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The influence of interface sink strength on the reduction of radiation-induced 

defect concentrations and fluxes in materials with large interface area per 

unit volume  M. J. Demkowicz1,∗, R. G. Hoagland2, B. P. Uberuaga2, A. Misra3 1Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 2MST-8: Structure-Property Relations Group, Los Alamos National Laboratory, Los Alamos, NM 87545 3Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545   We use a reaction-diffusion model to demonstrate that buried interfaces in polycrystalline composites simultaneously reduce both the concentrations and fluxes of radiation-induced defects. The steady-state radiation-induced defect 

concentrations, however, are highly sensitive to interface sink strength, η. Materials containing a large volume fraction of interfaces may therefore be resistant to multiple forms of radiation-induced degradation, such as swelling and hardening as well as embrittlement by solute segregation, provided that the interfaces have 

suitable η values.     
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I. Introduction  Radiation-resistant materials have long been recognized as critical to making nuclear energy generation maximally safe, clean, and economical [1]. “Radiation damage of materials,” however, does not refer to a single problem. Rather, it is an umbrella term for a host of degradation modes, such as swelling [2], hardening [3, 4], and embrittlement [5]. Further, mitigating one mode may exacerbate another.  For instance, buried interfaces—i.e. interfaces between adjacent components in a composite—are sinks for radiation-induced point defects [6-9] and may reduce swelling and hardening. In alloys, however, they are the cause of radiation-induced solute segregation (RIS) [10, 11], which in turn enhances corrosion and embrittlement. There may, therefore, be a tradeoff between decreasing radiation-induced defect concentrations by increasing their flux to interfaces and decreasing defect fluxes to inhibit RIS.  In this work, we use a reaction-diffusion model to show that maximizing the area per unit volume of buried interfaces simultaneously reduces both concentrations and fluxes of radiation-induced defects. The radiation response of materials where greatest reductions in both are achievable, however, shows extreme sensitivity to the sink strength, η, of the interfaces. Design of materials for radiation resistance thus requires both a high interface area per unit volume and control of η.  We base our model on composites of alternating layers of different phases, each of thickness l. Examples include multilayers synthesized using sputter deposition [12] and accumulated roll bonding [13] or lath martensite morphologies in ferritic/martensitic steels [14]. The interfaces between neighboring layers are sinks of varying efficiency for point defects [9, 15]. Their area per unit volume equals 1/l 



 3

and so may be controlled by choosing l. Some of these materials have proven to 

be remarkably stable under irradiation, exhibiting no intermixing or 

breakdown in layered morphology after sustaining several displacements per 

atom (dpa) of damage [9, 16], even at elevated temperatures [17] or when the 

successive layers are as thin as 2nm [18].  Multilayer composites are furthermore ideal model systems for studying the effect of interfaces on radiation response. Their periodic morphology may be analyzed in one spatial dimension using a reaction-diffusion model of a single crystalline layer bounded by two interfaces, as shown in Fig. 1. We expect, however, that the qualitative conclusions of our study will also hold for materials with more complex morphologies.   
II. Reaction-diffusion model  
Composite materials may exhibit a wide variety of responses to radiation, 

such as phase transformations, microstructure changes, or enhanced 

susceptibility to aggressive chemical environments [4]. Nevertheless, to 

isolate the effect of interfaces and their sink strength, η, on radiation-induced 

defect concentrations and fluxes, it is convenient to study a simplified model.  We consider only two species of radiation-induced defects: isolated vacancies and self-interstitials. This assumption corresponds well to light ion irradiation, which has been used in many experimental studies on multilayers [9]. Our model accounts for the creation of vacancy-interstitial pairs at a constant and uniform rate, their diffusion, and mutual annihilation.  We begin with a model where there are no defect sinks besides interfaces. This assumption is experimentally justified in several multilayer composites. For 
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example, transmission electron microscopy and x-ray diffraction investigations have not found appreciable quantities of dislocations or precipitates in as-synthesized and even severely plastically deformed Cu-Nb composites with sufficiently thin layers [19, 20]. Absence of dislocation substructures is attributed to efficient dislocation trapping at interfaces [21] while lack of precipitates is due to the well-controlled synthesis procedure, which does not introduce impurities, as well as absence of intermixing [12, 13]. We later show (see Section III) that our conclusions are not sensitive to this assumption by introducing hypothetical sinks with a bias for absorbing interstitials into our model.  Clustering of vacancies and interstitials has also been neglected. This assumption holds for sufficiently high temperatures, low collision energies, low irradiation rates, or low defect concentrations [4]. Should defect clusters form, however, they would also act as sinks for point defects and could diffuse independently, as well.  Under these assumptions, the concentrations cv and ci of vacancies and interstitials are described by the coupled reaction-diffusion equations  
∂cv
∂t

