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We study the effect of magnetic fields on the resistance R of a 

superconducting La1.84Sr0.16CuO4 film patterned into a 'double' network 

comprising nano-size square loops having their vertexes linked by relatively 

long wires. The results are compared with those obtained in a regular 

network of square loops of the same size. Both networks exhibit periodic 

dependence of R on the ratio 0/Φ Φ  between the flux penetrating a loop and 

the superconducting flux quantum. However, while the regular network 

exhibit features characteristic of collective behavior of the loops, the double 

network exhibits a single loop behavior. This observation indicates 

uncorrelated arrangements of fluxoids in the double network, in agreement 

with a recent theoretical prediction.  

 

A variety of superconducting networks have been studied, both theoretically and 

experimentally, aiming at revealing correlated behavior of fluxoids in such networks 1-14. The 

foundation of these studies traces back to the fluxoid quantization work of Little and Parks 
15-17 who demonstrated in magnetoresistance measurements the theoretical prediction of F. 

London 18 showing that the deviation of the magnetic flux through a superconducting loop 

from an integral number of flux quanta must be compensated by a circulating current, 

satisfying the equation 
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where the line integral is taken around the loop, λ  is the penetration depth, Φ  is the 

magnetic flux penetrating the loop, and 0Φ  is the superconducting flux quantum. In a 

network, the above equation must be satisfied for each and every loop. In addition, the 

arrangements of fluxoids in the underlying network must fulfill the requirement of minimum 

energy. These two requirements give rise to correlated arrangements of fluxoids in periodic 

networks, the most famous one being the checkerboard arrangement of fluxoids in a regular 

square network 8, 11, 14, 19, manifested by secondary dips of the magneto-resistance at half 

integer values of 0/Φ Φ .  

Recently, we fabricated a novel type of superconducting network 20, 21 made by 

connecting the vertexes of small square loops with relatively long wires, forming two 

interlaced sub-networks of small and large loops. The motivation for designing such a 

network was to create an array of decoupled small loops that behave like isolated loops. In a 

previous manuscript 22 we theoretically simulated the behavior of this double network in a 

perpendicular magnetic field. The simulations showed that as the field increases, the vortex 

population in the small loops grows in steps, resembling the behavior of an ensemble of 

nearly decoupled loops. In addition, the loop energy E was found to be a periodic function 

of the ratio 0/Φ Φ , with a waveform similar to that of a single isolated loop. Features 

indicative of collective behavior of the loops, e.g. finite slope /dE dH  at 0H = , downward 

cusps in )(HE  and pronounced secondary dips at half integer values of 0/Φ Φ , which are 

found in a regular square network, were all absent in the case of a double network with 

large ratio between the size of the large and small loops. The purpose of the present work 

was to confirm experimentally the predictions of these simulations. For this purpose we 

fabricated a regular square network and a double network having square loops of the same 

size, and compared their magnetoresistance behavior. 

Molecular Beam Epitaxy was used to synthesize 26 nm thick optimally doped 

La1.84Sr0.16CuO4 film. The film was patterned into two different networks: a regular square 

network of 150x150 nm2 loops, and a 'double' network – similar to that described previously 
20 – consisting of 150x150 nm2 square loops with their vertexes connected by ~300 nm long 

wires. The Scanning Electron Microscope (SEM) images of Figures 1a and 1b show a part of 

the square and the double networks, respectively. The wires width in both networks, as 

measured by the SEM, was ~45 nm. Resistance measurements were performed using a 
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Quantum Design PPMS® with bias current of 100 nA. Magnetic fields were applied normal to 

the film surface (a-b crystallographic plane), keeping the temperature constant (with 

stability of few mK), and then change it to a different value in the range 20–40 K for the next 

measurement. 

  

Figure 1. Scanning electron microscope images of the simple square (a) and the 

double-square (b) networks patterned in La1.84Sr0.16CuO4 high temperature film. The 

brighter features are the superconducting wires composing the networks. 

Figure 2 shows the magneto-resistance per unit cell, ( )R H , for the simple square 

network (left panel) and for the double-square network (right panel) as a function of the 

applied magnetic field H , measured at the indicated temperatures. Both networks exhibit 

periodic oscillations of R  vs. H  with the same period of Oe900~ , corresponding 

approximately to 0 / AΦ  where 150150×=A nm2 is the area of a single square loop. 

However, the oscillations waveform, ( )R H , for the two networks is evidently different. 

While the regular network exhibits features characteristic of collective behavior of the 

loops, e.g. finite slope /dR dH  at 0H =  and downward cusps 7, the double network 

behavior resembles that of a single loop, exhibiting zero slope /dR dH  at 0H =  and 

upward cusps. 

