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Abstract 

We demonstrate successful application of first principles-based thermal conductivity calculation on 

half-Heusler compounds that are promising environmental-friendly thermoelectric materials. Taking 

the case of a p-type half-Heusler structure, the harmonic and anharmonic interatomic force constants 

were obtained from a set of force-displacement data calculated by the density functional theory. 

Thermal conductivity was obtained by two different methods; (1) Boltzmann-Peierls formula with 

phonon relaxation times calculated by either Fermi’s golden rule of three-phonon scattering 

processes or spectral analysis of molecular dynamics phase space trajectories, and (2) Green-Kubo 

formula for heat current obtained by equilibrium molecular dynamics simulations. The calculated 

temperature dependence of thermal conductivity is in reasonable agreement with experiments. The 

method was extended to alloy crystals assuming the transferability of interatomic force constants. By 

having access to accurate phonon-dependent transport properties, the contribution from an arbitral 

subset of phonon modes can be quantified. This helps understanding the influence of nanostructures 

on thermal conductivity.  

 

 

PACS numbers: 66.70.-f, 63.20.kg, 84.60.Rb, 71.15.Mb 
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I. INTRODUCTION 

Detailed and accurate understanding of phonon transport in semiconductors and dielectrics 

enables better understanding of heat transfer in microelectronics and more superior thermoelectric 

materials [1, 2]. Use of nanostructures with characteristic lengths that are smaller than the phonon 

mean paths has been shown to be particularly effective in reducing thermal conductivity [3, 4]. 

Thermoelectrics is an application that can benefit greatly from such an approach, where an ideal 

material would have low thermal conductivity relative to the power factor [5]. The merit of 

nanostructuring lies in their potential not only to reduce the lattice thermal conductivity but to do so 

without sacrificing or even enhancing the power factor by taking advantage of the difference in the 

mean free paths of phonons and electrons, and the carrier filtering/tunneling at the interface [6-8]. 

Despite the strong demand motivated by the above applications, accurate calculation of intrinsic 

lattice heat conduction, even for bulk monoatomic crystal, has been challenging due to its 

anharmonic nature. Despite the partial success of the semi-empirical potentials in reproducing 

thermal conductivity [9, 10], as most of them are not tuned for anharmonicity, there is no assurance 

that they would deliver the correct microscopic picture such as the mode-dependent phonon 

transport properties. Challenging this situation, recently, thermal conductivity calculations from first 

principles have been performed by extracting anharmonic interatomic force constants (IFCs) directly 

from the density functional perturbation theory (DFPT) calculations, which have successfully 

reproduced the experimentally measured thermal conductivity of bulk monoatomic crystals, namely 

silicon, germanium and diamond [11, 12].  

The next non-trivial challenge now is to apply the first-principles-based approach to more 

complicated structures such as multi-atomic crystals and alloys. Since the full DFPT calculation of 

these systems would demand computational resource that is too large to perform in the material 

design routine, we need alternative methods to extract anharmonic IFCs from first principles 

calculations. We overcome this by adopting the direct method developed by Esfarjani and Stokes [13, 

14]. In this method, the anharmonic IFCs are extracted by fitting their general expression to a set of 

Hellman-Feynman forces due to various atomic displacements calculated by density functional 

theory (DFT). The fitting can be performed, in theory, for arbitral number of force-displacement data, 

and thus the computational load can be tuned by compromising between the load and the accuracy of 

the IFCs depending on the target of analysis. The approach has been recently shown to accurately 

reproduce experimentally measured bulk silicon thermal conductivity [14]. 

In this study, we demonstrate application of the direct method to half-Heusler (HH) compounds. 

Half-Heusler compounds usually have a small band gap when the total valence electron count is 18, 

and exhibit promising thermopower when properly doped [15, 16]. With their high thermal stability 

and environmental friendliness, HH compounds are attractive for solid-solid heat to electricity 
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conversion. On the other hand, among the commonly used thermoelectric materials, they have 

relatively high lattice thermal conductivity in bulk form, and therefore, the reduction of lattice 

thermal conductivity is a key issue to further enhance their figure of merit. Recently, such aspect has 

been explored by nanostructuring the HH compounds, which has achieved nondimensional 

figure-of-merit (ZT) of 1.0 for n-type (600-700℃) [17] and 0.8 (700℃) for p-type [18] materials. 