= Dv
∂2cv
∂x2 +K0 −Kivcvci

∂ci
∂t

= Di
∂2ci
∂x2 +K0 −Kivcvci

, 1 
 where K0 is the vacancy-interstitial pair creation rate, Kiv is their recombination rate coefficient, and Dv and Di are vacancy and interstitial diffusivities.  We investigate defect concentrations once a time-invariant steady state has been reached. The only time scales in our model are a) the time for defect recombination and creation rates to balance in the absence of diffusion and b) diffusion times over distance l. The former is proportional to  [4, 22] and is on the order of microseconds for room temperature He implantation in metals [9]. The latter is KivK0( )−1 2
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proportional  and equals ~12.5ns for interstitials and ~20s for vacancies at room temperature in a 10nm-thick Cu layer. The steady-state assumption is therefore justified in implantation studies of metal multilayers, which typically last several hours. It might not hold at cryogenic temperatures or in ceramics, where defect diffusivities are much lower than in metals.  Setting the time derivatives in Eqn. 1 to zero, introducing the changes in variables  
x = l

2
y

cv = K0Di
KivDv

m+ n( )

ci = K0Dv
KivDi

n−m( )

 
2 

 (m and n are scaled concentration variables expressible in terms of cv and ci using the definitions in Eqn. 2), and assuming concentration-independent diffusivities, the governing equations become  
∂2m
∂y2 = 0  3.a) 

1+m2( ) − n2 + s ∂2n
∂y2 = 0 , 3.b) 

 where s = 16DvDi
l4K0Kiv

. Integrating Eqn. 3.a) and using Eqn. 2 gives 
  

∂m
∂y

= const.⇒ Dv
∂cv
∂x

−Di
∂ci
∂x

= const. , 4 
 

l2 D
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i.e. the difference between vacancy and interstitial fluxes is constant throughout the layer.  Because our model geometry is symmetrical about the layer midpoint, we apply a no-flux boundary condition at x=l/2: ∂cv
∂x l 2

= ∂ci
∂x l 2

= 0 . Together with Eqn. 4, this 
says that steady state vacancy and interstitial fluxes are equal throughout the layer. In particular, point defects arrive at interfaces at equal rates, allowing their continuous trapping and recombination without a buildup of either.  Integrating ∂m

∂y
= 0  and using Eqn. 2, we obtain m = Kiv

4K0DvDi
Dvcv −Dici( ) = const . 

Thus, in the absence of distributed sinks, steady-state vacancy and interstitial concentrations are related through the constant m, regardless of location within the sample or boundary conditions applied at the interfaces. To assign a specific value to m, we assume that cv and ci have equilibrated with distant free surfaces, where they take on thermal equilibrium values, cv = cv
e,  ci = ci

e . Elsewhere, cv and ci may have other values, though related through the constant value of m, as set at the free surfaces. The free surfaces are not explicitly modeled, but must be present in any real material. A different value of m would simply alter the first term on the left hand side of Eqn. 3.b).  If the interfaces are perfect sinks, we have at x=0 (directly adjacent to an interface)  
cv 0

= cv
e,  ci 0

= ci
e . 5  For an imperfect sink interface, we define the sink strength, η, as the ratio of defect flux into that interface (Jimperfect) to the defect flux into a perfect sink interface (Jperfect) [23]:  
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η =
Jimperfect
J perfect

. 6 
 Because the fluxes of vacancies and interstitials throughout the layer are equal, different values of η are not needed for these two defect types. To study the influence of η, we first solve our model for a perfect sink interface using the boundary conditions in Eqn. 5, find the defect flux Jperfect, and solve again under the new boundary conditions −Dv ∂cv

∂x 0

= −Di
∂ci
∂x 0

= ηJperfect .  With m=const., Eqn. 3.b) may be multiplied by ∂n
∂y

 and integrated with respect to y, yielding  
1+m2( )n− 1

3 n
3 + 1

2 s
∂n
∂y
⎛

⎝
⎜

⎞

⎠
⎟

2

=C  7 
 where C is a constant of integration that depends on l and boundary conditions. The solution to this equation is the Weierstrass P-function [24]. We are not aware of any convenient analytical method of computing the value of C for a given l and boundary conditions, so instead we investigate the solutions to Eqn. 3.b) numerically using material parameters appropriate to Cu. These were obtained from the Voter Cu EAM potential [25] and are given in Table I.  Table I: Parameters for Cu used in the numerical solution of the reaction-diffusion model. The diffusivity of a is computed as Da = aCu

