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I. INTRODUCTION

The usual classification of superconductors charac-
terizes materials by the Ginzburg-Landau parameter κ
(which is the ratio of the characteristic length scale of
the order parameter variation ξ and the magnetic field
penetration length λ)1. The remarkable property is that
within the GL theory of single-component superconduc-
tivity κ determines the major features of the phase di-
agram of the system in magnetic field. In type-I super-
conductor κ < 1/

√
2 (i.e. order parameter is the slowest

varying field), vortex excitations have attractive inter-
action and are thermodynamically unstable in applied
magnetic field. Thus in an applied field a type-I sys-
tem forms macroscopically large normal domains2. For
κ > 1/

√
2 (type-II superconductivity) vortices are ther-

modynamically stable and interact repulsively yielding a
new phase in strong magnetic fields: a lattice of quan-
tized vortices2,3. In the Bogomolnyi limit (κ = 1/

√
2)

the vortices do not interact in the Ginzburg-Landau the-
ory. However indeed it should be remarked that going
to a deeper microscopic level there are always “next-
to-leading order” microscopic corrections. These cor-
rections, though unimportant even slightly away from
this limit, provide weak non-universal intervortex inter-
actions when κ is very close to 1/

√
2 see e.g.7,9. Ap-

parently a counterpart of this limit is also possible in
multi-component systems. However in this case the
Bogomolnyi limit could appear only via quite extreme
fine-tuning of parameters and therefore is not of much
physical relevance. In this work we are interested only in
the entirely different physics of intervortex interactions
and magnetic response of multicomponent systems orig-
inating from the different funamental length scales very
far from any counterparts of Bogomolnyi limit.

A question which attracted much attention recently
is whether the type-I/type-II classification is sufficient
for characterizing the rapidly growing family of multi-
component systems of physical interest4. A clear cut
example of the system where type-I/type-II dichotomy
does not hold is the projected coexistent electronic and
protonic (or deuteronic) superconductivity10 in hydrogen
isotopes, their mixtures and hydrogen rich alloys at ul-
trahigh compression as well as the coexisting protonic
and Σ−-hyperonic superconductivity in neutron stars.

These systems have U(1)×U(1) or higher symmetries and
thus several fundamental length scales associated with in-
dependently conserved fields. Consequently the system
cannot be characterized by a single dimensionless param-
eter κ. In an applied field the only thermodynamically
stable vortex solutions are “composite” vortices where
both condensates have 2π phase windings. Consequently
such vortices have cores in both components10,11. Im-
portantly it also acquires a new regime4 for which the
term “type-1.5” was coined recently12. In that regime
like in a type-I case the characteristic core size of one
of the components is larger than the flux carrying area.
The overlap of these cores produces attractive intervor-
tex interaction. However, in contrast to type-I case, these
vortices have repulsive interaction at short ranges.4–6,13.
This kind of non-monotonic vortex interaction results in
the appearance of the additional “semi-Meissner” phase
in low magnetic fields. In that phase vortices form clus-
ters where the slowest varying density component is sup-
pressed. Moreover these vortex clusters coexist with the
domains of two-component Meissner state.

The recent experimental works proposed that two-
band14 electronic material MgB2 belongs to the type-
1.5 case12,15. The principal difference with the discussed
above U(1) × U(1) theory is that interband coupling
breaks the symmetry down to U(1) (see e.g.16,17). There-
fore there is a single superconducting phase transition at
a single Tc. However, at the same time the system has
two gaps and two superfluid densities, which, in general
vary at distinct characteristic length scales at any fi-
nite distance from Tc. Therefore the type-1.5 magnetic
response can arise even infinitesimally far away from Tc

from the interplay of two density modes which originate
from the underlying two-gap physics. This behaviour was
demonstrated in the framework of phenomenological two-
component GL models5,6. Here we develop a theory of
type-1.5 superconductivity based on a microscopic theory
without involving a GL expansion. That is, in this work
we use the Eilenberger formalism and demonstrate the
existence as well as describe basic properties of type-1.5
superconductivity in multiband materials.
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II. MICROSCOPIC DESCRIPTION OF VORTEX

STATE IN MULTIBAND SUPERCONDUCTOR

A. Eilenberger formalism

We consider a superconductor with two overlapping
bands at the Fermi level14. The corresponding two
sheets of the Fermi surface are assumed to be cylindri-
cal. Within quasiclassical approximation the band pa-
rameters characterizing the two different sheets of the
Fermi surface are the Fermi velocities VFj and the par-
tial densities of states (DOS) νj , labelled by the band
index j = 1, 2. We normalize the energies to the critical
temperature Tc and length to r0 = ~VF1/Tc. The system
of Eilenberger equations for two bands is

vFjnp (∇+ iA) fj + 2ωnfj − 2∆jgj = 0, (1)

vFjnp (∇− iA) f+
j − 2ωnf

+
j + 2∆∗

jgj = 0.

