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BaMn2As2 is unique among BaT2As2 compounds crystallizing in the body-centered-tetragonal
ThCr2Si2 structure, which contain stacked square lattices of 3d transition metal T atoms, since it
has an insulating large-moment (3.9 µB/Mn) G-type (checkerboard) antiferromagnetic AF ground
state. We report measurements of the anisotropic magnetic susceptibility χ versus temperature
T from 300 to 1000 K of single crystals of BaMn2As2, and magnetic inelastic neutron scattering
measurements at 8 K and 75As NMR measurements from 4 to 300 K of polycrystalline samples. The
Néel temperature determined from the χ(T ) measurements is TN = 618(3) K. The measurements
are analyzed using the J1-J2-Jc Heisenberg model for the stacked square lattice, where J1 and J2 are
respectively the nearest-neighbor (NN) and next-nearest-neighbor intraplane exchange interactions
and Jc is the NN interplane interaction. Linear spin wave theory for G-type AF ordering and
classical and quantum Monte Carlo simulations and molecular field theory calculations of χ(T )
and of the magnetic heat capacity Cmag(T ) are presented versus J1, J2 and Jc. We also obtain
band theoretical estimates of the exchange couplings in BaMn2As2. From analyses of our χ(T ),
NMR, neutron scattering, and previously published heat capacity data for BaMn2As2 on the basis
of the above theories for the J1-J2-Jc Heisenberg model and our band-theoretical results, our best
estimates of the exchange constants in BaMn2As2 are J1 ≈ 13 meV, J2/J1 ≈ 0.3 and Jc/J1 ≈ 0.1,
which are all antiferromagnetic. From our classical Monte Carlo simulations of the G-type AF
ordering transition, these exchange parameters predict TN ≈ 640 K for spin S = 5/2, in close
agreement with experiment. Using spin wave theory, we also utilize these exchange constants to
estimate the suppression of the ordered moment due to quantum fluctuations for comparison with
the observed value and again obtain S = 5/2 for the Mn spin.

PACS numbers: 75.30.-m, 75.40.Cx, 75.50.Ee, 76.60.Es

I. INTRODUCTION

The observations of superconductivity up to 56 K
in several classes of Fe-based superconductors in 2008
(Refs. 1–4) have reinvigorated the high-Tc field follow-
ing the discovery of high-Tc superconductivity in the lay-
ered cuprates 25 years ago.5,6 Interestingly, the Fe atoms
have the same layered square lattice structure as the Cu
atoms do. Even though the maximum Tc of the Fe-
based materials is far below the maximum Tc of 164 K
for the cuprates,7 the Fe-based materials have generated
much interest because the superconductivity appears to
be caused by a magnetic mechanism4 as also appears to
be the case in the cuprates. One of the many motivations
for carrying out detailed measurements on the Fe-based
materials is to see if these studies can clarify the super-
conducting mechanism in the high-Tc cuprates for which
a clear consensus has not yet been reached despite 25
years of intensive research.

Many studies of the magnetic properties of the Fe-
based superconductors have been carried out.4,8 For the

FeAs-based materials such as Ba1−xKxFe2As2 with the
body-centered-tetragonal ThCr2Si2 structure, the mag-
netic susceptibility χ increases approximately linearly
with increasing temperature above Tc or above the Néel
temperature TN of the nonsuperconducting parent com-
pounds up to at least 700 K.9,10 In a model of local
magnetic moments on a square lattice with strong an-
tiferromagnetic (AF) Heisenberg interactions, this type
of behavior is explained as being due to the measure-
ment temperature (T ) range being on the low-T side of a
broad maximum in χ(T ) at higher temperatures.6 On the
other hand, many magnetic measurements of the FeAs-
based superconductors have been explained in terms of
itinerant magnetism models, and indeed the consensus
is pointing in this direction, although this view is not
universal.4

