case) allowing a transition from a classical-
We note that the introduction of spin-orbit coupling result spin limit (largex) to one dominated by quantum fluctuations
in a reduction of the magnetic moment compared to the casgsmall k). This may capture a changing value of (pseudo)-
of d,, occupation when = 0. spin. The gappeds spin liquid, obtained as a disordered



state in the Spy) generalization, is often seen as a potential
ground state in many Heisenberg modgl&!

The Sp{V) generalization may be capable of naturally \N \ \
capturing the changing behavior withi seen in the fam-
ily of magnetic materials isostructural to 4dMoOg. The
spin3/2 La;LiRuQg is magnetically ordered, while spiry-2
La;LiMoOg shows short-range correlations and suppression Ny N Ny
of magnetic order. The isostructural spin-1,L&ReC; is
more amenable to a multi-orbital model, and falls outside th
scope of these calculatiof3. ]y

Sx |\ N N

lll. CLASSICAL ORDERING

In this section, we solve both planar anisotropy and generdHG. 3: View along the:-axis of FCC lattice magnetic ordering of
anisotropy models in the limit of classical spins. The mag-the planar anisotropy model foku > Jin. The solid lines indicate
netic ordering patterns and wavevectors are determinelioy t an =-y plane of the FCC lattice, while the dotted lines indicate a
O(N) model, where we generalize f§ — oo components nglghborlng plane. Spins are aligned on each ofitheplanes, but
of the spin vector, as explained in Appendix A. We will see V€€l ordered along-z ory-z planes.
in §IV D that this corresponds also to the classical limit of the
Sp(V) model.

pN AN N

A. Planar-Anisotropy Model

In the planar anisotropy model (6), two phases are found
with varying Jout/ Jin, the ratio of inter-plane to intra-plane \ & '\
interactions. Fot/y,: < Jin, the intra-plane interactions cre-
ate antiferromagnetic Néel order within eacly plane. For
Jout > Jin, the inter-plane interactions create antiferromag- y

netic order between planes. < \ R \N

For Jout > Jin, the ordering wavevectey is given by

(1,1,0). (8)

s s

= 0,0,1) or —
4 a/2 ( ) or a/2
. . . . . FIG. 4: View along thez-axis of FCC lattice magnetic ordering of
Spins on each-y plane are aligned, while spins on neigh- o planar anisotropy model folw < Jin With k. — 0. The solid

boring planes are antiparallel. Néel ordering.is_foundwg_lo lines indicate am-y plane of the FCC lattice, while the dotted line
the z-z andy-z planes. The antiferromagnetic interactionsindicates a neighboring plane. There is Néel ordering gleach

betweenz-y layers are satisfied, as seen in Figure 3. of the z-y andz-z planes, but ferromagnetic ordering along ihe
For Jout < Jin, the ordering wavevectey is plane. Also possible is a state where the ferromagneticriogiés
T - along thez-z plane instead.
=—(1,0,k — (0,1, k 9
q a/2(7 aZ)aa/2(a 7Z) ()

for arbitrary k.. Eachz-y plane takes on the Néel order for However, the degeneracy bf is broken here at the classical

a square lattice. The degeneracy:inindicates that spins on |evel, wherek. = 0 for both parameter sets. Ordering as in
neighboring planes may take any relative overall orieatati  Figure 4 results.

An example of this ordering, with, = 0, is given in Figure
4. We will see in§lV D that this degeneracy is broken by the
introduction of quantum fluctuations, choositig= 0.

Both of these states show Type | antiferromagnetic ordering
on the FCC lattice, where ordering is antiferromagnetic on
two of thez-y, -z or y-z planes, and ferromagnetic on the
other.