Here ωn = (2n + 1)πT are Matsubara frequencies and
vFj = VFj/VF1. The vector np = (cos θp, sin θp) parame-
terizes the position on 2D cylindrical Fermi surfaces. The
quasiclassical Green’s functions in each band obey nor-
malization condition g2j +fjf

+
j = 1. The self-consistency

equation for the gaps is

∆i = T

Nd
∑

n=0

∫ 2π

0

λijfjdθp. (2)

The coupling matrix λij satisfies the symmetry relations
n1λ12 = n2λ21 where ni are the partial DOS normalized
so that n1 + n2 = 1. We consider λ11 > λ22 and there-
fore refer to the first band as “strong” and to the second
as “weak”. The vector potential satisfies the Maxwell
equation

∇×∇×A = j (3)

where the current is

j = −T
∑

j=1,2

σj

Nd
∑

n=0

Im

∫ 2π

0

npgjdθp. (4)

The parameters σj are given by

σj = π

(

4e

c

)2

(r0VF1)
2νjvFj .

B. Multiple masses of the ∆ fields

First we focus on the structure of an isolated axi-
ally symmetric vortex characterized by the non-trivial
phase winding of the gap functions ∆1,2 = |∆1,2|(r)eiϕ.
We begin by finding the asymptotics of the gap func-
tion modules |∆1,2|(r) at distances far from the vor-
tex core. In this case the Eilenberger Eqs.(1) can be

linearized by generalizing the methods used for single
band superconductors18. The details of the asymptotics
derivation are given in the AppendixA. We rewrite the
Eqs.(1) in terms of the deviations from the vacuum state
values ∆̄j = ∆j0−|∆j | and f̄j = fj0− fj , f̄

+
j = f+

j0− f+
j

keeping on the left side the first order terms. Then we
take the real part of the Eqs.(1) to obtain the following
system

vFjnp∇f̄ r
Σj + 2ωnf̄

r
dj = Xr

Σj (5)

vFjnp∇f̄ r
dj + 2

Ω2
n

ωn
f̄ r
Σj −

4ωn

Ωnj
∆̄j = Xr

dj ,

where Ωnj =
√

ω2
n +∆2

0j , f̄
r
Σj = Re[f̄j + f̄+

j ] and f̄ r
dj =

Re[f̄j − f̄+
j ]. In Eqs.(5) the higher order terms in ∆̄j ,

f̄ and f̄+ are incorporated in the right hand side (r.h.s)
source functions XΣ(d)j = XΣ(d)j(np, ωn, r).
The solution of Eqs.(5) can be found in the momentum

representation f r
Σ(d)j(k) =

∫

f r
Σ(d)j(r) exp(−ikr)d2r. Af-

ter substituting it to the self-consistency equation we get
the expression for the gap functions

∆̄i(k) = R̂−1
ij Nj(k). (6)

The elements of the matrix R̂ = R̂(k) areRii = (λiiSi−1)
and Rij = λijSj , where

Sj(k) = 4πT

Nd
∑

n=0

ω2
n

Ω2
nj

[

4Ω2
nj + (vFjk)

2
]

−1/2
. (7)

The source functions Nj(k) come from the r.h.s of
Eqs.(5). The strict definition of source functions is given
in the AppendixA.
The real space asymptotic of the gap functions (6) is

determined by the contributions of the singularities of
the response function R̂−1(k) which are poles at the ze-

ros of the determinant DR(k) = Det[R̂(k)] and branch
points at k = 2iΩnj/vFj . Similarly to Ref.(18) we as-
sume the branch cuts to lie along the imaginary axis from
k = 2iΩnj/vFj to k = i∞. To find the asymptotics of
the gaps ∆̄i(r), we need only to take into account the

poles of R̂−1(k) lying in the upper complex half plane
below all the branch cuts. In this case all the zeros of
the function DR(k) are purely imaginary k = iµn. Each
of them can be associated with the particular mass µn

of the composite mode formed by a superposition of gap
functions in two superconducting bands. Inverse of the
mass controls the characteristic length scale at which this
superposition of the gap fields varies. Therefore the light-
est mass determines very-long-distance decay of both ∆̄1

and ∆̄2. The contribution from the branch cut contains
all the length scales which are smaller than the threshold
one given by position of the lowest branch point k = iqbp
where qbp = 2min(Ω02/vF2,Ω01/vF1).
The Eq.(6) results in the asymptotical expression for

the gap functions

∆̄i(r) =

∫ r

0

dr1Gij(r, r1)Nj(r1).
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Here Nj(r) is the Fourier-Bessel image of the source func-
tion in Eq.(6) and

Ĝ(r, r1) =
∑

n

ÂnK0(qnr)I0(qnr1)+ (8)

2

π

∫

∞

qbp

dssK0(sr)I0(sr1)
[

R̂−1
]

k=is

where K0 and I0 are MacDonald and modified Bessel
functions. The matrices Ân determining the contribu-
tions of the pole terms are

Ân = 2ik

[

dDR

dk

]

−1(
R22 −R12

−R21 R11

)

|k=iqn . (9)

and the branch cut contribution is determined by the the
jump of the response function

[

R̂−1
]

k=is
= R̂−1(k = is+ 0)− R̂−1(k = is− 0). (10)

Under rather general conditions, the response function
in Eq.(6) has two poles given by zeros of the determi-
nant DR(k) = 0 which lie below the branch cuts. Thus
the asymptotical behaviour of the gap functions is prin-
cipally different from the single band superconductor,
despite they share the same U(1) symmetry of the or-
der parameter. The two poles determine the two inverse

length scales or, equivalently, the two masses of compos-
ite gap functions fields, which we denote as “heavy” µH

and “light” µL (i.e. µH > µL). The corresponding com-
posite gap function modes are parameterized by the two
“mixing angles” θL, θH as follows:

(

∆̃L

∆̃H

)

=

(

cos θL sin θL
− sin θH cos θH

)(

∆̄1

∆̄2

)

. (11)

Note that in the two-band GL theory without interband
impurity scattering terms one has θL = θH

5,6. Below
we recover this behavior without using GL-like expan-
sion, thereby verifying predictions of phenomenological
GL models at elevated temperatures. However, out-
side the range of validity of the GL theory we find that
θL 6= θH .
Let us now consider in detail an example of the system

with λ11 = 0.25, λ22 = 0.213, n1 = n2 = 0.5 and various
values of the interband coupling λJ = λ12 = λ21. We
focus on the two different regimes, determined by the
band parameter γF = vF2/vF1 namely (i) γF > 1 and
(ii) γF < 1.
(i) The basic properties of this regime are captured

by the particular case when γF = 1. The examples of
the temperature dependencies of the masses µL,H(T ) are
shown in the Fig.1(a). The two massive modes coexist at
the temperature interval T ∗

1 < T < Tc, where the tem-
perature T ∗

1 is determined by the branch cut position,
shown in the Fig.1(a) by black dashed line. For temper-
atures T < T ∗

1 there exists only one massive mode. At
very low temperatures the mass µL is very close to the

branch cut. As the interband coupling parameter is in-
creased, the temperature T ∗

1 rises and becomes equal to
Tc at some critical value of λJ = λJc. For the particular
case of γF = 1 we found an exact condition λJc = λ22.
The evolution of the masses µL,H is shown in the se-
quence of plots Fig.2(a)-(d) for λJ increasing from the
small values λJ ≪ λ11, λ22 to the values comparable to
intraband coupling λJ ∼ λ11, λ22.

(ii) In the case if γF < γth (where γth is a charac-
teristic value determined by the system parameters) the
two massive modes coexist at some temperature inter-
val T ∗

2 < T < T ∗

1 where T ∗

1 ≤ Tc. For the particular
case when γF = 0.5, the temperature dependencies of
µL,H(T ) are shown in the Fig.1(b).

In Fig.1(a,b) the mixing angles θL and θH given by
Eq.(11) are shown by blue dashed and dash-dotted lines
correspondingly. In the case (i) near the critical tem-
perature the angles are approximately equal, which pro-
vides for this regime a microscopic verification for of the
results obtained using phenomenological GL theories5,6.
At lower temperatures the discrepancy is considerable
and grows with the increasing interband coupling. The
regions where there are large deviations of the mixing an-
gle from 0 and π/2 signal strong mixing of the gap fields.
It occurs near the avoided crossing points of µL(T ) and
µH(T ). In case (i) shown in Fig.1(a) there is one avoided
crossing point and in the case (ii) in there can be two of
them, as shown in Fig.1(b).

The discussed above existence of two modes associated
with mixed gap functions can, under certain conditions,
result in the type-1.5 behavior as it was demonstrated
in the framework of GL approach5,6. However, impor-
tantly the microscopic formalism we use here allows to
describe type-1.5 superconductivity beyond the validity
of GL models. The type-1.5 behavior requires a den-
sity mode with low mass µL to mediate intervortex at-
traction at large separations, which should coexist with
short-range repulsion.

We find that the temperature dependence of µL(T )
is characterized by an anomalous behavior, which is in
strong contrast to temperature dependence of the mass
of the gap mode in single-band theories. As shown on
Fig.1(c) the function µL(T ) is non-monotonic with the
minimum at the temperature Tmin. The minimum is
close to the crossover temperature where the second su-
perconducting band becomes active. The maximum is
located at the temperature Tmin < Tmax < Tc.

The structure of the composite gap function mode
shown in the Fig.1(c) ∆̃L is characterized by the mix-
ing angle θL given by Eq.(11). At the temperature inter-
val T < Tmax the mixing angle is θL ≈ π/2. Therefore
in this temperature regime, the mode with lightest mass
consists primarily of the weak band gap ∆̄2(r) with a tiny
admixture of ∆̄1(r). Note that in this regime the over-
all behavior of |∆1|(r) outside the long-range asymptotic
tail has relatively weak dependence on interband cou-
pling (i.e. at larger distances from the core it has slowly
recovering tail associated with only tiny suppression rel-
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FIG. 1: Masses µL,H of the composite gap function fields for
(a) γF = 1 and λJ = 0.005, (b) γF = 0.5 and λJ = 0.0025.
The position of branch cut is shown by black dashed line.
The mixing angles θL,H are shown by blue dashed and dash-
dotted lines correspondingly. (c) Temperature dependence of
the mass µL(T ) (black curves) and the corresponding mixing
angle θL determined by Eq.(11) (red curves) for γF = 1; 2; 5
(solid, dashed and dash-dotted curves). The coupling param-
eters are λ11 = 0.25, λ22 = 0.213 and λJ = 0.005. (d) Tem-
perature dependence of the mass µL(T ) for different values of
coupling constant λ22.

ative to its ground state value). At the same time the
recovery of |∆2|(r) to a larger degree is dominated by the
light mass mode.