In this context it is very useful to have a benchmark
compound with the same ThCr2Si2-type structure and
similar composition as many of the Fe-based supercon-
ductors, but for which a local moment model must be
used to explain the magnetic properties. Such a com-
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FIG. 1: (Color online) Crystal and magnetic structures
of BaMn2As2.13 The crystal structure is body-centered-
tetragonal ThCr2Si2-type in which the Mn atoms form a
square lattice within the ab-plane, the axes of which are ro-
tated by 45◦ with respect to the a and b unit cell axes. The
Mn atoms in adjacent layers are directly above or below each
other along the c-axis. The magnetic structure is a G-type an-
tiferromagnetic structure in which the magnetic moments of
nearest-neighbor spins are antiparallel both in the ab-plane
and along the c-axis. The ordered moment at T = 0 is
3.9(1) µB/Mn.13

pound is BaMn2As2 because it has an insulating ground
state.11,12 The crystal structure of BaMn2As2 is shown in
Fig. 1.13 It is a small-band-gap semiconductor11,12 with
an activation energy of 30 meV.11 The electronic struc-
ture calculations of An et al.12 for the predicted con-
ventional G-type (checkerboard) AF state give a small
band gap of 0.1–0.2 eV, qualitatively consistent with the
experimental value of the activation energy11 that is ex-
pected to be a lower limit to half the band gap. The
anisotropic χ of single crystals was previously measured
at T ≤ 400 K.11 These data indicate that the com-
pound is in a collinear AF state at these temperatures,
with the ordered moment direction along the c-axis, and
with a TN significantly above 400 K. From subsequent
magnetic neutron powder diffraction measurements, the
Néel temperature was determined to be TN = 625(1) K
and the AF structure was found to be a conventional
G-type (checkerboard) structure in all three directions
as shown in Fig. 1, with an ordered moment direction
along the c-axis in agreement with the χ(T ) data, and
with an ordered moment µ = 3.9(1) µB/Mn at 10 K,
where µB is the Bohr magneton.13 These characteristics
are radically different from those of the similar FeAs-
based metallic parent compound BaFe2As2 with the same
room temperature crystal structure. BaFe2As2 has a
much smaller ordered moment µ ≈ 0.9 µB/Fe and much

smaller TN = 137 K than BaMn2As2, the structure of
BaFe2As2 distorts to orthorhombic symmetry below a
temperature TS ≈ TN instead of remaining tetragonal as
in BaMn2As2, the ordered moment direction is in the
ab-plane instead of along the c-axis, and the in-plane
AF structure is a stripe structure (see the bottom panel
of Fig. 2 below) instead of G-type.4 These large differ-
ences between the magnetic properties of BaMn2As2 and
BaFe2As2 evidently arise because BaMn2As2 is a local
moment antiferromagnet whereas BaFe2As2 is an itiner-
ant antiferromagnet.
An intriguing aspect of the in-plane electrical resistiv-

ity ρ(T ) data for BaMn2As2 single crystals is that above
∼ 100 K the slope of the resistivity versus temperature
changes from negative (semiconductor-like) to positive
(metal-like).11,12 The ρ(T ) of a material can be written
in an effective single carrier model as

ρ(T ) =
1

e n(T )µ(T )
, (1)

where e is the magnitude of the electron charge, and
n(T ) and µ(T ) are respectively the effective conduction
carrier density and the effective carrier mobility, respec-
tively. Thus, a positive temperature coefficient of resis-
tivity can be obtained for a band semiconductor if the
increase in carrier concentration with increasing temper-
ature is slower than the decrease in mobility with in-
creasing temperature. Our 75As NMR measurements in
Sec. XI were in fact initially motivated in order to ad-
dress this issue. As stated in that section, we found
no evidence for a Korringa contribution to the 75As nu-
clear spin-lattice relaxation rate that would have indi-
cated metallic behavior, and indeed we could interpret
the data from 50 to 300 K in terms of a local moment
insulator model. Furthermore, there is no evidence from
the previously published neutron diffraction,13 resistivity
or heat capacity11,12 measurements for any phase transi-
tion from a band insulator at low temperatures to a metal
at high temperatures. Thus in the absence of experimen-
tal data to the contrary, our present interpretation of
the positive temperature coefficient of resistivity above
∼ 100 K is as discussed below Eq. (1) above.
A related Mn-based compound is Sr2Mn3As2O2 which