IV. SP(N)MEAN FIELD THEORY
A. Sp(N) Generalization of the Spin Models

The Sp(V) method is a largev generalization of the
Schwinger boson spin representatirf? In the physical
B. General Anisotropy Model caseN = 1, Sp(1) is isomorphic to SU(2), and we have
the standard Schwinger boson representation wh&gin=
The two parameter sets in Table | also yield antiferromag%b;fa(aa)aﬁbw and the boson number per sbﬁgbm =np =
netic ordering in the:-y plane, similar to the/oy; < Jin case. 25 determines the spin quantum number. Hergd =1, | la-



bel the primitive spint/2 species that comprise the full spin C. Mean-Field Hamiltonian
angular momentum. We generalize2ty flavors of bosons,
wherea = (m,0), labelled bym = 1...N, ando =T, ], After decoupling in the site-independe@, fields, the

transforming under the group SB§.% « = n,/N acts in Hamiltonian (10) becomes
analogous fashion t@sS in the SU(2) case, controlling the

strength of quantum fluctuations. ) N
When generalized to Sp), the Heisenberg Hamiltonian ~ #H = Z In [—7"50(,/ <Z b7 b, + IfIanN)
(7), up to constants involving, is written as in m=2

N
the.+ 5 |Qn|2} +

N
S (—nb 3 bt Nx;;xz) |
m=2

Here, 7.5 is a2N x 2N block-diagonal antisymmetric tensor, Z
given by (14)

-1
H= ﬁ Z Z J"(jaﬁb;rablr&mﬁ)(j'wbz li/+5n)- (10)

0 1 Here, the boson number constraint is enforced on average by
jma,m’a" = (Sm,m’

10 (11)  the inclusion of the Lagrange multipligr. We assume tranl-
sational invariance, with; = 1. We have allowed the, = 1
componentto condense, represented by C.
The saddle-point Hamiltonian (fo’Nn — o0) is de-
B. Mean-Field States rived in full in Appendix B. The first step is a Fourier
transform defined byb;, = \/% S bge” i, The
The quartic terms in (10) can be quadratically decoupled byecond step is a Bogoliubov transformation diagonalizing
the mean field the Hamiltonian, yielding a quasiparticle energy, =
V2= (X, JnQnsin (k- 6,))2. The transformation is de-
1 - fined byb = T~'~, where the Hamiltonian is diagonal in
Qin = N Zaaa/bimabi-ﬁ-&n,mo/ : (12) the~ basis. The condensate enters only via the total density
m n =Y., |zZ|? and+k,, the wavevectors of the boson dis-

Wh he b di ion b | I f(gJersion minimum where the condensate forms.
en the boson dispersion becomes gapless, we allow for \yg then write the diagonalized Hamiltonian as

a condensatéy;, = vV Nz, € C, whereo =1, |, so that

(bi1,) has a finite expectation value. This will account for the ey Js )

appearance of long-range magnetic order. NN Z 7|Q5| +u(-1—r+n)
The projective symmetric group analysis may be used to ° J

characterize possible mean-field ground states; foNJ{is in Z J5Qs sin (K - 6)

has been applied to many other Heisenberg mddefuali- 5

tatively different states are distinguished by the valua fbfix 1 ; ;
quantity for plaquettes of the lattice. The flux on a plaguiett +t > w (1 + Ve Vet + %J,"Yki) - (15)
of sitesa . . . z is defined by the phask in*® Sk

Zle"® =) Qub(—Q5.) - Quz(—Q%).  (13)

D. Semiclassical Largex Limit

A nearest-neighbor Heisenberg model will favor the zero- We take advantage of the Sy fluctuation parametet to
flux states at smalk, particularly for plaquettes of smaller look at the semiclassical magnetic order from the—» o
length#® On the bipartite cubic lattice, for instance, a transla-limit. This provides a link from the classical order &fl to
tionally invariant choice of);; yields zero flux on any plaque- the magnetic order seen at finite

tte. Since the FCC lattice is frustrated, a translatioriaibgri- We begin by approximating the Hamiltonian fer>> 1.
antQ;; = —Qj;, while giving zero flux on most plaquettes, Here, leading-order behavior in the Hamiltonian is of€)(
leavesr flux on a small number of plaquettes. In particular, Corrections, of Of), act to split degeneracy of the classical
assuming alf) to be translationally invariant and positive, the ordering3® We have that), 1 andn are all O¢) asx > 1.
four-site plaquettes with flux have sites on both they and  E, the largest contribution to the energy is of3):

