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A small value of the spin gap in quantum antiferromagnets with strong frustration makes them
susceptible to nominally small deviations from the ideal Heisenberg model. One of such pertur-
bations, the anisotropic Dzyaloshinskii-Moriya interaction, is an important perturbation for the
S = 1/2 kagome antiferromagnet, one of the current candidates for a quantum-disordered ground
state. We study the influence of the DM term in a related one-dimensional system, the sawtooth
chain that has valence-bond order in its ground state. Through a combination of analytical and
numerical methods, we show that a relatively weak DM coupling, 0.115J , is sufficient to destroy the
valence-bond order, close the spin gap, and turn the system into a Luttinger liquid with algebraic
spin correlations. A similar mechanism may be at work in the kagome antiferromagnet.

PACS numbers:

I. INTRODUCTION

Antiferromagnets with S = 1/2 and on non-bipartite lattices are considered viable candidates for exotic ground
states and excitations. Geometrical frustration and strong quantum fluctuations tend to suppress long-range magnetic
order. The resulting ground state does not break the symmetry of global spin rotations, but its exact properties remain
subject of vigorous debate, with proposals ranging from valence-bond crystals that break some lattice symmetries1–3

to valence-bond liquids that fully preserve the symmetry of the Hamiltonian.4–7 A spin-liquid state with an energy
gap to all excitations may further possess a hidden topological order. Several antiferromagnetic materials without
long-range magnetic order well below the characteristic Curie-Weiss temperature scale have been discovered recently,
most notably herbertsmithite Cu3Zn(OH)6Cl2,

8 where no magnetic order has been detected down to 50 mK,9–13 even
though the exchange interaction is estimated to be J = 180 K. The material is a “structurally perfect”9,14 realization
of the S = 1/2 Heisenberg antiferromagnet on kagome, a network of corner-sharing triangles, Fig. 1(a).
While most of the theoretical studies of quantum antiferromagnets deal with the pure Heisenberg model with

nearest-neighbor exchange, real systems inevitably deviate from this idealization. Frustrated magnets in particular
are sensitive to various nominally weak perturbations. In this paper, we deal with the Dzyaloshinskii-Moryia (DM)
interaction,15,16 the antisymmetric version of the Heisenberg exchange induced by the spin-orbit coupling. The
Hamiltonian of such a system is

H =
∑

〈ij〉

[J Si · Sj +Dij · (Si × Sj)]. (1)

In herbertsmithite, the DM term is allowed by the crystal symmetry. The in-plane and out-of-plane components of
the DM vector Dij on kagome are shown in Fig. 1(b) and (c). From eSR measurements,17 the DM vector has the
magnitude D = 0.08J and is dominated by the out-of-plane component, whereas the in-plane component is small,
Din = 0.01J ± 0.02J . The DM term can be gauged away by an appropriate rotation of the local spin axes,18,19

provided that its “line integral” vanishes for any closed loop abc . . . yza:

Dab +Dbc + . . .+Dyz +Dza = 0. (2)

It can be seen from Fig. 1(b) that the in-plane component satisfies Eq. (2) and thus can be gauged away. The
out-of-plane component cannot be removed in this way and thus represents a physical perturbation. In this work, we
concentrate on the out-of-plane component of D.
A growing evidence from numerical studies20–24 indicates that the pure Heisenberg model, D = 0, has a S = 0

ground state with a small but finite energy gap for S = 1 excitations, with estimates ranging from ∆ = 0.05J to
0.15J . These values are comparable to the strength of the DM term, so it is plausible that the low-energy properties
of herbertsmithite are influenced by the DM interaction.
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FIG. 1: (a) Kagome lattice. (b) and (c) In-plane and out-of-plane components of the DM vector Dij shown for directed links
(i → j) on kagome.