consists of Mn2As2 layers that are the same as in
BaMn2As2, alternating along the c-axis with MnO2 lay-
ers with the same structure as the CuO2 layers in the lay-
ered cuprate superconductor parent compounds.14 Due
to geometric frustration effects, the Mn spins in the
MnO2 layers do not show any obvious long-range mag-
netic ordering for T ≥ 4 K, but the Mn spins in the
Mn2As2 layers show long-range G-type AF ordering be-
low TN = 340 K with a low-temperature ordered mo-
ment µ = 3.50(4) µB/Mn.14,15 Thus, in both BaMn2As2
and Sr2Mn3As2O2, the Mn spins in the Mn2As2 lay-
ers exhibit the same G-type AF structure and signifi-
cant reductions in the ordered moments from the value
µ = gSµB = 5 µB/Mn that would be expected for the
high-spin S = 5/2 d5 Mn+2 ion with spectroscopic split-
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ting factor g = 2.

The main goal of the present work was to deter-
mine the magnitudes of the exchange interactions in the
fiducial compound BaMn2As2 and their signs, i.e., AF
or ferromagnetic (FM). Experimentally, we extend the
single-crystal anisotropic χ(T ) measurements from 300
to 1000 K, significantly above TN. We also report inelas-
tic magnetic neutron scattering measurements at 8 K and
75As NMR measurements from 4 to 300 K on polycrys-
talline samples. We analyze these data using the J1-J2-
Jc Heisenberg stacked square spin lattice model for which
we develop extensive theory. This model has also been
investigated recently by other groups.16–23 We calculate
the spin wave dispersion relations for this model. We re-
port classical and quantum Monte Carlo simulations and
molecular field theory calculations of χ(T ) and the mag-
netic heat capacity Cmag(T ). We extract the values of J1,
J2 and Jc by fitting our experimental data for BaMn2As2
by these theoretical predictions for the J1-J2-Jc model.
From our classical Monte Carlo simulations of the heat
capacity of coupled layers, we derive a formula for TN

versus the exchange parameters which yields a TN very
close to experiment from the independently-derived ex-
change constants, which indicates that the spin on the
Mn ions is 5/2. We also utilize these exchange constants
to determine from spin wave theory the suppression of the
ordered moment due to quantum fluctuations for compar-
ison with the observed value, and again arrive at the es-
timate of S = 5/2 for the spin of the Mn+2 ions when the
additional expected suppression of the ordered moment
due to hybridization and/or to charge and/or magnetic
moment amplitude fluctuations, which arise from both
on-site and intersite interactions, are taken into account.
Finally, we report band-theoretical calculations of J1, J2
and Jc for BaMn2As2.

The applicability of the local moment Heisenberg
model to a specific compound depends on the degree of
variation of atomic magnetic moments and interatomic
exchange parameters found from electronic structure cal-
culations for the relevant magnetic ordering configura-
tions. Such variations are usually found to be small in
magnetic insulators. In the case of BaMn2As2, our band
theory analysis in Sec. XII indicates that insulating char-
acter is conserved for both the Néel and stripe antiferro-
magnetic structures, as observed, with a tiny metallicity
appearing in the ferromagnetic case. As noted above,
An et al. previously estimated that the band gap is 0.1–
0.2 eV from electronic structure calculations for G-type
AF order in BaMn2As2.