y-z planes, such asi + 61,1+ g,i+ 43, wherei andi + ¢

are joined by the plaquette. There are eight such plaquettes Ec Js 2

with 7 flux, of a total of thirty-six four-site plaquettes involv- N,N 5 Qs+ n(=r+n)

ing sitei. This provides motivation to consider translationally o

invariant mean-field solutions, which we restrict ourselte +n Y JsQssin (k1 - 6), (16)
in this work. s



while the first-order quantum correctidn , of O(k), is given 10 : :
by (0) k=(100)  (a) k=(00.1)
B x-y Plane Inter-Plane
— Neel Order AF Order
N N + Zwka (17) Q3: Ql:
where@, p andn are given by solutions minimizing the clas- 1y S
sical energy (16§° The mean-field equations fd. are eas- (d) Spl_% Liquid
ily solved, yieldingn = x, p = =% J,Qnsin(ky - 6y), « 2
andQ@,, = —«sin (k1 - 6,,). We can then writdZ- as a func-
tion of the minimum wavevectdk; :
01t
K2 Z sin? < 0n). (18) :
(€) Quasi-2D = (c) Spin Liquid
With the boson dispersion minimum atk;, spin ordering Spin LI_CI(;JId ‘- Q=0
occurs at the wavevectotg= +2k;. The minimum ofE¢ Q3=Qs=
; ; 0.01 : ‘
corresponds to an ordering pattern equivalent to that of the 0 0.25 05 0.75 1
classicalD(IV) model (see Appendix A for detailé}.The cor- Joul G+ Jouwd

rection (17) can then easily be computed forkgll(with cor-
responding?, i, n) in the degenerate set of minima of (18).
FIG. 5: Heuristic phase diagram for tlig;, @3, @5 ansatz of the
planar anisotropy model. Note that the lalig), = 0 indicates that
V. PLANAR ANISOTROPY MODEL RESULTS Qm is negligibly small (compared te and the finiteRQ) in the con-
densed phas€), is identically zero in the corresponding spin liquid

phases. Solid lines indicate second-order transitiondevadashed
In this section we study the planar anisotropy model withjas indicate first-order transitions.

in-plane coupling/i, (J1 = J2) and out-of-plane coupling
Jout (J3 = Jy = J5 = Jg). We study the effect of quantum

fluctuations, controlled by:, and coupling anisotropy, con- A. Inter-plane Antiferromagnetic Order
trolled by Jout/Jin. In §lll, we saw classical Néel ordering
on eachz-y plane. The first-order quantum correctiah in This state is an extension of the classically ordered state f

(17) breaks the degeneracy. After this “order by disordée, Jout > Jin, With antiparallel magnetization on neighboring

ordering wavevectors are y planes. Ferromagnetic ordering is seen alongctyeplane,
with Néel ordering along the-z andy-z planes. In this state,

i
q= /2 (1,0,0) o a/ (0,1,1), the intra-plan€); = Q- is significantly smaller than the intra-
planeQ; throughQs. The ordering wavevector has only small
q= a/2 (0,1,0) o a/2 (1,0,1). (19)  corrections to the classical result (8).

Spins are aligned along either the or y-z planes. Ordering
along one such direction was seen in Figure 4.