C. The high temperature limit.

As noted above at elevated temperatures the mixing
angles have close values, consistently with the type-1.5
behaviour which appears in the framework of two-band
Ginzburg-Landau models6. At very high temperatures
Tmax << T < Tc the mixing angle θL gradually becomes
small θL ≪ π, which means that there the mode ∆̃L is
dominated by the strong band contribution ∆̄1.
Since any Josephson interband coupling breaks the

symmetry of the system in question down to U(1), then
according to Ginzburg-Landau argument this symmetry
dictates that, asymptotically, in the limit T → Tc one
should recover a single-component-like GL temperature
dependence µL ∼

√

1− T/Tc of a single order parameter
(at the level of mean-field theory)1.
In the regimes corresponding to Fig.1(a,c) very close to

Tc the mixing angle of the heavy mode is small θH ≪ 1
which makes the contribution of the smaller gap ∆̄2 to
the heavy mode the dominating one. This behaviour of
the mixing angles, and the fact that that for non-zero

FIG. 2: Masses µL and µH (red solid lines) of the compos-
ite gap function fields for the different values of interband
Josephson coupling λJ and γF = 1. In the sequence of plots
(a)-(d) the transformation of masses is shown for λJ decreas-
ing from the small values λJ ≪ λ11, λ22 to the values com-
parable to intraband coupling λJ ∼ λ11, λ22. The particular
values of coupling constants are λ11 = 0.25, λ22 = 0.213 and
λJ = 0.0005; 0.0025; 0.025; λ22 for plots (a-d) correspond-
ingly. By black dash-dotted lines the branch cuts are shown.
In (a) with blue dash-dotted lines the masses of modes are
shown for the case of λJ = 0. Note that at λJ = 0 the
two masses go to zero at two different temperatures. Because
1/µL,H are related to the coherence length, this reflects the
fact that for U(1)×U(1) theory there are two independently
diverging coherence lengths. Note that for finite values of
interband coupling only one mass µL goes to zero at one Tc.

Josephson coupling only one mass µL(T ) goes to zero at
T → Tc allows one to neglect the heavy mode and con-
struct a mean-field GL order parameter with the scaling
µL ∼

√

1− T/Tc as an “asymptotic” characteristic in
the limit T → Tc. However as shown in the Fig.1(c) the
temperature region of such behavior shrinks drastically
for large disparities of the band characteristics and weak
interband couplings. In general the smaller is the inter-
band coupling, the closer to Tc one should be in order to
obtain GL scaling. For a wide range of parameters the
mean field GL theory with the scaling µL ∼

√

1− T/Tc

will emerge only infinitesimally close to Tc. In this case
the limit where µL ∼

√

1− T/Tc is unphysical because
the underlying mean-field theory will become invalid be-
cause of fluctuations, at temperatures lower that the tem-
perature where this scaling would take place. Thus even
in weak-coupling two-band systems with U(1) symme-
try, for a wide parameter range, one could not apply a
leading order in (1− T/Tc) GL theory since the region of
its applicability will fall into the parameter space where
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underlying mean field theory is not valid because of fluc-
tuations. In contrast to single-component systems, as
the consequence of the presence of two gaps even slightly
away from Tc the behaviour of µL(T ) can be drastically
different from the usual GL scaling. As a result the prod-
uct ΛµL where Λ is the magnetic field penetration length
acquires a strong temperature dependence. Moreover as
we show below, its limiting value at Tc does not deter-
mine entirely the intervortex interaction potential nor the
magnetic response of the system. Therefore one cannot in
general parameterize the magnetic response of two-band
systems by the single GL parameter κ = Λ/ξ.

D. Light mode of gap function field and type-1.5

behavior.

The plots of µL(T ) for γF = 1; 2; 5 are shown in
Fig.1(c) by solid, dashed and dash-dotted lines. There
is a clear general tendency of increasing Tmax with grow-
ing parameter γF which characterizes band disparity. It
leads to broadening of the temperature region of the
anomalous behavior of the mass µL(T ) where the fields
asymptotics are dominated by the weak band. The
Fig.1(c) clearly demonstrates the considerable overall
suppression of µL with growing parameter γF . The in-
verse of the mass of the light composite gap mode µL sets
the range of the attractive density-density contribution
to intervortex interaction. Therefore the condition for
the occurrence of the intervortex attraction will be met
if µL is smaller than Λ−1.
Thus a physically important situation arising in a two-

band superconductor, is that for a wide range of param-
eters even slightly away from Tc the temperature depen-
dence of µL, is dramatically different from that of the
inverse magnetic field penetration length Λ−1.
Furthermore because the softest mode with the mass

µL in two band system may be associated with only a
fraction of the total condensate, and because there could
be the second mixed gap mode with larger mass µH ,
the short-range intervortex interaction can be repulsive.
Since ultimately the sign of the long range interaction is
decided by the competition of Λ−1 and µL we plot their
temperature dependencies in Fig.3(a). It shows how in
these cases the system goes from type-II to type-1.5 be-
havior as temperature is decreased. The type-1.5 behav-
ior sets in when µL becomes smaller than Λ−1, and, the
density associated with the light mode is small enough
that the system has a short-range intervortex repulsion.
To contrast the physics of fundamental modes in two-

band case with singe-band case we plot on Fig.3(b) the
product of Λ and µL. Note that only infinitesimally close
to Tc, this product can be interpreted as GL paramter κ
because the inverse mass

√
2µ−1

L becomes the GL coher-
ence length. However away from Tc it represents a mass
of the softest of competing modes and the product ΛµL

has a strong and nonmonotonic temperature dependence
shown on Fig. 3(b).