The effects of the DM interaction on the kagome antiferromagnet were first studied by Rigol and Singh25,26 in
order to explain low-temperature paramagnetism in herbertsmithite: an upturn in magnetic susceptibility at low
temperatures27 seems to indicate the absence of a spin gap. Tovar et al.28 concluded that a finite DM term could
be responsible for the non-zero susceptibility observed in experiment even if the spin gap remains finite. A study
employing exact diagonalization29 showed that a sufficiently strong DM term, D > Dc ≈ 0.10J , induces long-range
magnetic order in the ground state, with magnetic moments lying in the plane. This was later confirmed by employing
the Schwinger-boson approach.30,31 The ordering tendency is easy to understand by turning to the classical variant
of the Heisenberg model. There, the out-of-plane D vectors shown in Fig. 1(c) lift the extensive degeneracy of the
classical ground states leaving a q = 0 ground state that spontaneously breaks the remaining O(2) symmetry of the
DM Hamiltonian (1). Later numerical work32 turned up some evidence that the system may have an intermediate
phase between Dc1 ≈ 0.05J and Dc2 ≈ 0.10J , where Sz = 1 excitations become gapless but the spin O(2) symmetry
remains intact. In the absence of an obvious order parameter that would uniquely identify the intermediate phase,
the authors of Ref. 32 concluded that the appearance of an intermediate phase might be a finite-size effect. Further
work in this direction is required to elucidate the nature—and even the existence—of the intermediate phase and its
possible relevance to herbertsmithite.
In our previous work,33 we have shown that the S = 1/2 Heisenberg antiferromagnet on kagome can be viewed as

a collection of fermionic spinons—topological defects with S = 1/2—moving in an otherwise inert vacuum of valence
bonds. The spinons interact with an emerging compact U(1) gauge field whose quantized electric flux is related to the
valence-bond configuration through Elser’s arrow representation.34 Spinons carry one unit of the U(1) charge against
a negatively charged background. These features are reminiscent of the picture of fermionic spinons proposed earlier
by Marston et al.1,35 and Hastings3, who used the Abrikosov-fermion representation for spin operators. It is worth
pointing out that the Fermi statistics of spinons is not postulated ad hoc in our approach but rather arises naturally
as the Berry phase of valence bonds that are moved in th e process of spinon exchange. We have further shown that
strong, exchange-mediated attraction binds spinons into small and heavy S = 0 pairs and that low-energy S = 1
excitations result from breaking up a pair into “free” spinons. Thus the spin gap is determined mostly by the binding
energy of a pair, which we estimated to be 0.06J .
From this perspective, one potential route to the closing of the spin gap could be via the destruction of the two-spinon

bound state in the presence of a sufficiently strong DM term. That, however, appears unlikely for two reasons. First,



3

(d)

(a)

(e)

(f)

(c)

(b)

FIG. 2: (a) The sawtooth chain. (b) and (c) Its valence-bond ground states. (d) Spin-1/2 excitations: kink (left) and antikink
(right). (e) Orientation of the DM vectors Dij . (f) The ground state of the classical model has a commensurate magnetic order
with the wavenumber q/2π = −1/3.

the factors setting the pair binding energy—the spinon hopping amplitude and the strength of exchange-mediated
attraction–are both of order J , so it is hard to see how a fairly weak coupling D = 0.05J to 0.10J can disrupt
the pairing. Second, a quantum phase transition to a state with long-range magnetic order can be viewed as Bose
condensation of magnons,36 quasiparticles with Sz = 1 and there are no low-energy excitations of this kind in the pure
Heisenberg model. Although one could think of condensing pairs of spinons with Sz = 1, this route runs into another
difficulty: such an object would carry a double U(1) charge, whereas a magnon is expected to be neutral. Put simply,
a pair of spinons is a topological defect whose motion affects the valence-bond background, which is uncharacteristic
of magnon motion.
A possible way out is to postulate that the condensing objects are pairs consisting of a spinon and its antiparticle.

Such a composite object would have zero U(1) charge and be topologically trivial, like a magnon. In the pure
Heisenberg model, the energy cost of creating a spinon and its antiparticle is approximately 0.25J .37 As we will see,
the DM term lowers the kinetic energy of both spinons and their antiparticles. It is thus reasonable to expect that,
at some critical coupling strength Dc, the energy cost of adding a pair vanishes.
To test this scenario, we have studied a toy version of the kagome antiferromagnet known as the sawtooth spin