As k is reduced from this limit, we wish to see the evolu-
tion of the ordering wavevector and mean-field parameters. This state is an extension of the classically ordered state f
For small s, we investigate the destruction of the orderedout < Jin, With Néel order on the-y planes. It is character-
state by quantum fluctuations. We note that the semiclassized by largeQ:| = |Q2| within thez-y plane. Of the two in-
cal solutions, for all values oo/ Jin, all feature|Q,| = dependent inter-plan@, one is significantly smaller than the
|Q2],|Q3] = |Qa], and|Qs| = |Qs|. Motivated addition- ~ other, depending on the gauge choice of ferromagnetic order
ally by the equality of in-plane couplings; = .J», and of  direction (along the:-z or y-z plane). The ordering wavevec-
between-plane couplingdy = J, = J; = Js, we take an tor has only small corrections to the semiclassical re4@Iy.(
ansatz with); = @2, Q3 = Q4, andQs = Q. The relative
signs, such as betweé&p, and(@-, correspond to making a
particular gauge choice. With such an ansatz, the semiiclass C. Inter-Plane Spin Liquid
cal solutions remain unchanged, with wavevectors (8) oy (19
as appropriate. Furthermore, relaxing the ansatz sugtpests  This state is a disordered analogue of the inter-plane or-
the equivalencé:1| = |Q2|, |Qs| = |Q4l, and|Qs| = |Qs|  dered statesVV A) for Joue > Jin. However, the intra-plane
is retained down to lows. With this ansatz, we numerically @, = Q- are identically zero in this state. While the di-
solve the mean-field equations, given explicitly in Appendi rect intra-plane correlations are consequently zero, thtefi
B. The resulting phase diagram is given in Fig. 5, in whichinter-plane( prevent the lattice from decoupling. The mini-
there are five phases to consider. mum wavevector, determining short-range order, still rdg o

B. z-y Plane Neel Order



small corrections compared to the ordered minimum (8). The  VI. GENERAL ANISOTROPY MODEL RESULTS
transition into this state from the intra-plane orderedestas

x is lowered, is second-order.
A. Spin Dimer Parameters

We now turn to the particular parameter set in Table | mod-
elling LaLiMoOg. We saw that the semi-classical limit led
to Type | antiferromagnetic order, with Néel order on ihe

This state is a disordered analogue of the inter-plane ormplanes. As for the planar-anisotropy model, we take advan-
dered state§y B) for Jout < Jin. However, one of the intra- tage of coupling symmetry to simplify the mean-field calcu-
planeQ is now identically zero, such @3 = Q4. The other  |ation. We make the ansatz; = Q, andQ; = Qg, since
intra-plane( is nonzero, but still smaller than the in-plane j; = J, and.Js = Js. The semiclassical result satisfies this,
Q1 = Q2, preventing the lattice from decoupling. As be- while relaxing the ansatz again suggests this structuréesar
fore, the minimum wavevector, determining short-rangeord to low . Then we numerically solve the resulting mean-
has only small corrections compared to the ordered minimunfield equations. The mean-field solution finds that ordering
(19). The transition into this state from the intra-plangesed  persists down tos. = 0.986. As in the planar anisotropy
state, as: is lowered, is second-order. case, the ordering wavevector changes little witandQs re-

mains significantly smaller than the oth@r At «., there is a
weakly first-order phase transition into a disordered statte
@1 = Q3 = @5 = 0. This highly anisotropic mean-field solu-
E. Quasi-Two-Dimensional Spin Liquid tion consists of decoupled quasi-one-dimensional chaiitis,
Q- contributing the only non-zero correlation. The phase dia-
i i , gram for the general anisotropy model with parameters mod-
In this state, all inter-plan€) vanish: @3 = Qi =  g|jing La,LiMoOy is given in Figure 6. As before, we expect

@5 = Qs = 0. The system then consists of decoupled tWO'l/N corrections to remove this decoupling.
dimensionalz-y planes in this mean-field theory. The tran-

sitions into this state, from either the ordered or disaeder

intra-plane states fodo,: < Jin, are weakly first-order. The ] o )
minimum (short-range order) wavevector no longer takes the | Anisotropic Spin Liquid  ~AF Magnetic Order

semiclassical value, instead taking a different value antbe 0 0.986
classical solutions (9), with, ~ 0.15.