Here, we present the case of ZrCoSb HH compound, which has been shown to be a promising 

base material for p-type thermoelectrics [18, 19]. Based on the anharmonic IFCs extracted from DFT 

calculations, thermal conductivity was calculated via Boltzmann-Peierls formula with phonon 

relaxation time calculated either by Fermi’s golden rule of three-phonon (normal and umklapp) 

scattering processes or by spectral analysis of atomic trajectories obtained from equilibrium 

molecular dynamics (EMD) simulations, using potentials obtained from DFT calculations. Thermal 

conductivity was also directly calculated by using the Green-Kubo formula for heat current from 

EMD simulations. The approaches are validated by a comparative study among the different 

methods and also with reported experimental data. EMD simulations further allow us to investigate 

the mass-difference scattering effects in alloyed HH compound, which is demonstrated here by 

performing thermal conductivity calculations of various ZrCoSb-based alloy materials. The overall 

result reveals mode dependent phonon relaxation time and contribution to thermal conductivity, 

which are useful for designing thermoelectric materials in forms of alloys and nanocomposites. 

 

II. Methodology 

A. Interatomic force constants 

Accurate anharmonic interatomic force constants (IFCs) are crucial for thermal conductivity 

calculations. Particularly for thermoelectric materials, the demand for accuracy is high since thermal 

conductivity, by inverse-proportionally influencing the figure of merit, sensitively impacts the 

energy conversion efficiency. To this end, we take non-empirical approach based on first principles 

calculations. The first principles calculations of cubic IFCs have become accessible even to 

non-specialists through distributed codes [20] that use the Density Functional Perturbation Theory 

(DFPT) method. The DFPT method finds IFCs of crystals through the 2n+1 theorem [21], e.g. cubic 

IFCs can be calculated from the linear response of the wave function. On the other hand, in the 

current study, for the sake of applicability to complex thermoelectric materials as discussed above, 

we have adopted the direct method [13, 14]. The direct method finds IFCs from the variation of 

Hellmann-Feynman forces due to the displacements of atoms from their equilibrium positions.  

The ground state energy of a crystal can be expressed in terms of IFCs by Taylor-expanding 

about the equilibrium configuration, 
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where the indices denote the ηth atom in lth primitive cell. The subscripts α, β, and γ label the 

direction of the Cartesian displacement u from the equilibrium position. Φ and Ψ are the harmonic 

and cubic IFCs, respectively. The residual force П is zero as V is expanded around the minimum 

energy configuration. This can be rewritten in terms of forces as,   
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By fitting this to a set of DFT calculations of a supercell with various atomic displacements, the 

anharmonic IFC matrix can be systematically calculated. Although, in the current study, we have 

considered only up to the cubic terms, the method allows us to extend it to higher order terms, with 

relatively small additional effort and computational load, which is a merit of the current direct 

method over the alternative DFPT method. The ranges of IFCs (number of neighboring shells of a 

given atom ηl) were assumed to be smaller than the supercell length and chosen separately for 

harmonic and cubic IFCs to minimize the fitting residual within the computationally affordable 

range. In the current work, we have included 5 and 2 neighboring shells for harmonic and cubic IFCs, 

respectively.   

A set of total energy calculations with different atomic displacements was performed for a 

supercell of a ZrCoSb HH. A HH compound has a cubic structure consisting of three 

interpenetrating face-centered-cubic sublattices and one vacant sublattice [22]. As drawn in Fig. 1, 

the conventional unit cell of a HH compound contains 4 primitive cells, each of which contains 3 

atoms. In this study, we take a cubic supercell of 2×2×2 conventional unit cell, which consists of 96 

atoms in total. The DFT calculations were performed using the VASP code under the generalized 

gradient approximation (GGA) for the electron exchange-correlation potential, with projector 

augmented-wave (PAW) pseudo-potentials [23]. The GGA uses the parameterization of 

Perdew–Wang (GGA-PW91) [24]. 4×4×4 Monkhorst-Pack [25] mesh was used to sample electronic 

states in the first Brillouin zone, and an energy cutoff of 400 eV was used for the plane-wave 

expansion, which were confirmed to give convergence of phonon properties to sufficient extent.  