chain,38,39 a one-dimensional lattice of corner-sharing triangles, Fig. 2(a). To make a connection with kagome,
exchange couplings are set equal for all bonds. At D = 0, the chain has two valence-bond ground states, Fig. 2(b)
and (c), that spontaneously break the mirror reflection symmetry. Spin excitations are topological defects: domain
walls with spin S = 1/2, Fig. 2(d). The domain walls come in two flavors: kinks have zero energy and are localized,
whereas antikinks are mobile and have a minimum energy of 0.215J .38 These excitations can only be created in pairs
by a local perturbation acting in the bulk. As we discussed elsewhere,40 spinons of the kagome antiferromagnet have
similar properties, with one notable exception: the ground state of the sawtooth chain is free from the defects, whereas
kagome has a finit e concentration of antikinks (1/3 per site) bound into S = 0 pairs.
We have studied the sawtooth spin chain with exchange and Dzyaloshinskii-Moriya interactions, Eq. (1). The Dij

vectors had the same length and a uniform out-of-plane orientation preserving the translational symmetry of the
chain as shown in Fig. 2(e). Qualitatively similar results were obtained for the staggered choice of Dij , but we will
not provide the details here. The introduction of the DM term preserves the mirror symmetry of the Hamiltonian (it
inverts the x coordinate of the lattice and the Sy and Sz components of the spins), so that the notion of a valence-bond
order that spontaneously breaks this symmetry is still valid. The valence-bond order survives to a finite value of the
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DM coupling.
As described below, kinks become mobile in the presence of a DM term. Their minimal energy becomes negative,

growing linearly with D. The minimal energy of an antikink remains unchanged to the first order in D, so one can
expect that the minimum energy of a kink-antikink pair will vanish when D reaches a critical value Dc of the order of
the initial spin gap, 0.215J . In Sec. II, we describe a calculation of the spinon spectrum in the presence of a nonzero
D, from which we obtained an estimate of the critical DM strength, Dc = 0.087J . For D > Dc, spontaneous creation
of kink-antikink pairs leads to a finite concentration of topological defects, which obliterates the valence-bond order
and restores the reflection symmetry of the lattice. This scenario is reminiscent of quantum phase transition at the
end of magnetization plateaus in the S = 1/2 Ising-Heisenberg chain41 and in a frustrated two-leg ladder.42. In both
of those models, the condensation of domain walls turns a state with a broken translational symmetry and gapped
excitations into a gapless phase with incommensurate spin correlations decaying as a power of the distance. Exact
diagonalization calculation for the sawtooth chain with DM interactions, described in Sec. III, are consistent with this
scenario.

II. SPINON DISPERSIONS

A. D = 0

We briefly review the physics of the sawtooth chain in the pure Heisenberg model without the DM term.38–40 The
Hamiltonian of the system is

H = J
∑

〈ij〉

Si · Sj =
J

2

∑

∆

(

S2
∆ − 9/4

)

, (3)

where the S∆ is the total spin of triangle ∆. The energy is minimized when S∆ = 1/2 for every triangle, which can
be achieved by putting a singlet bond on every triangle. The ground state is doubly degenerate. The two ground
states shown in Fig. 2(b) and (c) violate the symmetry of reflection.
Two types of domain walls interpolate between the ground states: the kink and the antikink, Fig.2(d). A kink is an

excitation with zero energy that happens to be an exact eigenstate of the Hamiltonian (3). Thus kinks are localized in
the exchange-only model. The localized nature of kinks can be traced to an accidental degeneracy of the ground state
of the exchange Hamiltonian on a triangle with half-integer spins in addition to the two-fold Kramers degeneracy.
The two degenerate states with Sz=1/2 have spin current going clockwise or counter clockwise around the triangle.
The states also carry electric currents of opposite directions.43 An alternative set of basis states would have distinct
valence-bond averages 〈Si · Sj〉 on the three bonds, which translates to nonzero electric charge on the three sites.43

In contrast, an antikink is mobile. The motion of an antikink is accompanied by the emission and absorption of
kink-antikink pairs. The existence of a finite spin gap guarantees that these excitations are virtual. Polarization effects
can be taken into account by using a variational approach. At the crudest level, the Hamiltonian (3) is projected onto
the Hilbert space with a single antikink to obtain an effective hopping Hamiltonian for an antikink:

H(1)|x〉 = 5J

4
|x〉 − J

2
|x+ 1〉 − J

2
|x− 1〉. (4)

where |x〉 is a state with an antikink on triangle x. The energy dispersion of the antikink is

Ea(k) = 5J/4− J cos k, (5)

with the minimum energy ∆ = 0.25J . In view of the zero energy of a kink, this value is the spin gap.
This estimate can be further improved by enlarging the Hilbert space to include virtual excitations in the immediate

neighborhood of an antikink. This yields an improved estimate of the spin gap, ∆ = 0.219J ,40 which is quite close to
the result obtained by exact diagonalization, ∆ = 0.215J .38

It seems clear from the above that the variational approach provides a reliable description of the low-energy spin
excitations in the pure Heisenberg model. We will use the lowest-order approximation for D 6= 0, without correcting
for the vacuum polarization, to obtain a rough estimate for the critical coupling Dc.