D. Three-Dimensional Intra-Plane Spin Liquid

FIG. 6: Phase diagram as a function«ofor the general anisotropy
model with parameters for L&iIMoOg, from Table I. Forx larger
thank. = 0.986, the system is in a three-dimensional magnetically
ordered state, as in the semiclassical limit. kemaller thark.., the

F. Tricritical Point and Destruction of Order system is in an anisotropic and highly decoupled spin lictide.

We find a tricritical point at/out = 0.58Jin separating the
intra-plane spin-liquid phases from they plane Néel ordered
phase. Fotli, > Jout > Jout, the ordered state first enters the
three-dimensional spin-liquid state ass decreased. A first-
order transition to the two-dimensional spin liquid folleas

r decreases further. Therange of this three-dimensional  Tyo comparisons to the planar anisotropy model are rele-
spin liquid narrows agy reaches tricritical point, as seen in yant. The first is that at large exchange anisotropy, the mean
Figure 5. For/out < Jout, in-plane coupling pushes the system fie|q theory continues to predict immediate transitionsrfro
to decouple. However, we expect that te= 0 decoupling  magnetic order into maximally decoupled spin liquid states
seen in all three mean-field spin liquid states is an artidéct adgitionally, this anisotropy stabilizes these decouysteedes.
the mean-field theory, and that N corrections will restore a gy the LaLiMoOg parameters, we see a marked increase in
small yet non-zero value to thege ke, Which falls quite close to 1. This saddle-point solution
The criticalx value of the destruction of magnetic ordering, suggests that th8 = 1/2 system must be very close to the
Ke, is fairly small in this planar anisotropy modet. ranges transition to a spin-liquid state, even if magnetic ordezrev
from 0.1 for large Jou to 0.4 for smallJou. In the physical tually appears at very low temperature. The effect of furthe
N =1 casex = 1 corresponds to the “most quantum” limit quantum or thermal fluctuations may be sufficient to destroy
of S = 1/2. Our N — oo solution indicates that ordering is the order. This could explain why no long-range order is ob-
likely to occur, even though mean-field theory overestimate served in LaLiMoOg4 down to 2 K, whileuSR shows at most
ordering. Whilex, will differ in the exact N = 1 theory, short-ranged order. The distortion of 4laMoOg from the
the values ok, ~ 0.1 — 0.4 are too small to account for the cubic perovskite structure is key in moving beyond the mag-
behavior of LaLiM0oOg. netic order predicted by the planar anisotropy model.

The parameter set for 82aReQ in Table | behaves sim-
ilarly, although the transition occurs at a smakgr= 0.41,
similar to the values from the planar anisotropy model.



B. Corrections to In-Plane and Out-of-Plane Anisotropy 1 ‘ ‘
=014
0.9 =0.16 —— 1

While the Table | parameters give a good picture of the =0.19 -
anisotropy of LaLiMoQg, they will not be quantitatively cor- 0.8 ¢ =0.24 |
rect. We wish to look at deviations due to the inclusion of o 077 fg%g 1
spin-orbit coupling, from the viewpoint of in-plane and out x 06 TEem e i
of-plane anistropy. The change in orbital occupation vaH r
sultin a reduction ofl,.,-mediated coupling as spin-orbit cou- 057 ]
pling increases, along with new contributions, primariiyt-o 04} s
of-plane, fromd,, andd,, occupation. From these consid- 03 -

erations, we estimate changeshpso as to minimize the re-
sulting anisotropy, thus estimating a lower bounddpupon
inclusion of spin-orbit coupling. We determine the effeeti
couplingsJ,, in a manner similar to model (5), but with in-
trinsically anisotropic exchange modified by orbital ocaup
tion. In general, we have

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Ro

FIG. 7: (color online). Critical value. of destruction of magnetic
order. Two types of anisotropy are considere; is the ratio of
the anisotropy withinc-y planes, whileRo is the ratio of anisotropy