III. SELF-CONSISTENT CALCULATION OF

THE VORTEX STRUCTURE AND

NON-MONOTONIC VORTEX INTERACTION

ENERGY

Next we calculate self-consistently the structure of iso-
lated vortex for different values of γF . In these calcula-
tions we fix the values of parameters σi by adjusting the
partial DOS which in the case of cylindrical Fermi sur-
faces is regulated by the ratio of effective masses so that
n2 = n1/γF and λ12 = λ21/γF . We chose the follow-
ing values of the coupling parameters λ11 = 0.25, λ22 =
0.213. The interband interaction is small λ21 = 0.0025
and the temperature is T = 0.6 when ∆10 ≫ ∆20. In
this case the composite gap function mode ∆̃L(r) con-
sists mainly of the weak gap ∆̄2(r). Thus, although at
the very long ranges the behavior of both |∆1|(r) and
|∆2|(r) are determined by the same mass µL, the over-
all behavior (i.e. outside asymptotic regimes) of the gap
|∆1|(r) [shown by red dashed lines in Fig.3(c)] is not very
sensitive to the parameter γF . A complex aspect of the
vortex structure in two-band system is that in general the
exponential law of the asymptotic behavior of the gaps
is not directly related to the “core size” at which gaps
recover most of their ground state values. We can char-
acterize this effect by defining a “healing” length L∆i of
the gap function as follows |∆i|(L∆i) = 0.95∆i0. Then
we obtain that L∆1 ≈ 0.8 for all values of γF . On the con-
trary, the healing length L∆2 of changes significantly such
that L∆2 = 1.6; 2.5; 3.2; 3.9; 4.5 for γF = 1; 2; 3; 4; 5
correspondingly.

To demonstrate the type-1.5 behavior we have chosen
the parameters σi in the self-consistency equation for the
current such that the characteristic magnetic field local-
ization length LH ≈ 2 is much larger than L∆1. This
leads to a existence of regular vortex lattices in a wide
range of strong magnetic fields (i.e. when vortices are
closely packed and thus experience only strong short-
range repulsive interaction). However, the high magnetic
field behavior notwithstanding, the vortex structures
shown in Fig.3(c) clearly shows that L∆1 ≪ LH ≪ L∆2

i.e. the long-range interaction is attractive and thus the
system in fact belongs to the type-1.5 regime.

Next, to demonstrate the type-1.5 superconductivity
i.e. large-scale attraction and small-scale repulsion of
vortices which originates from disparity of the variations
of two gaps, we explicitly calculate the intervortex in-
teraction energy. We evaluate the two-band generaliza-
tion of the Eilenberger expression for the free energy of
the two vortices positioned at the points rR = (d/2, 0)
and rL = (−d/2, 0) in xy plane. Here we generalize
to two-band theory the method developed for calcula-
tion of asymptotic vortex interaction in singe-component
theories19. The method assumes that for large separa-

tions, in the region x < 0 the fields H, ∆1,2 and f
(+)
1,2

correspond to the single vortex placed at the point rL
weakly perturbed by the presence of the second vortex.
The interaction energy can be expressed through the in-
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FIG. 3: (a) Masses µL and µH (red solid and dotted lines)
of the composite gap function fields and inverse London
penetration (blue dashed lines) for the different values of
ΛµL(Tc)/

√
2 = 1; 2; 3; 5. The position of branch cut is shown

by black dash-dotted line. (b) The temperature dependence
of the quantity ΛµL for ΛµL(Tc)/

√
2 = 1; 2; 3; 5 (red solid,

blue dashed and black dash-dotted lines). (c) Distributions
of magnetic field H(r)/H(r = 0), gap functions |∆1|(r)/∆10

(dashed lines) and |∆2|(r)/∆20 (solid lines) for the coupling
parameters λ11 = 0.25, λ22 = 0.213 and λ21 = 0.0025 and dif-
ferent values of the band parameter γF = 1; 2; 3; 4; 5. (d) The
energy of interaction between two vortices normalized to the
single vortex energy as function of the intervortex distance d.
In panels (c,d) the temperature is T = 0.6.

tegral over the line x = 0 passing in the middle between
vortices Eint = 2

∫

∞

−∞
dyẼint(y) where

Ẽint =

∫

∞

−∞

dyHvQv+ (12)

T
∑

j=1,2

∑

ωn>0

σj∆0j

4ωn

∫ 2π

0

dθp cos θp(fLjf
+
Rj − f+

LjfRj).