B. D 6= 0

In the presence of a nonzero DM term, kinks become mobile. For a single triangle, this means the splitting of
the accidental degeneracy mentioned previously: the energy of a state with Sz = +1/2 now depends on the orbital
momentum, reflecting the spin-orbit origin of the DM term.
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For an infinite chain, we follow the variational method described above and work in the Hilbert space spanned by
states |x〉 with a single kink located between triangles x and x + 1. These states are not orthogonal to each other
because they are not eigenstates of the same Hermitian operator. The overlap is

〈x1|x2〉 = 2−|x1−x2|. (6)

As with antikinks,40 a simple rotation can be made to obtain an orthonormal basis {|x̃〉}:

|x̃〉 = 2√
3
|x〉 − 2√

3
|x− 1〉. (7)

The matrix elements of the effective Hamiltonian in this subspace are

〈x̃1|H |x̃2〉 = −3iD

2
2−|x1−x2| sgn(x1 − x2), (8)

where the sign function is defined in such a way that sgn(0) = 0. A Fourier transform of the matrix element yields
the energy dispersion of the kink:

Ek(k) =
6D sink

5− 4 cosk
. (9)

The bottom of the band is at Emin
k = −2|D|. For D > 0, it is reached for an incommensurate wavenumber k/2π =

−acos(4/5)/2π ≈ −0.10.
The calculation of the antikink case proceeds in a similar way. The basis states {|x〉}, with an antikink located at

triangle x, can be orthogonalized in the same way to yield an orthonormal basis {|x̃〉}. The matrix element of the
DM term is

〈x̃1|HDM |x̃2〉 = −iD 2−|x1−x2| sgn(x1 − x2)

[

3

2
− 2

3
(δx1,x2+1 + δx1,x2−1)

]

. (10)

The resulting antikink dispersion is

Ea(k) = 5J/4− J cos k +
5D

6
sin k +

3D(4 cosk − 1) sin k

10− 8 cosk
. (11)

For D ≪ J , the lowest energy of an antkink Emin
a = J/4− 14D2/J +O(D4/J3). The bottom of the band is located

at k/2π = −8D/3πJ +O(D3/J2).
The above energy dispersions were computed for spinons with Sz = +1/2. The dispersions for Sz = −1/2 can be

obtained by changing k 7→ −k.
The bottom edge of the two-particle continuum as a function of total momentum is shown as solid lines in Fig. 3

for Sz = 0 and in Fig. 4 for Sz = +1. (The former is a combination of two continua, one for a kink with Sz = +1/2
and an antikink with Sz = −1/2, the other for a kink with Sz = −1/2 and an antikink with Sz = +1/2.) The edge
dispersion mostly tracks the dispersion of the heavier particle, in this case the kink (9). The minimum energy of a
kink-antikink pair

Emin = J/4− 2|D| − 14D2/J +O(D4/J3) (12)

vanishes when the DM coupling reaches the critical strength Dc = 0.09J . The total momentum of a Sz = +1 spinon
pair with the lowest energy is k/2π ≈ −0.15. The gapless state arising at this critical point is expected to have
transverse spin fluctuations with this wavenumber. The wavenumber of longitudinal spin fluctuations is determined
by the bottom of the two-spinon continuum with Sz = 0, which occurs at k/2π ≈ ±0.06.