1 between these planes.
T = cos (6)" T2 + £sin (0)' T35, (20) P

with 0 as defined in (3). While thé = 0 spin-dimer parame- VIl FINITE TEMPERATURE

ters giveJxY, the J¥*¥# are unknown. Since they arise from

octahedral tilting, the in-plané’*¥* will be quite small, sim- Thermalfluctuations of the quasiparticles in (15) introgluc
ilar to how the out-of-plang®¥ are small. Since.25 sin (9)* beyond quantum fluctuations, another mechanism inducing
is also small, we ignore that term by estimatififf} = 0. disorder. At nonzero temperatures, these excitations have

For the out-of-plane interactions, we will make a large-esti thermal Bose distribution. The energi() and the mean-field
mate for.J®*¥* to minimize the out-of-plane anisotropy, by €duations, (15) and (B4), are modified accordingly. Thermal
taking J¥%%%, = J2Y, the largest exchange scale in the prob-fluctuations will reduce magnetic ordering and correlation

3,456 — We see different finite temperature behavior dependingen th
lem. In terms of the spin-dimer parametgf3”, we estimate eemp P 96
state (ordered or spin liquid) seenZat= 0 for a given set of

the change in magnitude of, due to the change in orbital 7 and
occupation from spin-orbit coupling by taking n anar.

4
J1,2 = cos (0) Jﬁg, A. Zero-Temperature Disordered Phases

1
J. =cos () J5Ps o+ ~sin (0)* 5P, (21
356 = 08 (0) 556+ 4 sin (6)" 72 (21) From disordered phases, Adncreases, the magnitudes of

all Q decrease. The smaller the valugpatT = 0, the lower

For the case of >> A, we find thats, reduces t@).86. How-  the temperature at whiafj reaches zero. At a large enough
ever, for a moderate case df= A, we find that there is only témperature, all) are zero, describing a perfectly paramag-
a slight reduction in:., to 0.98. For moderate values of/A, ~ Netic state, where spins are independent and completely un-
these mean-field results indicate that the system is sidecto ~ correlated. This unphysical behavior at high temperatsire i

a disordered state; however, this will be sensitive to theeva typical of N' — oo solutions of Schwinger boson mean-field
of A/A. theories, and disappears for smaller valued/df

Exchange anisotropy has shown to be very important, from
the results for the spin-dimer parameters and the spin or- .
bit coupling rescaled values (21). To better understand the B. Zero-Temperature Magnetic Phases
combined effect of in-plane and out-of-plane anisotropg, w
consider a model with slightly less than the full anisotropy From ordered phases, @sincreases, the condensate den-
whereJ; = RiJs, J3 = Jis = RoJs, andJs = Jg = sity n decreases along with the mean-field parameters.
RoR;J2. This captures the in-plang?) and out-of-plane It similarly reaches zero at a large enoughAt largex, the
(Ro) anisotropy, differing from the full anisotropy only in the transition to the perfect paramagnet state is first-ordéh w
very small exchange parametefs and Js. In Figure 7 we the system remaining in the ordered state untilcalandn
showk, as a function oo, for several values aR;. We see  discontinuously jump to zero. This occurs even for moderate
that x. decreases fairly evenly as eithBp or Ry increases. values ofx, such asc ~ 0.5 in the planar anisotropy model.
This confirms that both in-plane and out-of-plane anisagtrop For instance, with/yy; = 0.54Jin andx = 0.5, this transition
are important in securing a large. occurs atl’ = 0.44Ji,. With 6 = —45 KandS = 1/2,
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the transition temperaturB = 53 K, an overestimate to be C. Heat Capacity
expected of mean-field theory.