The detailed derivation of the above expression can be
found in the AppendixB. The indices R(L) correspond
to the solutions of Eilenberger Eqs.(1) for isolated vor-
tices positioned at the points rR(L). The first term in
the Eq.(12) contains the magnetic field Hv(|r− rL|) and
the axial component of superfluid velocity distribution
Qv(|r− rL|) corresponding to the isolated vortex placed
at the point r = rL.
In Fig.3(d) the interaction energy Eint is shown as a

function of the distance between two vortices d. The en-
ergy Eint is normalized to the single vortex energy Ev.
The plots on Fig.3(d) clearly demonstrate the emergence

FIG. 4: Gap function profiles around vortex core for λ11 =
0.25, λ22 = 0.1, λ12 = λ21 = 0.05. (a) and (c): Variation of
the gap functions |∆j |(r)/∆j0 (j = 1, 2) near the core. (b)
and (d): The behaviour of gap function deviations from the
vacuum state δ∆j(r) = 1−|∆j |(r)/∆j0 at longer range. Note
that in this temperature span the higher is the temperature
the faster is the long distance decay of δ∆j(r), which reflects
the found fact in two-band system the field mass can decrease
with raising temperature [see also Fig.1(d).]

of type-1.5 behavior when the parameter γF is increased.
This is manifested in the appearance non-monotonic be-
haviour of Eint(d).

IV. LOW TEMPERATURE VORTEX

ASYMPTOTICS AND INTRINSIC PROXIMITY

EFFECT.

Finally we discuss the two-band superconductor with
∆20 ≪ ∆10 at T → 0. Note that qualitatively sim-
ilar regime is realized in the two-band superconductor
MgB2

16. To model such situation we choose the cou-
pling constants λ11 = 0.25, λ12 = λ21 = λJ = 0.05 and
consider various values of λ22. The temperature depen-
dencies of the mass µL(T ) for different values of λ22 are
shown in the Fig.1(d). Note that in this case, decreas-
ing of intraband coupling λ22 leads to the decreasing of
the µL at low temperatures. This anomalous behaviour
of the characteristic length scale is clearly manifested in
the vortex structure shown in Fig.(4). The near-core
gap function profiles [Fig.4(a,c)] feature shrinkage of the
vortex core at decreasing temperature, similarly to clean
single-band superconductors8. However the asymptotics
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of gap functions [Fig.4(b,d)] are drastically different from
the single-band case. Indeed, it can be seen that in a
certain temperature domain the lower the temperature,
the slower is the recovery the gap functions at large dis-
tances from the core. Such behavior in the two-band
system is clearly in a sharp contrast with the overall vor-
tex core shrinking with decreasing temperature in clean
single-band superconductors.
Note that in the above case, at low temperatures we

have µL ≈ 2
√

∆2
20 + (πT )2/vF2. For the especially in-

teresting regime of purely interband proximity effect-
induced superconductivity in the weak band we can con-
sider the limit T ≫ ∆20/π. Then µL ≈ ξ−1

N , where
ξN = vF2/(2πT ) is the coherence length in a pure nor-
mal metal2 describing the penetration length of super-
conducting correlations induced by the proximity effect in
superconductor/normal metal (SN) hybrid structures20.
Thus we obtain that the intrinsic proximity effect due
to the interband coupling6 can in certain cases be de-
scribed by the similar length scale as the usual one
in SN hybrid structures. At the temperature interval
∆20 ≪ πT ≪ ∆10 the mass µL(T ) grows linearly with
temperature [Fig.1(d)].

V. CONCLUSION

In conclusion, the rapidly growing family of discovered
multiband superconductors (MgB2, Iron pnictides etc)
requires understanding of possible magnetic response of
systems with multiple superconducting gaps. Here we
reported a microscopic theory of magnetic response of a
superconductor with two bands (the results can be gen-
eralized to the case of a higher number of bands). We
have shown that new physics which arises in multiband
systems is the existence of several mixed gaps modes.
This, in a range of parameters results in the existence
of the type-1.5 superconducting regime. We described
the system properties and emergence of type-1.5 regimes
in the entire temperature regimes, in particular beyond
the validity of a two-component GL theory. The uni-
versal feature of all the regimes supporting type-1.5 be-
havior is the thermodynamic stability of vortex excita-
tions in spite of the existence of a composite gap mode
which varies at a characteristic length scale larger than
the magnetic field penetration length. It results in non-
monotonic vortex interaction and appearance of the addi-
tional Semi-Meissner phase in low magnetic fields which
is a macroscopic phase separation into (i) domains of two-
component vortex state and (ii) vortex clusters where one
of the mixed gap modes is suppressed.

VI. ACKNOWLEDGMENTS

The work is supported by the NSF CAREER Award
No. DMR-0955902, the Knut and Alice Wallenberg
Foundation through the Royal Swedish Academy of Sci-

ences and by the Swedish Research Council, “Dynasty”
Foundation, Presidential RSS Council (Grant No. MK-
4211.2011.2) and Russian Foundation for Basic Research.

Appendix A: Asymptotical behaviour of the gap

functions.

We focus on the structure of the isolated axially sym-
metric vortex in two-band superconductor characterized
by the non-trivial phase winding of the gap functions:

∆1,2 = |∆1,2|(r)eiϕ. (A1)

We begin by considering the asymptotical behaviour of
the gap functions at distances far from the vortex core
when the deviations of all fields from the homogeneous
values are small. In this case the Eilenderger Eqs.(1) can
be linearized in order to find the asymptotical behavior
of the gap functions modules |∆1,2|(r). To compare
with the different linearlization problem in single-band
case see Ref.(21).
To determine the asymptotic behaviour we use the

transformation f → feiϕ, f+ → f+e−iϕ and rewrite the
Eilenberger Eqs.(1) in terms of the deviations from the
vacuum state values ∆̄j = ∆j0 − |∆j | and f̄j = fj0 − fj ,
f̄+
j = f+

j0 − f+
j . Then keeping the first order terms

f̄Σ(d) and ∆̄j in the l.h.s. we can rewrite the Eilenberger
Eqs. in the following form (we omit the band index for
brevity):

vFn∇f̄Σ + 2ωnf̄d = XΣ (A2)

vFn∇f̄d + 2
Ω2

n

ωn
f̄Σ − i

2∆0

Ωn
nQ− 4ωn

Ωn
∆̄ = Xd.

where the higher order terms in ∆̄j , f̄ and f̄+ are incor-
porated in the r.h.s. functions XΣ(d) = XΣ(d)(np, ωn, r).