III. EXACT DIAGONALIZATION

To test the theory, we have performed an exact diagonalization study of the sawtooth chain with exchange and DM
interactions. We worked with finite chains containing 2L sites in a system with L triangles with periodic boundary
conditions. The length varied from L = 5 to 15. Both uniform and staggered DM interactions were investigated, with
qualitatively similar results. Here we report on the uniform case only. For the largest system sizes, we employed the
Lanczos algorithm, which provides convergent results for the ground state energy and a limited number of low-lying
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FIG. 3: Low-energy spectra of the sawtooth chain with a uniform DM term in the Sz = 0 sector. Energy levels, measured
relative to the ground state, are shown as a function of total momentum. Circles are the results of exact diagonalization for
a periodic chain of length L = 15. Solid curves show the bottoms of the two-spinon continua computed analytically. Dashed
straight lines show a linear dispersion with the speed v = 0.36J .

excitations. To reduce the size of the Hilbert space, we used the symmetry of translations along the chain and the
O(2) symmetry of spin rotations around the z-axis.
Figure 3 shows the low-energy portions of the spectra in the Sz = 0 sector for a chain with length L = 15 (30

sites), for several values of the DM coupling D. The invariance of the Hamiltonian (1) under time reversal symmetry
(Sz 7→ −Sz, k → −k) guarantees that the Sz = 0 spectra are symmetric under mirror reflection (k → −k). The
lowest-energy excitations in the Sz = 0 sector are expected to be spinon pairs in two channels: a kink with Sz = −1/2
and an antikink with Sz = +1/2 or vice versa. The calculated edges of the two-particle continua reproduce the
shape of the dispersing bottom reasonably well. However, the calculated edge shifts downward with D faster than
the numerical data do.
In the Sz = +1 sector, the spectra are not symmetric under the mirror symmetry (the Sz = 1 spectrum maps onto

that of the Sz = −1 sector), Fig. 4. The lowest-energy excitations are expected to be spinon pairs consisting of a
kink and an antikink, both with Sz = +1/2. Again, the calculated bottom edge of the excitation continuum has the
right shape but advances downward with D somewhat too fast. In the two-spinon approximation, both the Sz = 0
and Sz = 1 continua touch zero energy at Dc = 0.09J . However, the numerical energy spectra appear to still have a
gap at that point, see Fig. 3.
To locate the critical point, we turned to a scaling analysis of the ground-state splitting. In the phase with valence-

bond order, the ground state is doubly degenerate in the limit L → ∞. In finite systems, the ground-state doublet is
split thanks to quantum tunneling. Both members of the doublet have momentum k = 0 because the valence-bond
order preserves translational symmetry. The tunneling amplitude decays exponentially with the system length L and
so does the splitting.
Fig. 5(a) shows the splitting of the ground state for D ≤ 0.11J . All of the data sets, with the exception of the

largest coupling, are well fit by the scaling expression

∆E = AL−5/4e−L/ξ cos (kL) (13)

with the same prefactor A. The dependence of the tunneling length ξ and the wavenumber k is shown in Fig. 5(c).
The tunneling length diverges, or at least greatly exceeds the maximum attainable system length L = 15, for D >
Dc = 0.115J . For 0.11J ≤ D ≤ 0.15J , the finite-size dependence of the splitting was best fit by Eq. (13) with ξ = ∞
and a D-dependent amplitude A, Fig. 5(b). Apart from the oscillating factor, Eq. (13) suggests a scale-invariant
ground state for D ≥ Dc. The oscillations presumably come from the interference of instantons as discussed in the
Appendix.
For D > Dc, we expect a gapless phase with quasi-long-range incommensurate spin correlations decaying as a power

of the distance. For a sufficiently large D, the classical model should become a good starting point. In the classical
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FIG. 4: Low-energy spectra in the Sz = +1 sector. Notations are the same as in Fig. 3.

−0.05

 0

 0.05

 0.1

∆E

 4  6  8  10  12  14 L

(a)

D=0.06J
0.07J
0.08J
0.09J
0.10J
0.11J

−0.1

−0.05

 0

 0.05

 0.1

 0.15

∆E

 4  6  8  10  12  14 L

(b)

D=0.11J
0.12J
0.13J
0.14J
0.15J

 0

 0.05

 0.1

 0.15

1/ξ

 0.04  0.06  0.08  0.1  0.12  0.14 D/J

 0.4

 0.5

 0.6

 0.7

k

(c)

FIG. 5: The splitting of the ground-state doublet as a function of the system length L for (a) D < Dc = 0.115J and (b) for
D > Dc. (c) The dependence of the inverse tunneling length 1/ξ and the wavenumber k in the scaling form (13) on the DM
coupling strength D.

limit, the sawtooth chain has a spiral order for any nonzero value of D, Fig. 2(f). Low-energy excitations are spin
waves with a speed

v ≈ 2.7S
√
JD. (14)