The presence of the perfect paramagnet state is an artifact
For smallers, close to the disordered state boundary, thepf the mean-field theory. Regardless, the magnetic contribu

transition is second order. Furthermore, the order can be dgjon to the heat capacity is an important physical quarsity|
stroyed before thé) become zero; the system has a secondcan be reliably calculated in this approach at low tempera-
order transition to a thermally disordered state beforeré®d  tyres. Cy is found straightforwardly fromal(#)/dT". In the
the perfect paramagnet state. We show such an example jfagnetically ordered states, we find that o 7 at low tem-
Figure 8. Herer = 0.2, just above the zero-temperature crit- peratures. This is expected from three-dimensional antife
ical ki for Jour = 0.54Jin. AtT = 0, the transition with vary-  magnetic spin wave contributions. In the disordered states
ing x went from ordered state directly into a quasi-two dimen-c;, exp (—Aq/kpT). Ag scales roughly with the spin
sional Spin ||qU|d At finite temperature, we see that there i gap, as expected for gapped states. Unfortuna‘[e|y’ thedlatt

match material for Lg.iMo ¢ was not useful in subtracting the

lattice contribution to the heat capactyWithout clear data

for the magnetic contribution to the specific heat, direcheo

0.05 parison is not feasible. For a system close to the orderamyg tr
sition, such as the general anisotropy model fosLlisoOg,
ol ‘ the T3 behavior persists only at extremely low temperatures,
’ further complicating potential comparison.
-0.05 f ,
o1l | VIIl. CONCLUSION
oas LT i We have modelled the effects of monoclinic distortion and
spin-orbit coupling intd! or 5d! double perovskites. Locat
ozl | axis distortion of the magnetic ion-oxygen octahedra ckdng
' d., orbital occupation compared to the othgy orbitals.
o5 | Geometriqal effects of mqnoclinic distortion changed talbi
' overlaps, introduced multiple exchange pathways and gener
0al 82 ,,,,,,,,, | ated significant anisotropy. Considering spin-orbit congpin
- Condensate conjunction with the locat-axis crystal field yielded a lowest-
Density energy doublet of states and a pseudo-spi-Heisenberg

-0.35

o0 005 01 015 02 025 03 model from antiferromagnetic interactions. We considered
T@,) first the geperall case where interactions between sites on
y planes differ in strength from interactions between these
planes. Thiglanar anisotropy model was studied for a gen-
FIG. 8: (color online). Mean field and condensate densitygenta)  €ral ratio of these two couplings. Geometrical changesef th
destruction with increasing temperature, shown far = 0.54Jin monoclinic distortion induce further anisotropy amongithe
andx = 0.2 in the planar anisotropy model. Abo# ~ 0.1Jin,  teractions, especially within the-y plane, leading to thgen-
the magnetic ordering is destroyed, leaving a thermallprdisred  eral anisotropy model, studied for particular parameters mod-
state. AsQ)s (blue) andQ, (red) become zero, the system enters ag|ling La,LiMoOg, estimated from spin-dimer calculatid.
two-dimensionally or completely decoupled state, respelgt We solved both these models in the saddle-point limit of
the Sp(V) generalization of the Heisenberg model. Semi-
classical ordering was determined to be Type | antiferromag
a window,0.1Ji, < T' < 0.15Jin, where a three-dimensional netic, with antiferromagnetic order on two of they, z-z,
disordered state exists, in contrast with the decouplitngibe -2 planes, and ferromagnetic order on the other. The\3p(
ior of theT = 0 mean-field theory. method connected the semiclassical results to the limétrg&l
guantum fluctuations. The large interaction anisotropyhef t
The general anisotropy model with 4aMoOg parame- general anisotropy model predicted disordering at a ket
ters shows similar behavior. Howeveryat 1, the transition  largex. = 0.986. The N = 1 pseudo-spirl /2 system was
from the ordered state looks weakly first-order, with the sys determined to be very close to a disordered state, even if or-
tem directly entering a quasi-two-dimensional decouplates der sets in at a low temperature. This could explain the lack
where onlyQ; andQ-, both in thez-y plane, are nonzero. A of long-range order seen down to 2 K indlaMoOg. Fur-
fully three-dimensional disordered state is not predittede  thermore, estimates of the effect of spin-orbit couplinghua
by the finite-temperature mean-field theory. Nonetheléss, t spin-dimer calculation parameters of Table | reduggdnly
case illustrates how fluctuations destroy magnetic orddr anto 0.98 for moderate strength of spin-orbit coupling. The sys-
inhibit coupling in the spin-liquid states. As before, we ex tem is still close to a disordered state in this case.
pectl/N corrections to further restore correlations. Further experimental and theoretical inquiries follow as
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natural extensions of our investigation. Single-crystqlez-  The corresponding saddle-point solution giyefsom
imental results would be useful, primarily in determinihg t