2 νae
−ΔEa

m kBT . 
Quantity Value

Cubic lattice parameter, aCu 3.615 Å 
Vacancy formation energy, ΔEv

f  1.26 eV 
Interstitial formation energy, ΔEi

f  3.24 eV 
Vacancy migration energy, ΔEv

m  0.69 eV 
Interstitial migration energy, ΔEi

m  0.084 eV 
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Vacancy migration attempt frequency, ν v  3.36×1013/s 
Interstitial migration attempt frequency, ν i  6.67×1012/s  The defect recombination rate coefficient was computed as Kiv = NraCu Dv +Di( ) , where Nr is the number of sites surrounding a vacancy where introduction of an interstitial leads to spontaneous recombination (following [4] we take Nr=12) and aCu  is the cubic lattice parameter of Cu. Using the SRIM program [26], we find that K0≈1025/m3s for typical He ion implantation experiments [9] while K0≈1020/m3s is more appropriate for nuclear reactor conditions [1]. The boundary value problem that describes our model was solved using the collocation method implemented in MATLAB.   

III. Radiation-induced defect concentrations and fluxes  Figure 1.b) shows a typical solution for cv and ci with T=300K for l=25nm and l=5nm. Both cv and ci have the same shape, but differ by a large multiplicative factor arising from the much higher diffusivity of interstitials compared to vacancies. For l=25nm, within about 5nm of each interface, vacancy and interstitial concentrations are reduced compared to the layer midpoint x=l/2. For l=5nm, these zones overlap, decreasing both the average defect concentrations in the layer and the concentration gradients near the interface. For sufficiently large l, the effect of these zones is negligible.  We investigated defect concentrations and fluxes for l in the range 1-100nm and temperatures, T, of 300-700K. In this parameter range, interfaces have a significant effect on average defect concentrations. We define a defect concentration measure 
Pa = ca ca

∞  (a=v, i), where ca = 2
l ca x( )dx

0

l 2

∫  is the average concentration in a 
crystalline layer of thickness l and ca∞  the average concentration in an infinitely thick 
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layer. Similarly, for fluxes we define Q = Jx=0 Jx=0
∞ , where Jx=0  is the flux of defects into an interface for a layer of given l and Jx=0

∞  is the flux in an infinitely thick layer.  Figures 2.a)-2.c) and 2.e)-2.g) show contour plots of log10 Pv( ) , log10 Pi( ) , and 
log10 Q( )  as functions of l and T for two different K0 values. For K0=1020/m3s, 350K<T<500K, and l<10 nm, the average radiation-induced interstitial concentration is reduced by as much as seven orders of magnitude while the defect flux to the interface is simultaneously reduced by three orders of magnitude. In this range of T and l the vacancy concentration is also reduced by as many as six orders of magnitude. For sufficiently high T, however, Pv approaches unity and becomes l-independent as the thermal equilibrium vacancy concentration reaches and eventually exceeds the radiation-induced one. Similar trends may be seen for K0=1025/m3s. Evidently, increasing interface area per unit volume simultaneously minimizes both defect concentrations and fluxes in a technologically important range of temperatures [1] for both ion implantation and nuclear reactor conditions.  Figure 3 shows the dependence of Pv on (1-η) for several example sets of irradiation conditions (all of them at T=450K, but differing in l and K0 as stated in the legend). In each case, there is a transitional sink strength value, ηt, above which Pv is η-independent and below which Pv varies as 1−η . The dependence of Q on η follows directly from Eqn. 6.  Defining ηt as the value of η at which Pv exceeds the perfect sink case by 20%, we computed ηt for a variety of irradiation conditions and plot log10 1−ηt( )  in Fig. 2.d) and 2.h). The lowest values of (1-ηt) occur in the range of T and l where the greatest reductions in vacancy concentration and flux are achievable. Since Pv~ 1−η  when 
η<ηt, for ηt close to unity even modest decreases in η may cause Pv to increase by orders of magnitude, dramatically reducing the effectiveness of interfaces in removing radiation-induced point defects. Thus, synthesis of materials that 
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simultaneously minimize both the concentration and the flux of radiation-induced defects requires not only large interface area per unit volume, but also control of interface sink strength, η.  
We repeated our calculations for systems containing biased sinks in 

concentrations equivalent to dislocation densities of 1012-1014/m2 and found 

that the qualitative behavior is unaffected: under all conditions there exists a 

transition sink strength ηt and the value of (1-ηt) is lowest for T and l where 

defect concentrations and fluxes may be most markedly reduced by increasing 

interface area. Below ηt, Pv varies as 1−η  for low sink concentrations. For 

high sink concentrations, it varies as (1-η) for η just below ηt, but resumes the 