Quantum fluctuations disrupt the long-range spin order, restoring translational invariance and the O(2) symmetry.
Such a phase would be a Luttinger liquid, whose lowest-energy Sz = +1 excitations are spin waves with a sound-like
spectrum at k0/2π = −1/3. The numerically determined Sz = +1 spectra for D ≥ 0.15J are consistent with spin
waves. At D = 0.19J , the soft spot is located at k0/2π ≈ −0.25, not far from the classical value. The speed of sound
(estimated from the slope of the dashed lines in Fig. 3 and 4) is v = 0.36J , is not far from the classical estimate (14)
obtained below.

IV. SPIN CORRELATIONS IN THE GROUND STATE

To verify the location of the quantum critical point Dc and to confirm the critical nature of the ground state for
D > Dc, we examined the long-distance behavior of spin correlations, Gαβ(r) = 〈Sα(0)Sβ(r)〉, in the ground state.
In the Luttinger-liquid regime, transverse spin correlations are expected to decay as a power of the distance,44

|G+−(r)| ∼ C

r1/2K
. (15)
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FIG. 6: The amplitude of transverse spin correlations (15) as a function of the chord distance (16) on a log-log plot (left) and
a simple log plot (right).

The stiffness constant K varies between 1 (gas of dilute magnons) and 1/4 (gas of dilute spinons).42,45

In a finite system of length L with periodic boundary conditions, the Green’s function depends in the same way on
the chord distance46

d(r) = (L/π) sin (πr/L). (16)

In a system with 2L spins, this distance varies from d ≈ 1 to L/π. In view of that, the range of distances in a system
with 2L = 30 spins is not sufficient to reliably observe the critical behavior of the spin correlation function.
To observe the critical behavior, we used the density-matrix renormalization group (DMRG) method implemented

through the Matrix Product Toolkit47 to obtain the ground-state wavefunction in a periodic chain with up to 2L = 100
spins. The system has a U(1) symmetry which we took into account to reduce CPU time. The number m of states
kept varied from 800 to 1200 states. Our results for the ground state energy per site for all values of DM coupling D
investigated are consistent with the energy per site obtained from the ED calculations.
The resulting transverse spin correlations |G+−(r)| in a system of length L = 50 are shown in Fig. 6 as a function of

the chord distance (16). At largest distances d, the data for D = 0.12J follow a power law C/d2, which is consistent
with the value K = 1/4 at the spinon condensation point. For D > 0.12J , spin correlations follow power laws
with smaller slopes, indicating K > 1/4. For D < 0.12J , the power-law scaling breaks down at large d changing
to an exponential dependence. The estimated critical point, Dc = 0.12J , is in reasonable agreement with the value
Dc = 0.115J obtained from the splitting of the ground-state doublet.

V. DISCUSSION

Analytical arguments and numerical evidence presented above supports the following scenario. In the absence of
the Dzyaloshinskii-Moriya term, the sawtooth chain has a doubly degenerate ground state with valence-bond order
spontaneously breaking the reflection symmetry of the lattice. Elementary excitations are spinons of two flavors,
localized kinks and mobile antikinks. The gap to spin-1 excitations, ∆ = 0.215J is determined by the edge of the two-
spinon continuum. The introduction of a DM term with the D vector pointing along the same axis for all bonds, Fig. 2,
lowers the spin-rotation symmetry down to an O(2). At weak coupling D, the lattice reflection symmetry remains
spontaneously broken. At the same time, a finite D lowers the excitation energies of both kinks and antikinks and the
spin gap (understood as the lowest energy of Sz = 1 excitations) begins to close. A fairly crude analytical calculation
indicates that the main factor affecting the spin gap is the minimum energy of the kink, −2|D|. The gap closes roughly
when that energy equals the initial gap in absolute terms, |D| = Dc ≈ ∆/2 ≈ 0.1J . This is confirmed by numerical
work involving exact diagonalization of finite chains, with the result Dc = 0.115J . Beyond the critical coupling, the
spinons proliferate. Since they act as domain walls in the valence-bond order parameter, the valence-bond order is
lost and the lattice symmetry is fully restored. The resulting state is likely a Luttinger liquid with incommensurate
spin correlations and spin-wave excitations. Similar transitions between Ising-ordered phases and Luttinger liquids
have been found in other one-dimensional systems.41,42 The strength of the DM coupling D ≈ (δg/g)J where δg is
the deviation of gyromagnetic ratio from its free-electron value g.16 In kagome antiferromagnets herbertsmithite and
volborthite, δg/g ≈ 0.1.48