short-range ordering wavevector of laMoOg. Results at 1= i Z 1 ' (A5)
temperatures lower than 2 K could determine specifically how N, NBD(k, 1)
antiferromagnetic order is being suppressed. Finallyi; est

mates of the strength of the spin-orbit coupling and crystalThe spin-spin correlation function scales as

field splitting would guide a more precise model of the mon-

oclinic distortion. (Py - Prr) X s —xc (A6)

1
BD(k, )
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Appendix A: Classical O(N) Model Z < 500“171#17 k€ + h.c.

We begin by writing the real-space partition function fag th i 1 Z (bT b ) iz By, bemt \ .
Heisenberg Hamiltonian on the FCC lattice, N,N 4 bt DL\ B g bT_km ’

Z= / D¢Dpexp (—S(¢, 1)), whereS(g, 1) = By = ’Z J5. Qs sin (k- 0n)

; ; (B1)
ﬂz[ L, Moo, 0~ V)| (D)
whereN; is the number of sites in the system.

. . The quadratic part of the mean-field Hamilto-
Here, theO(NN) model generalizes the spip from a three- nian in (B1l) is diagonalized by a standard Bogoli-

component vector to an N-component vector. The firs 9

step is to take the Fourier transform defined by = IUbOV trfl/n; fo_rmgloi QW;EI;(];[h% )?zuafr'@aréggoniﬂig%y
1 ; . H i n n ’

T Yk q.bk exp (—tk - r;), V\./hereNs is the number of sites quadraticterms are

of the lattice. After the Fourier transform, we have

1
S po,o1 > ~ > wr (1 + b+ ) - (B2)
I VRt T Vi VRd
NN ) + R Xk: | x| N £ ( )
L Here, the transformation is defined by = T !~, where
9 + Z Js,, cos (k- 8y) (A2)  the columns off—! are the eigenvectors ofM, M is the
guadratic Hamiltonian matrix in (B1), and tR&vV x 2N 75 is
7 / du [ ] déwdd exp (-9). (A3)  givenby
k
. . o dap a< N
We perform the Gaussian integral ovar and¢y;, giving Nap = Cbuy a> N
D(k D(k, p)NS Nﬁ .
Z < [ dpexp N N — Zl , The structure of the condensate can be determined from the
associated mean-field equatiof\(?{)/0z7 = 0. The solu-
tion to the disordered case & 0) has a gapped dispersion.
D(k,p) == + Z Jncos(k-6,). We can track when the gap vanishes and bosons begin to con-
n=1 dense. We find that], is a linear combination of condensates

(A4) at the minimum wavevectorsk;: xl = 10—k, + C20k+k, -
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We then rewrite the part of the mean-field energy dependingn the condensed phase, to ensure a gapless dispefsien,
onz; and obtain the mean-field equation =3, JnQnsin (kg - 8,) > 0. The form of;ct follows as

1 0E, u N Ty = —iC30k—k, + I Okphy-
= = —X
NN Oz, N ™

1 . .
N lz JsQs sin (k - 5)] (—c10k,—k, —iC20kk,) . (B3) We arrive at the diagonalized Hamiltonian (15). From this
Sl follow the mean-field equations

1 OF 1 I
— =0=—-1-K+n+ — _—,
NSN a/L s ; Wk
1 oF . 1 Zn JnQp sin (k ) 671) .
NSN(%?—m:O:JQO—FTLJASIH(kl6m)_ﬁs; Wk (JmSIH(k'5m))a
1 OF . .
NSN%:O:M+;JnQnsm(k1-5n) (if n > 0). (B4)
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