The force-displacement data sets were obtained by systematically displacing one or two atoms at 

a time about its equilibrium position along Cartesian coordinates. Note that, as described in Eq. (2), 

the extraction of harmonic and cubic IFCs requires at least displacements of one and two atoms, 

respectively. Similarly, for each irreducible degree of freedom, an atom was displaced by ±Δr and 

±2Δr, where Δr is 0.01 Å. While the method in theory could work with any number of 

force-displacement data due to its fitting nature, in the current work, displacements in all the 

irreducible degrees of freedom were performed taking the symmetry into account. Once we have a 

set of force-displacement data, together with the symmetry properties, translational/rotational 
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invariance conditions, Eq. (2) can be fitted by using a singular value decomposition algorithm to 

obtain harmonic and cubic IFCs [13].  

  

B. Lattice dynamics 

Once the harmonic IFCs are obtained, the dynamical matrix for given wave vector q can be 

computed straightforwardly by Fourier transformation [26].  
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HH crystals are polar semiconductors and the Born effective charges are expected to influence 

the eigenvalues near the Г point, which would typically result in a red-shift of the longitudinal 

optical (LO) mode away from the transverse optical (TO) mode (LO-TO splitting). This aspect was 

approximated by adding so called the nonanalytical term [27] to the dynamical matrix D~ obtained 
from the fit to first-principles forces, 
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where Z, ε, and M are Born effective charge, dielectric constant, and atomic mass, respectively. The 

window parameter ρ (=0.35) was set so that the nonanalytical term becomes negligible at the zone 

boundaries. From the dynamical matrix, we are able to calculate the harmonic properties such as 

eigenvalues and eigenfunction. Note that the current framework calculates ground state properties 

for simplicity although ways to calculate anharmonic phonon spectra based on first principles have 

been recently developed [28]. 

Having access to the cubic IFCs allows us to compute the mode Grüneisen parameters, which is 

a useful measure of the anharmonicity of the crystal. Mode Grüneisen parameters, the change in the 

phonon-mode frequency with crystal volume, can be calculated as [29] 
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where e is the polarization vector component.  

The cubic IFCs also allow us to calculate three phonon scattering processes, a dominant source 

of intrinsic thermal resistance. This is commonly done in the (anharmonic) lattice dynamics (ALD) 

framework applied on cubic Hamiltonian [30-32]. By applying Fermi’s golden rule to the cubic 

Hamiltonian in a form of phonon generation and annihilation operators, the rates of three phonon 

scattering processes that satisfies the energy and momentum conservation can be expressed as 
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where, s, ω, and n are branch index, frequency, and population of phonons. N and ħ are the number 

of modes in Brillouin zone and Plank’s constant. The delta function imposes the energy conservation 

of the three phonon scattering processes. The three phonon matrix element A is given by 
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The delta function describes the momentum conservation during the normal (G=0) and umklapp 

(G=R) processes. The calculation was performed for a discrete set of q determined by nk×nk×nk 

mesh covering the first Brillioun zone. Once Γqs is obtained, the phonon relaxation time can be 

found by τqs=(2Γqs)-1. 
  

C. Molecular dynamics  

Once the potential function Eq. (1-2) is obtained, classical equilibrium molecular dynamics 

(EMD) simulations can be performed within Newtonian dynamics. Using EMD simulations, thermal 

conductivity can be calculated either from the phonon relaxation time by modal analysis of the phase 

space trajectories or directly from the Green-Kubo formula. Thermal conductivity calculations from 

EMD simulations do suffer from inherent statistical uncertainty due to thermal noise, and thus, 

typically becomes more computationally demanding than the ALD method to achieve the same level 

of certainty. However, it has some advantages depending on the target of analysis. One is the 

extendibility to complex systems, for instance alloy crystals as will be explored later, where ALD 

would need to deal with complicated eigenmodes. The other is, although not explored in the current 

work, the possibility of incorporating the higher order events whose implementation is far simpler 

than the ALD. 

Phonon relaxation times can be computed from (1) mode dependent total energy relaxation 

obtained by projecting the phase space atom trajectories onto phonon eigenmodes [33], or (2) from 

the linewidths of the phonon spectral energy density (SED) [34-37]. While the two methods deliver 

the same results when performed for the modes in the entire Brillouin zone of a bulk material [38], 

we have chosen the latter method for its simplicity as discussed in the following.    