In Eqs.(A2) we introduce Ωn =
√

ω2
n +∆2

0 and the func-
tions f̄Σ = f̄ + f̄+ and f̄d = f̄ − f̄+. The higher
order terms are incorporated in the functions XΣ(d) =
XΣ(d)(np, ωn, r).
Then we take the real part of the Eqs.(A2) to obtain

the following system

vFnp∇f r
Σ + 2ωnf

r
d = Xr

Σ (A3)

vFnp∇f r
d + 2

Ω2
n

ωn
f r
Σ − 4ωn

Ωn
∆̄ = Xr

d .

Here omit the band index for brevity and denote f r
Σ(d) =

Ref̄Σ(d). Below we will find the asymptotic of the
gap fields treating the nonlinear terms in the r.h.s. of
Eqs.(A3) as source functions.
The solution of Eqs.(A3) can be found in the mo-

mentum representation f r
Σ,d(k) =

∫

f r
Σ,d(r) exp

−ikr d2r.
Then we get

f r
Σ =

ω2
n

Ωn

8∆̄

4Ω2
n + (vFk)2

+M(vFk, ωn) (A4)
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where the last term incorporates the higher order correc-
tions:

M(vFk, ωn) =
2ωn

4Ω2
n + (vFk)2

(

Xr
d − ivFk

2ωn
Xr

Σ

)

. (A5)

After substituting it to the self-consistency Eq.(2) we
get the expression for the order parameter

∆̄i(k) = R̂−1
ij Nj(k) (A6)

where

Ni(k) =
λijT

2

Nd
∑

n=0

∫ 2π

0

Mjdθp (A7)

and the elements of the matrix R̂ = R̂(k) are defined by
Rii = (λiiSi − 1) and Rij = λijSj , where

Sj = 4T

Nd
∑

n=0

ω2
n

Ωnj

∫ 2π

0

dθp
4Ω2

nj + (vFjk)2
. (A8)

The integrals entering the expressions (A8) above are

∫ 2π

0

dθp
b2 + (sin θp)2

=
2π

b
√
b2 + 1

so that

Sj(k) = 4πT

Nd
∑

n=0

ω2
n

Ω2
nj

1
√

4Ω2
nj + (vFjk)2

. (A9)

The source functions Nj(k) come from the nonlinear
terms Xr

Σ,d in Eilenberger Eqs.(A3).

The Eq.(A6) is the two-band response function. To
compare with the single-band response function see18. In
general the real space asymptotic behaviour of the order
parameter (A6) is determined by the contributions of the

singularities of the response function R̂−1(k) which are
poles and branch points at k = 2iΩnj/vFj . Analogously
to the consideration in Ref.(18) we assume the branch
cuts to lie along the imaginary axis from k = 2iΩnj/vFj

to k = i∞. The poles are determined by the zeros of the
determinant DR(k) = DetR̂(k) = 0, so that

DR(k) = (1− λ11S1)(1− λ22S2)− λ12λ21S1S2.

Since we are interested in the asymptotic behaviour of
the order parameter, we need only to take into account
the poles of R̂−1(k) lying in the upper complex half plane
below all the branch cuts. In this case all the zeros of the
function DR(k) are purely imaginary k∗ = iqn. Each
of them can be associated with the particular mass of
the gap function field µn = 1/qn which determine the
characteristic length scale of the gap function variation.
On the other hand the contribution from the branch cut
contains all the length scales which are larger than the
threshold one given by position of the lowest branch point
k = iqbp where

qbp = 2min(Ω02/vF2,Ω01/vF1). (A10)

Appendix B: Energy of interaction between two

vortices

1. General free energy expression

The two-band generalization of the Eilenberger expres-
sion for the free energy23 reads as follows

F (r) =
H2

2
+ ρ̃11|∆1|2 + ρ̃22|∆2|2+ (B1)

ρ̃J (∆1∆
∗

2 +∆2∆
∗

1) + FI1 + FI2

where
(

ρ̃11 ρ̃12
ρ̃21 ρ̃22

)

=
1

κ2

(

ρ11 ρ12
ρ21 ρ22

)

−1

ρ̃J = ρ̃12 = ρ̃21 and

FIj = − T

κ2

∑

ωn>0

∫ 2π

0

njIj(ωn, θp, r)dθp

with

Ij(ωn, θp, r) = ∆∗

jfj +∆jf
+
j (B2)

+ (gj − 1)
[

2ω̃n +
vFj

2
np∇

(

ln fj − ln f+
j

)

]

where j = 1, 2 and

ω̃n = ωn + ivFjnpA/2.