It is tempting to speculate that a somewhat similar transition may occur in the S = 1/2 Heisenberg model on
kagome with a DM coupling. While the existence of the transition is not in doubt—at a large enough D the system
should develop magnetic order29–32—the nature of the transition remains to be determined.
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In the kagome antiferromagnet, spinon excitations are very similar to those of the sawtooth chain.40 In the absence
of the DM term, kinks are localized and have zero energy, whereas antikinks follow one-dimensional trajectories
with the same energetics as on the sawtooth chain. Adding the DM term thus has similar consequences, namely
delocalization of kinks is the main factor lowering the edge of the kink-antikink continuum. If anything, the gap may
close even faster than on the sawtooth chain because on kagome kinks move in two dimensions and thus can lower
their energy through delocalization more effectively than on a one-dimensional chain. For this reason, the critical DM
coupling for kagome may be even lower than for the sawtooth chain.
The kagome antiferromagnet differs from the sawtooth chain in one important respect: it has a finite concentration

of antikinks in the ground state. The antikinks form tightly bound S = 0 pairs, whose binding energy ∆aa ≈ 0.06J
is lower than the threshold energy of kink-antikink creation ∆ka ≈ 0.25J . Therefore the spin gap in the Heisenberg
antiferromagnet on kagome is determined by binding energy of an antikink pair. Although the binding energy ∆aa

is no doubt influenced by the introduction of the DM term, it is unlikely that this energy is very sensitive to the
presence of a small perturbtion like D as ∆aa is determined by a competition of two high-energy processes: the
antikink hopping amplitude and the antikink attraction in the singlet channel, both with a strength of order J . It
seems more likely that the larger gap ∆ka will be quickly driven to zero as it is on the sawtooth c hain.
The nature of the phase transition at the conjectured condensation of kinks and antikinks is an open question. It

is not even known whether the D = 0 ground state is a valence-bond liquid or solid, with contradictory indications
from different numerical techniques.21–24 (In our view, even a small amount of bond disorder will turn the system into
a disordered valence-bond solid.) Adding the DM term will tend to melt the delicate valence-bond order turning the
valence-bond crystal into a liquid before the magnetic condensation and thus inducing another phase transition along
the way. The nature of the condensed phase is not clear, either. Usually, ordering of the transverse components of
magnetization is associated with a proliferation of Sz = 1 objects, as is the case in magnon condensation,36 whereas
here the condensing particles are spinons with half-integer spin. This obsrvation lends support to the scenario with
an intermediate gapless phase lacking long-range spin order,32 which is some sort of an algebraic spin liquid.4
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Appendix A: Oscillations in the ground-state splitting

To understand the oscillatory behavior of the ground-state splitting, Eq. (13), we turn to a much simpler model:
the antiferromagnetic XXZ chain with DM interaction described by the Hamiltonian H = HXXZ +HDM, where

HXXZ =
∑

n

[

J cosα(Sx
nS

x
n+1 + Sy

nS
y
n+1) + JzS

z
nS

z
n+1

]

(A1)

and

HDM = J sinα
∑

n

(Sx
nS

y
n+1 − Sy

nS
x
n+1). (A2)

In the easy-axis limit, Jz ≫ J , the ground state is doubly degenerate and exhibits Néel order. In a finite chain with
periodic boundary condition, quantum tunneling splits the doublet into eigenstates with momenta 0 and π. Below
we discuss the effect of the DM term, α 6= 0, on the splitting.
By rotating local axes at site n through angle nα in the xy plane, the DM term in the Hamiltonian can be removed,

producing the standard XXZ model:

H ′ =
∑

n

[

J(Sx
nS

x
n+1 + Sy

nS
y
n+1) + JzS

z
nS

z
n+1

]

. (A3)

For a closed chain of length L, the transformation yields twisted periodic boundary conditions:

Sx
N = Sx

0 cos (Lα) + Sy
0 sin (Lα),

Sy
N = −Sx

0 sin (Lα) + Sy
0 cos (Lα). (A4)
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The twist is absent if Lα = 2πm, where m is an integer. Then the system has the same spectrum as in the absence
of the DM term, α = 0. At a fixed chain length L, the splitting is a periodic function of α with a period of 2π/L.
To see that the splitting should have an oscillatory character, consider the special case of a π twist, Lα = (2m+1)π.