The phonon SED is calculated by taking the power spectral density of atomic velocity [34] as  

2
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With this, one can map the SED in frequency-wavevector space. The scattering rate Γ can be then 
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obtained from the half-width-half-maximum of the Lorenzian profile fitted to each peak of the SED 

[34]. One can perform this analysis for arbitral subgroup of wavevector q, as long as the peaks are 

distinguishable. When the supercell is small enough and symmetry causes enough degeneration, one 

could integrate Eq. (8) over the entire wavevector domain and reduce it to the frequency dependent 

SED. 
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which is essentially the ensemble average of time domain power spectral density of the atomic 

velocity. In this study, the overlapped multiple Lorentzian peaks were fitted all together using the 

Levenberg-Marquardt algorithm [39]. The SED also gives the phonon density of states by taking the 

area of the Lorentzian profiles. Note the density of states here includes the frequency shifts caused 

by anharmonic effects at finite temperature. While this time domain approach introduces a source of 

error by fitting overlapped peaks all together, it has advantages in its simplicity and in extendibility 

to more complex systems such as alloys, where eigenmodes take complicated forms. For the current 

ZrCoSb HH system, we could perform this analysis up to n×n×n=8×8×8, above which the overlap of 

peaks were too severe for the fitting algorithm to function reasonably. 

 

III. RESULTS AND DISCUSSION 

A. Phonon dispersion relations 

Figure 2(a) shows the phonon dispersion relations of ZrCoSb HH crystal along the representative 

symmetry lines. The three atoms in the primitive cell give rise to nine phonon branches, one 

longitudinal acoustic (LA), two transverse acoustic (TA), two longitudinal optical (LO), and four 

transverse optical (TO) branches. The acoustic and optical branches do not overlap but the band gaps 

between them are small. The Born effective charge splits the LO mode from the associated TO mode 

(LO-TO split) around Γ. Between the two LO branches, only the one with higher frequency at Γ 

point exhibits noticeable LO-TO splitting of about 50 cm-1. The general features are consistent with 

phonon dispersion relations reported for other HH compounds such as ZrNiSn [40]. The dispersion 

of the highest LO mode in the off zone-center region depends on the choice of ρ. Therefore, it was 

confirmed that the choice of ρ does not influence the phonon relaxation time and thermal 

conductivity in the following calculations. In fact, we find that the inclusion of the nonanalytical 

term itself had only negligible effects. 

The corresponding mode Grüneisen parameters γG in Fig. 2(b) indicate the mode dependent 

strength of anharmonicity. The results show that anharmonicity in general is weaker for acoustic 

modes than for optical modes except around Γ point, where acoustic mode Grüneisen parameters 

exceed 1.5. The data at this long wave limit also clarify the directional dependence of anharmonicity. 
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Along Γ-X symmetry line, γG of LA mode is much larger than that of TA modes. On the contrary, 

along Γ-K, γG of TA modes overwhelms that of LA modes. Considering the eigenvectors of the 

acoustic modes, this indicates that in-phase displacement in [100] direction experiences much 

stronger anharmonicity than the displacement in [110] direction. This is understandable since atom B 

(Fig. 1) is displaced towards the vacant site for the [100] displacement whereas it is bounded by 

another atom B for the [110] displacement. Note that atoms A and C form a rock salt structure and 

are bounded isotropically. With the same logic, along Γ-L line, γG takes relatively large values for 

both LA and TA modes due to the unbounded [111] displacements of atom B. This confirms the task 

of vacant sites in HH compounds on enhancing the anharmonic effects compared with Heusler 

compounds AB2C with vacant sites filled with atom B. On the other hand, the overall magnitude of 

γG is still limited in a range comparable to Si [14] and smaller than PbTe [41], which, together with 

the relatively high group velocity, explains the relatively high thermal conductivity of HH among 

other thermoelectric materials. 

 

B. Phonon relaxation time 

The phonon scattering rate calculations in Eq. (6) were done for isotropic nk×nk×nk mesh points 

uniformly distributed in the first Brillouin zone. Figure 3 shows the frequency-dependent phonon 

relaxation time calculated for nk=14 at 300 K. One can evidently see a continuous profile with 

respect to frequency despite that the trends are quite different among the modes particularly between 

acoustic and optical modes. The phonon relaxation time of the acoustic phonons increases with 

decreasing frequency approximately as 2τ ν −∝ , a relation proposed by Klemens (τ=A0ω-2T-1) [42], 
which is widely accepted for relaxation of long wave phonons caused by the phonon-phonon 

scattering at high enough temperature. The curve with A0=1×10-18 K/s is indicated in Fig. 3. On the 

other hand, the optical phonons in overall have small phonon relaxation times with a peak at around 

5 THz. It is interesting that such trend with the peak in high frequency regime is commonly observed 

for various structures [14]. 