1−η  trend with decreasing η. Note that when biased sinks are included into 

the reaction-diffusion model, the difference between vacancy and interstitial 

fluxes is no longer constant nor are vacancy and interstitial concentrations 

related through the constant m. Our conclusions therefore do not depend on 

such special features characteristic of Eqn. 1.   
IV. Discussion  
Early analytical studies of the effect of buried interfaces on radiation-induced 

defect concentrations only considered one defect type—usually vacancies—

and modeled recombination using an effective sink term with coefficient Ksv 

[27]. This approach is simpler than ours, since instead of the nonlinear, 

coupled system in Eqn. 1, it gives rise to just one linear differential equation: 

 

∂cv
∂t

= Dv
∂2cv
∂x2 +K0 −Ksvcv

.
 

8 
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Solving this equation under steady state conditions for interfaces with sink 

strength η, the following analytical expression for the vacancy concentration 

measure Pv is obtained: 

 

Pv =1−η 1− Ksvcv
e

K0

⎛

⎝
⎜

⎞

⎠
⎟r

.
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Here, r = 2
l

D
Ksv( ) tanh l

2
Ksv
D( )  is a factor that does not depend on η. Thus, when 

recombination is neglected, Pv varies linearly with η and the model predicts 

neither the transitional sink strength ηt nor the square root dependence of Pv 

on (1-η). Both of these features arise from the explicit inclusion of bulk 

recombination in our model. Several other authors have studied the reaction-

diffusion model in Eqn. 1 [22, 28] and some have even assessed rigorously the 

impact of treating recombination as an effective sink [27, 29]. Nevertheless, 

the effect of interface sink strength η was not investigated in these previous 

studies, so the sensitivity of radiation-induced defect concentrations to η was 

not noticed.  The difference between the single- and two-defect cases described above suggests that studies of interface sink strength carried out using quenched-in vacancy concentrations may not provide interface behavior representative of irradiation [30]. We note, however, that both the single- and two-defect approaches show that the flux and concentration of defects becomes smaller with decreasing l.  We have shown that interfaces, if present in high enough densities, may simultaneously reduce average radiation-induced defect concentrations as well as defect fluxes to the interfaces. This implies that interfaces may be used to control multiple radiation-induced failure modes, including void swelling, hardening, and 
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RIS, and thus offer one route to designing materials that withstand several forms of radiation damage.  
Radiation-induced defect concentrations, however, increase rapidly as η 

drops below ηt. Thus, a material with a high density of interfaces whose sink 

strength is below the transitional value ηt may be far less radiation-resistant 

than would be expected if all interfaces were perfect sinks. Design of 

radiation-resistant composites therefore requires not only maximizing the 

interface area per unit volume, but also controlling η.  
The sink strength η of an interface depends on its structure and the detailed 

mechanisms by which it interacts with point defects. For example, Balluffi and 

Granato derived an expression for η of tilt grain boundaries under diffusion-

controlled conditions, assuming that point defects are trapped at jogs on edge 

misfit dislocations in these boundaries. They obtained η =1 1+ ln cds( )ds dd( ) , 

where ds is the average distance between point defect trapping sites within 

the boundary, dd is the characteristic defect diffusion distance to the 

boundary, and c is a constant [31]. η is therefore close to unity for small ds 

(which may be characteristic of many grain boundaries [32]) and decreases 

rapidly with increasing ds. 

 

Relations between the detailed structure of general, heterophase interfaces 

and their sink strengths under irradiation are currently not available. Should 

they be developed, however, it may become possible to control η by tailoring 

the heterophase interfaces character distribution (HICD) in composite 

materials, in analogy to grain boundary engineering in homophase 

polycrystals [33, 34].   
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 Fig. 1: The multilayer morphology in a) motivates the one-dimensional reaction-diffusion model of a crystalline layer bounded by two interfaces in b). cv and ci in this plot were obtained at T=300K and K0=1025/m3s using the parameters in Table I for l=25nm and for l=5nm [bottom left corner in b)]. Note the reduction of average defect concentrations and concentration gradients near interfaces for l=5nm compared to l=25nm.   
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 Fig. 2: The dependence on l and T of a), e) log10 Pv( ) , b), f) log10 Pi( ) , c), g) log10 Q( ) , and d), h) log10 1−ηt( ) .   
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Fig. 3: For given irradiation conditions, there is a transitional sink strength ηt above which Pv is insensitive to η and below which Pv varies as 1−η . All of the plots above are for T=450K.   
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