Then the variation of the free energy (B1) with respect to
the fields A and ∆ gives the self-consistency Eqs.(4) and
(2) correspondingly. The variation over f and f+ with
the normalization condition taken into account yields the
Eilenberger Eqs.(1). Provided the functions f, f+, g sat-
isfy the Eqs.(1) the expression (B2) can be rewritten as

Ij(ωn, θp, r) =
∆∗

jfj +∆jf
+
j

1 + gj
. (B3)

2. Linearized theory of vortex interaction

To calculate the energy of vortex interaction we eval-
uate the free energy expression for the system of two
vortices positioned at the points rR = (d/2, 0) and
rL = (−d/2, 0) in xy plane. Here we employ the method
similar to that in19.
Let us consider the half-plane x < 0 containing only

one of the vortices. We decompose the gap function
into amplitude and phase (we omit the band index for
brevity)

∆(r) = |∆|(r) exp(iΦ). (B4)

The total phase can be written in the following form Φ =
ΦL +ΦR +Φns, where

ΦL(R)(r) = arctan

(

y − yR(L)

x− xR(L)

)
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are the vortex phases and Φns(r) is a regular part of
the phase. At the region x < 0 we can make the gauge
transformation removing the phase ΦR(r), since it does
not contain singularities. After this transformation we

can assume that the fields A, ∆1,2 and f
(+)
1,2 correspond

to the solutions for a single vortex placed at the point rL
weakly perturbed by the presence of the second vortex.

A = Av + δQ; ∆j = ∆vj + δ∆j

fj = fvj + δfj ; f+
j = f+

vj + δf+
j .

where we have introduced the superfluid velocity induced
by the second vortex δQ = AR −∇ΦR. Then we obtain

δIj = (δ∆jf
+
vj + δ∆∗

jfvj) + (∆vjδf
+
j +∆∗

vjδfj)(B5)

+ivFj(gvj − 1)npδQ+ 2ω̃nδgj

+vFj
δgj
2 np∇

(

ln fvj − ln f+
vj

)

+vFj
(gvj−1)

2 np∇
(

δfj
fvj

− δf+

j

f+

vj

)

where

δgj = −(fvjδf
+
j + f+

vjδfj)/2gvj.

The last two terms in Eq.(B5) can be rewritten as follows

1

2gv

[

δf(np∇)f+
v − δf+(np∇)fv

]

(B6)

(np∇)

2

[

(gv − 1)

(

δf

fv
− δf+

f+
v

)]

.

The first term in this expression cancels with the second
and forth terms in Eq.(B5). For the variation of magnetic
field energy in Eq.(B1) we obtain

HvδH = ∇ · (δQ×Hv) +∇×Hv · δQ.

Then we are left with the non-zero terms

δF = ∇ · δQ×Hv (B7)

− T

2κ2

∑

j,ωn

njvFj

∫ 2π

0

dθp∇ · np

[

(gvj − 1)

(

δfj
fvj

−
δf+

j

f+
vj

)]

The energy of vortex interaction is Eint = 2
∫

δFdr. It
can be expressed through the integral over the line x = 0
so that Eint = 2

∫

∞

−∞
dyx · eint

eint = δQ×Hv− (B8)

T

2κ2

∑

j,ωn

njvFj

∫ 2π

0

dθpnp

[

(gvj − 1)

(

δfj
fvj

−
δf+

j

f+
vj

)]

.

To evaluate the second term in Eq.(B8) it is convenient
to bring the Eqs.(1) to the gauge invariant form24 decom-
posing the gap functions into amplitude and phase (B4)
and transforming the Green’s functions as f → feiΦ,
f+ → f+e−iΦ. Then at the line x = 0 we can put

fvj = f0j + fLj; f+
vj = f0j + f+

Lj,

where f0j = ∆0j/
√

∆2
0j + ω2

n. Also we denote δfj =

fRj , δf+
j = f+

Rj [L(R) stand for left (right) vortices].
Therefore up to the second order terms we obtain

(gvj − 1)

(

δfj
fvj

−
δf+

j

f+
vj

)

=
g0j − 1

f0j

(

fRj − f+
Rj

)

(B9)

− 1

2g0j

(

fLj + f+
Lj

)(

fRj − f+
Rj

)

+
g0j − 1

f2
0j

(

f+
Rjf

+
Lj − fRjfLj

)

.

Now we use the symmetry relations fL,R(nx, ny) =
f∗

R,L(−nx, ny) and f∗(−np) = f+(np). Then the con-

tribution to the interaction energy (B8) from the first
order term in Eq.(B9) cancels with the analogous con-
tribution from the left vortex. Also from the symmetry
relations we obtain

Re

∫ 2π

0

cos θpfLfRdθp = 0 (B10)

Re

∫ 2π

0

cos θpf
+
L f+

R dθp = 0.

On the other hand

Im

∫ 2π

0

cos θp
(

fLfR − f+
L f+

R

)

dθp = 0.

Therefore we get for the interaction energy

Eint = 2

∫

∞

−∞

dyẼint(y),

where

Ẽint = HvQv+ (B11)

T
∑

j=1,2

σj

∑

ωn>0

∆0j

4ωn

∫ 2π

0

dθp cos θp(fLjf
+
Rj − f+

LjfRj),

and σj = κ−2njvFj .
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