Figure 3 also shows the relaxation time calculated from the SED analysis of the atomistic 

velocity obtained from EMD simulations. Here, for the sake of comparison, we present phonon 

relaxation times from n=8 supercell (6144 atoms) EMD calculations, which have effectively similar 

number of wavevector points as nk=14 in the ALD calculations. Although the EMD data are 

scattered due to the inherent thermal noise, it clearly shows quantitative agreement with the lattice 

dynamics results. Note that the relaxation times are not assigned to branches in this case as we 

adopted the temporal SED approach. The agreement of the two methods assures the credibility of the 

time domain SED analysis for phonon relaxation time extraction. 

 

C. Lattice thermal conductivity 
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By using the phonon relaxation times obtained by ALD, thermal conductivity was calculated 

based on the relaxation time approximation. 

∑Ω
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where C=ħ ωqs ∂n0(ωqs)/∂T is the mode heat capacity with Bose-Einstein distribution n0, and Ω is the 

crystal volume. Since the finite periodic cell calculation cannot account for phonons with 

wavelength longer than the supercell length, whose mean paths are expected to be long, the size 

effect needs to be taken into account. One reasonable assumption here is that the size effect primarily 

comes from the missing thermal conductivity contribution from the long wave acoustic phonons. 

Then if we further assume these phonons have (1) frequency ω<<kBT/ħ, (2) branch-dependent 

constant group velocity υ0,s, and (3) branch-dependent quadratic density of states Ds=D0,sω2, together 

with the scaling τ=A0ω-2 T-1, the size effect of thermal conductivity at certain temperature should 

follow, 

∑ ∫ ∑

∑ ∫

= =Ω
−=

Ω
−≈

Ω
=

3

1 0

3

1

3
,0,0

0
0

0
2
,0,0

0

2

min,

max,

min,

3
)(

3
1)(

),()()(),(
3
1)(

s s
ss

k

BssB

s
sss

s

s

s

D
Tan

AkTd
T

ADk
T

dTDTCT

ω

ω

ω

υπκω
υ

κ

ωωτωυωωκ

,       (11) 

where a is the lattice constant. Hence, in the temperature regime with dominant phonon-phonon 

scattering (κ0~T-1), 
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where c0 is a constant. With this, the thermal conductivities calculated for nk=7, 8, 10, and 14 were 

extrapolated with respect to nk
-1 for each temperature. As shown in the subset of Fig. 4, the size 

effect agrees with the linear trend in Eq. (12) with negligible fitting residuals. The obtained bulk 

thermal conductivity in Fig. 4 confirms κ~T-1 in the current temperature range (100 K<T<1000 K), a 

typical trend in a crystal dominated by intrinsic phonon-phonon scattering.  

Thermal conductivity was also calculated from EMD simulations at 300 K using the Green-Kubo 

formula, 

∫
∞
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After equilibration for 100 ps, the ensemble-averaged integral was calculated from heat flux Jq for 

one-million time steps (1ns) of 40 simulations with different initial conditions. The calculations were 
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performed for different system sizes up to n=10 supercell (12,000 atoms). As listed in Table 1, the 

size effect is much weaker for the EMD compared with ALD, and data converge within the range of 

the standard error. The converged value agrees well with the ALD data (Fig. 4). 