As Haldane argued,49 the tunneling between the two Néel states is mediated by instantons with quantized winding
numbers n, classical action Sn, and a Berry phase exp (2πinS). For boundary conditions with a π twist, the winding
numbers are half-integer, n = ±1/2,±3/2, . . . Instantons with opposite winding numbers have the same classical
action, Sn = S−n. However, their Berry phases are exactly opposite, exp (2πinS) = − exp (−2πinS), when both the
winding numbers n and spin S are half-integer. As a result of destructive interference of instantons with opposite
winding numbers, the tunneling amplitude vanishes when Lα = (2m+1)π. We thus expect an oscillatory dependence
of the splitting on α at a constant L in the XXZ chain with half-integer spins and periodic b oundary conditions.
The exponential dependence of the splitting on the length will acquire an oscillating prefactor cos (αL). This inspired
Eq. (13).

Appendix B: Spin wave in sawtooth chain

We compute the spin-wave spectrum on the sawtooth chain in the classical limit, S → ∞. The Hamiltonian is

H =
∑

〈ij〉

[Si · Sj +Dij · (Si × Sj)]. (B1)

For brevity, we set J = 1.
In equilibrium, spins lie in the plane normal to the DM vectors Dij , with the angle of 120◦ between nearest

neighbors, Fig. 2(f). It is convenient to choose reference frames in such a way that spins point along the local z axes,
the x axes are in the plane of the spins, and the y axes are parallel to Dij . For small deviations from equilibrium,

Si ≈ S(αi, βi, 1− α2
i /2− β2

i /2) (B2)

where αi and βi are small deviations from the 120◦ pattern.
In the harmonic approximation, the energy (B1) reads

H = S2
∑

〈ij〉

(χβiβj + αiαj)− S2
∑

i

Kiχ(α
2
i + β2

i ) (B3)

where χ = −1/2−
√
3D/2. Ki = 1 if i is an apex (A) site and Ki = 2 if it is a base (B) site.

The dynamics can be obtained from the Lagrangian, which includes a Berry phase term in addition to the potential
energy:

L = S
∑

i

(cos θi − 1)φ̇i −H. (B4)

After expressing the angles θ and φ in terms of α and β,

tanφ = β/α, cos θ ≈ 1− (α2 + β2)/2, (B5)

we obtain the following Lagrangian:

L = S
∑

i

(α̇iβi − αiβ̇i)/2−H. (B6)

It yields the equations of motion for spins on sublattices A and B:

α̇A
i = Sχ(βB

i+1/2 + βB
i−1/2)− 2SχβA

i , (B7a)

α̇B
i = Sχ(βA

i+1/2 + βA
i−1/2 + βB

i+1 + βB
i−1)− 4SχβB

i , (B7b)

β̇A
i = −S(αB

i+1/2 + αB
i−1/2) + 2SχαA

i , (B7c)

β̇B
i = −S(αA

i+1/2 + αA
i−1/2 + αB

i+1 + αB
i−1) + 4SχαB

i . (B7d)
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Note that i is half-integer on sublattice A and integer on sublattice B. Plane waves with frequency ω and wavevector
k satisfy the equation







−iω 0 2Sχ −2Sχ cos(k/2)
0 −iω −2Sχ cos(k/2) 4Sχ− 2Sχ cosk

−2Sχ 2S cos(k/2) −iω 0
2S cos(k/2) −4Sχ+ 2S cos k 0 −iω















αA

αB

βA

βB









= 0. (B8)

At D = 0, we have one zero mode and one mode with a finite frequency ω = S
√

2− cos(2k). For a finite D, the zero
mode acquires a dispersion linear in k in the limit k → 0. The wave velocity is

v = 3S

√√
3D + 7D2 + 5

√
3D3 + 3D4

2 + 8
√
3D + 18D2

. (B9)

Restoring J as a coupling constant, we find the following behavior for the velocity. As D → 0, v ∼ 2.79S
√
DJ . For

D = 0.19J , v = 1.05SJ .
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