A closer look at the magnetoresistance oscillations reveals fine structures in the 

magnetoresistance of both networks. In Figure 3 we zoom on the magnetoresistance data of 

each network at a temperature 85.0~/ cTT . The square network (Figure 3a) exhibits 

pronounced secondary dips at half integer values of 0/Φ Φ  (see inset), corresponding to the 

checkerboard arrangement of fluxoids in this network 8, 11, 14, 19. In the double network these 

150 nm 150 nm

a b 
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secondary dips are absent; however, as shown in the inset to Figure 3b, oscillations of a 

period Oe80~ , corresponding to the sub-network of the large loops, are superimposed on 

the longer period oscillations, corresponding to the sub-network of the small square loops, 

shown as a parabolic-like 'envelope' in the inset to Figure 3b. These small oscillations, which 

are more pronounced at the minima of ( )R H , exhibit downward cusps characteristics of 

the square network behavior originating from the large loops. Note that the small amplitude 

oscillations corresponding to the large loops could hardly be resolved in earlier experiments 
20, 21 probably due to a larger size distribution in the previous samples that resulted in a 

distribution of field periodicities. 
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Figure 2 (Color on line) Resistance per network unit cell as a function of magnetic 
field measured at different temperatures in the square (a) and the double (b) 
networks. 
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Figure 3. (Color on line) Resistance per network unit cell as a function of magnetic 
field measured in the square (a) and the double (b) networks at 26.5 and 25.5 K 
respectively. The insets zoom on the regions marked by dashed lines. Inset (a) 
shows a secondary dip at half period corresponding to checkerboard arrangement of 
fluxoids in the square network. Inset (b) shows the magnetoresistance oscillations 
corresponding to the large loops of the double network. The solid line in inset (b) is a 
guide for the eye showing parabolic-like 'envelope', describing part of the period of 
the small loops.  

As shown in Figure 2 the oscillatory behavior of R  in both networks is limited to a 

temperature range roughly between ~22 and ~31 K, resulting in non-monotonic variation of 

the oscillations amplitude RΔ  with the temperature, as summarized by the squares in 

Figure 4. This figure also shows the temperature dependence of the zero-field resistance per 

unit cell )(TR  (circles), as well as /dR dT  (diamonds), for the regular and the double 

networks. Evidently, )(TR  of the double network is significantly larger as it includes the 

resistance of the long wires composing the large loops. Nevertheless, the unit cell amplitude 

of the oscillations, RΔ , for both networks, is similar, indicating that RΔ  cannot distinguish 

between correlated and uncorrelated behavior of fluxoids in networks of loops of the same 

size.  

Note that there is no correspondence between RΔ  and /dR dT , see Figure 4, in 

contrast to what one would expect if RΔ  resulted from periodic changes in the critical 

temperature cT , as in the analysis of the Little-Parks experiment 15-17. A remarkable 

deviation from this analysis is also found in the magnitude of RΔ . Contrary to classical 

superconductors, in high-Tc materials the predicted changes in the critical temperature, 
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( )2
0 / rTT cc ξ∝Δ , are extremely small because of the short coherence length 0ξ , so, the 

standard analysis fails to to explain the large amplitude of the oscillations 23, 24. In previous 

papers 20, 21 we developed a model for a single, isolated loop which explains the physics of 

the double network magnetoresistance, including the large oscillations amplitude and its 

temperature dependence. This model ascribes the magnetoresistance oscillations in high- cT  

superconductors to the periodic changes in the interaction between thermally-excited 

moving vortices and the oscillating persistent current induced in the loops.  
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Figure 4. (Color on line) Resistance, R , measured at zero magnetic field (circles), 

amplitude of the magnetoresistance oscillations (squares), and the derivative /dR dT  

(diamonds) as a function of temperature in the square (a) and the double networks 

(b). Solid lines are guide to the eye. 

In summary, we observed different fluxoid quantization effects in a superconducting 

double network as compared to a regular, square network. The regular network exhibit 

correlated behavior of the fluxoids, which is manifested by e.g. finite slope /dR dH  at 

0H = , downward cusps, and secondary dips at half integer values of 0/Φ Φ . In contrast, 

the sub-network of the small square loops in the double network exhibits a single loop 

behavior lacking all these features. This observation indicates uncorrelated arrangements of 

fluxoids in the sub-network of the small loops, in agreement with our recent theoretical 

prediction 22. Experimentally, the double network has an advantage over a single loop as it 

allows application of larger currents, thus improving the signal to noise ratio. In addition, 

measurements on large number of loops in the network average the effects of 
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inhomogeneity and size distribution, allowing more precise studies of e.g. recent theoretical 

predictions of 'exotic' flux periodicity in unconventional superconductors 25-32. 
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