From EMD simulations, thermal conductivity can also be calculated using the time domain SED 

method. In this case, the frequency space integration needs to be approximated as 
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Density of states D(ω) and τ(ω) were taken directly from the SED. An alternative way to calculate 

D(ω) would be to use Debye approximation and average over the symmetry lines [10], however, it 

turned out to be much less accurate for the current case. To obtain the effective group velocity υeff
2, 

the magnitude of group velocity υqs
2 obtained from harmonic lattice dynamics calculation was 

averaged over the first Brillouin zone and branches as
 

∑ ∑

∑
∑

=

−

= ⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−

−

⎥
⎦

⎤
⎢
⎣

⎡
=

9

1

2
19

1

2

)(

)()(
)()(

s
s

s

s
sss

s
seff

f
f

q
q

q
qq

ωωδ

ωωδυω
ωωυ

,  

⎪
⎩

⎪
⎨

⎧

>
≤≤

<
=

)(0
)(1

)(0
)(

max,

max,min,

min,

s

ss

s

sf
ωω

ωωω
ωω

ω
.                       (15) 

 
The obtained thermal conductivity is in reasonable agreement with both Green-Kubo and the ALD 

results (Fig.4). This gives access to an extremely simple way of probing the microscopic property of 

phonon transport. With a proper approximation of the frequency-dependent group velocity, one can 

predict thermal conductivity by looking at the temporal history without having to deal with spatial 

information. This is particularly useful for lightly alloyed system, where the change in the eigenstate 

makes the full-modal analysis dramatically complex, while modification in the group velocity in 

average is expected to be minor. 

Despite the agreement between ALD and EMD calculations, the difference in the size effect 

implies there might be more to it. The convergence of EMD thermal conductivity at small size has 

been observed by other researchers. For instance, thermal conductivity calculations from MD 

simulations using Stillinger Weber potential [43], have shown that 4×4×4 supercell (512 atoms) is 

enough to achieve the convergence [44]. Despite the reports, it is not clear at this point the reason 

why thermal conductivity should converge at such small supercell sizes despite the potential 

contribution from phonons with wavelengths larger than the supercell length. One speculation is that 

there might be a counteracting mechanism that weakens the size effect; as supercell size becomes 
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smaller, discretization of modes is expected to reduce the phonon scattering rates due to less possible 

scattering process satisfying the momentum and energy conservation. This will virtually increase the 

thermal conductivity and thus the size effect will have opposite trend from the former one. 

Investigation of these aspects would require a systematic study on configuration dependence of 

thermal conductivity, which is out of scope of the current study, however, it will be explored in the 

future. 

The bulk thermal conductivity was compared with the reported experiments that are available for 

low [45] and high [46] temperature regimes. The two sets of experimental data exhibit mismatches 

in the value and slope at 300 K, presumably reflecting the difference in purity and/or crystalinity of 

the measured samples. Note that, although experiments measured the total thermal conductivity, the 

contribution of electrons are expected to be small for the undoped ZrCoSb HH material with low 

electrical conductivity [46]. The calculated bulk thermal conductivity falls closely above the two 

experimental data, with better agreement to the high temperature measurements of Sekimoto et al. 

[46]. Overestimation by the calculation is reasonable since the calculations are done for pure crystal 

whereas the samples in experiments are expected to contain some impurities and defects. It is also 

reasonable that the agreement between the calculation and experiments becomes better as 

temperature increases since the dominancy of the phonon-phonon scattering becomes stronger in 

comparison with impurity scattering. Taking these points into account, it should be fair to state that 

the calculated thermal conductivity is in a reasonable agreement with the experiments. 

The possible cause of the moderate discrepancies between calculation and experiments, and 

between the low and high temperature experiments were investigated by assuming the influence of 

impurity scattering. To this end, effect of impurity scattering on the phonon relaxation time was 

expressed as the Rayleigh-type scattering model and added following the Matthiessen’s rule as, 

411 ω
ττ

B+=
′

,                               (16) 

where B reflects the strength of impurity scattering [47]. The calculation can be fitted separately to 

the temperature dependences of low and high temperature experiments with B=3.6×10-43 s3 and 

9.1×10-44 s3 respectively. Although this part of the analysis is no longer first principles, it 

demonstrates that the pure crystal data obtained from first principles can be combined with a model 

to probe the extent of impurity scattering in the measurements. 

 

D. Mode dependent thermal conductivity 

The strong frequency dependence of phonon relaxation time (Fig. 3) gives rise to strongly 

multiscale nature of phonon transport. This is even more evident in phonon mean free path 

Λks(=|vks|τks), which varies by several orders of magnitude with respect to the phonon frequency in 
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the current frequency range. Let us now discuss the implication this has to nanostructured materials 

[6, 17, 18]. If we consider nanostructures with characteristic length scale L, the phonons with mean 

free path Λ<<L are transported diffusively between the interfaces behaving similarly to those in bulk 

material. On the other hand, phonons with Λ>>L are transported ballistically between the interfaces 

and thus can be strongly influenced by the interface scattering. In other words, mean free paths, in a 

rough sense, gives a sense of the potential for the phonon transport to be affected by the 

nanostructures. 

In this course, an important measure is the amount of contribution from phonons with various 

mean free paths. This can be explored by calculating the cumulative thermal conductivity with 

respect to the phonon mean free path [48] described as, 

∑
Λ<Λ

Λ=Λ
0

)(
3
1)( 0

s

s
sssc C

V

q

q
qqq υωκ .                       (17) 

The cumulative thermal conductivity at 300 K was calculated from ALD with nk=14 mesh. Now, 

extrapolation to the bulk value needs to be carried out in a similar manner as Eq. (11). By expressing 

Eq. (11) in terms of Λ, we obtain, 

∑∑ ∫
=

−
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∞
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0
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,0,02/3
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00 36
)(

0 s
ss

B

s
ss

B
c D

VT
AkdD

VT
Ak υκυκκ

        (18)
 

Hence, the values calculated with finite mesh sizes can be extrapolated with the function 

κc=κ0-c1Λ0
-1/2, where c1 is a constant. As shown in Fig. 5, the cumulative thermal conductivity profile 

reveals that the phonons with extremely wide range (from 10 nm to 10 micron) of mean free paths 

have noticeable contribution to thermal conductivity.     

From the cumulative thermal conductivity, one can gain insight into heat conduction in 

nanostructured materials. Recent experiments have shown that it is possible to nanostructure HH 

compounds with average grain sizes of the order of 100 nm, which has significantly enhanced the 

figure of merit [18]. Our calculations show that phonons with Λ>100 nm have potential to carry 50 

percent of the heat in a bulk material. In other words, if the interface back-scattered all the ballistic 

phonons, the nanostructuring with length scale 100 nm would have potential to reduce thermal 

conductivity by half, which supports the large effect seen in the experiments. Of course, in reality, 

the effect of nanostructure would depend on the interface properties such as phonon transmission 

function, and thus, this analysis only gives us the upper limit of such effects. In this sense, more 

valuable indication from this analysis might be that there is plenty of room for further reduction of 

thermal conductivity by nanostructuring HH compounds.   

 

E.  Extension to alloy systems 
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In practical situations, thermoelectric materials are often alloyed to reduce thermal conductivity 

and to control carrier concentration. For HH materials, thermal conductivity reduction is often 

realized by forming HfyZrzTi1-y-zBC [18, 19, 49]. Here, using EMD simulations, the alloy effects of 

HfxZr1-xCoSb, ZrxTi1-xCoSb, and HfxTi1-xCoSb are investigated by randomly alloying Hf, Zr, and Ti 

with fraction x based on the mass approximation concept [50], where only the atomic masses are 

varied by keeping the IFCs the same. Such transferability of IFCs has been empirically shown to 

work between GaAs and AlAs, which have practically the same lattice parameter [50]. The lattice 

constant for HfCoSb, ZrCoSb, and TiCoSb are 6.06 Å, 6.10 Å, and 5.94 Å, therefore we expect 

calculations of HfxZr1-xCoSb to be more accurate than the others. While lattice dynamics would be 

able to model the alloy effect based on the perturbation theory [51-54], the EMD simulation allows 

us to directly calculate the thermal conductivity.  

Thermal conductivity of HH alloys was calculated by Green-Kubo method for various x. The 

calculations were performed for two different supercell size n=5 and 8, where the size effect was as 

small as that in the pure crystal case. For each configuration, the thermal conductivity was averaged 

over 3 different random configurations (8 simulations with different initial conductions per 

configuration). As shown in Fig. 6, thermal conductivity of Zr0.5Ti0.5CoSb, Hf0.5Zr0.5CoSb, 

Hf0.5Ti0.5CoSb were calculated to be 6.4, 3.3, and 1.8 W/mK, respectively. The value of 

Hf0.5Zr0.5CoSb is in reasonable agreement with the lattice thermal conductivity of 

Hf0.5Zr0.5CoSb0.8Sn0.2 measured by Yan et al.[18]. Note that mass difference scattering due to Sb-Sn 

substitution is expected to be minute due to their small mass difference. Figure 6 also shows thermal 

conductivity of HfxZr1-xCoSb and HfxTi1-xCoSb alloys with respect to the alloy fraction x. The result 

shows that thermal conductivity rapidly decreases for small x, and becomes modest as x increases. 

Such data quantitatively clarifies the sensitivity of the thermal conductivity to the alloy fraction and 

are useful for optimization of the alloy components.    

 

IV. CONCLUSIONS 

We have demonstrated application of first-principles-based thermal conductivity calculation on 

p-type half-Heusler compounds, promising next generation thermoelectric materials. Harmonic and 

cubic force constants were obtained based on a set of force-displacement calculations by DFT. With 

the non-empirical force constants, harmonic and anharmonic phonon properties were characterized 

through phonon dispersion relations and mode Gruneissen parameters. Mode relaxation times were 

calculated by anharmonic lattice dynamics and spectral density analysis of molecular dynamics 

phase space trajectories. They quantitatively agree with each other exhibiting key phonon transport 

characteristics such as inverse quadratic frequency dependence. Thermal conductivity was then 

calculated under the relaxation time approximation which agrees with direct calculation using 

molecular dynamics and the Green-Kubo formula . By having access to accurate phonon-dependent 
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transport properties, the contribution to heat conduction from an arbitral subset of phonon modes can 

be quantified, which helps understanding the influence of nanostructures on thermal conductivity. 

Finally, the possibility to extend the method to alloy systems has been demonstrated, showing that 

the current framework can be useful to characterize complicated crystal structures that often appear 

in thermoelectric applications, and to optimize the material composition or to design new 

phonon-engineered crystals.   
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FIG. 1: (Color online) The convectional unitcell of half-Heusler compound. A primitive cell consists 

of three atoms A, B and C. For ZrCoSb half-Heusler compound, A=Zr, B=Co, and C=Sb.  
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FIG. 2: (Color online) (a) the phonon dispersion relations and (b) the mode Gruneisen parameter of 

ZrCoSb half-Heusler compound.  
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FIG. 3: (Color online) Frequency-dependent phonon relaxation time of ZrCoSb half-Heusler 

compound at room temperature obtained by molecular dynamics (MD) and anharmonic lattice 

dynamics (ALD) calculations. The ALD data are assigned to transverse acoustic (TA), longitudinal 

acoustic (LA), and optical (O) branches.   
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FIG. 4: (Color online) (a) Tempeature dependence of bulk thermal conductivity κ0 of ZrCoSb 

half-Heusler compound calculated by anharmonic lattice dynamics (ALD). The results are compared 

with the molecular dynamics (MD) at 300 K and experiments in low [45] and high [46] temperature 

regimes. SED and GK denote data from spectral energy density and Green Kubo approaches. The 

parameter B denotes the strength of defect and impurity scattering in the Rayleigh-type scattering 

model [Eq. (16)]. The subfigure (b) shows the extrapolation of finite-nk thermal conductivity to 

obtain κ0 at different temperatures, which nearly collapses on top of each other when normalized by 

κ0 [Eq. (12)].  
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FIG. 5: (Color online) The cumulative thermal conductivity κc of ZrCoSb half-Heusler compound 

calculated by anharmonic lattice dynamics (ALD) and molecular dynamics (MD) calculations at 

room temperature. The cumulative thermal conductivity is obtained by accumulating contribution 

from phonons with mean free path of Λ0 or less [Eq. (17)]. The finite size results with nk=14 are 

extrapolated using Eq. (18). The dash-dotted line indicates the calculated bulk thermal conductivity 

κ0.  
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FIG. 6: (Color online) Thermal conductivity of alloyed half-Heusler (HH) compounds with various 

alloy fraction x. (Hf, Zr, Ti)CoSb HH alloys were modeled by assuming transferability of IFCs. The 

calculated values are compared an experimentally value for Hf0.5Zr0.5CoSb0.8Sn0.2 [18]. 
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TABLE 1: Thermal conductivity of ZrCoSb half-Heusler calculated by equilibrium molecular 

dynamics using Green-Kubo formula. 

n×n×n Number of atoms κ (Wm-1K-1) Standard error (Wm-1K-1) 

5×5×5 1,500 22.3 ±1.66 

6×6×6 2,592 22.4 ±2.23 

8×8×8 6,144 18.4 ±1.64 

10×10×10 12,000 23.4 ±2.03 

 