12 Moreover, our direct calcula-
tions of the atomic magnetic moment and exchange cou-
plings for different spin configurations demonstrate that
the ordered moment variations do not exceed 10–12%,
while the exchange coupling variation is only about 5%.
The largest change appears for the ferromagnetic state
which due to its high energy is expected to contribute lit-
tle to thermodynamic properties. Finally, our determina-
tion of a self-consistent set of antiferromagnetic exchange
coupling parameters in BaMn2As2 from both static and

dynamic experiments confirm the validity of our analyses
in terms of the local moment Heisenberg model.
The remainder of the paper is organized as follows.

The experimental details for the sample preparation and
characterization of BaMn2As2 and for the various mea-
surements are given in Sec. II. The J1-J2-Jc Heisenberg
model is introduced and defined in Sec. III. The inelas-
tic neutron scattering measurements of polycrystalline
BaMn2As2 and the analysis of these data are presented
in Sec. IV. This includes the presentation of spin wave
theory for the J1-J2-Jc model of the G-type antiferromag-
net in Sec. IVA that is used to fit the neutron data and
to later obtain an estimate of the spin wave contribution
to the heat capacity at low temperatures in Sec. VIII B
and to analyze the 75As nuclear spin-lattice relaxation
NMR data below TN in Sec. XIB. The high-temperature
anisotropic magnetic susceptibility measurements of sin-
gle crystals of BaMn2As2 are presented in Sec. V. The
predictions of molecular field theory (MFT) and related
topics for the J1-J2-Jc Heisenberg model are given in
Secs. VI, VII and the Appendix. Comparisons of the
MFT predictions with our experimental χ(T ), Cp(T ) and
ordered moment µ(T ) data for BaMn2As2 are given in
Sec. VIII. In this section we also calculate the spin wave
contribution to the heat capacity at low temperatures
assuming a neglibible anisotropy gap in the spin wave
spectrum and compare this contribution with the experi-
mental heat capacity data at low temperatures. Classical
and quantum Monte Carlo simulations of TN, χ(T ) and
Cmag(T ) in the J1-J2-Jc Heisenberg model are presented
in Sec. IX and comparisons with the experimental TN

and χ(T > TN) data are carried out in Sec. X. The
NMR measurements and analysis are given in Sec. XI,
and our band-theoretical estimates of the exchange cou-
plings in BaMn2As2 are presented in Sec. XII. Our spin
wave theory results for the suppression of the ordered
moment are given in Sec. XIII. From a comparison with
the experimental ordered moment, we infer that the spin
on the Mn ions is 5/2. A summary of our results and of
our most reliable values of the J1, J2 and Jc exchange
constants and of the spin value derived for the Mn ions
in BaMn2As2 are given in Sec. XIV.

II. EXPERIMENTAL DETAILS

A 25 g polycrystalline sample of BaMn2As2 was pre-
pared by solid state synthesis for inelastic neutron scat-
tering (INS) measurements. Stoichiometric amounts of
Ba dendritic pieces (Aldrich, 99.9%), Mn powder (Alfa
Aesar, 99.9%), and As chunks (Alfa Aesar, 99.9%) were
ground and mixed together in a He-filled glovebox, pel-
letized, placed in a 50 mL Al2O3 crucible with a lid and
sealed in a quartz tube under a 0.5 atm partial pres-
sure of Ar gas (99.999%). The tube was placed in a
box furnace and heated at a rate of 50 ◦C/h to 575 ◦C
and kept there for 24 h. The furnace was then heated
at 100 ◦C/h to 800 ◦C and kept there for 48 h before
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cooling to room temperature by turning off the furnace.
The quartz tube was opened inside the glovebox and
the product was ground and mixed thoroughly and pel-
letized again. The pellet was placed in the same crucible
and sealed again in a quartz tube. The quartz tube was
heated in the box furnace at 100 ◦C/h to 850 ◦C and kept
there for 24 h and then heated at 100 ◦C/hr to 900 ◦C
and kept there for 24 h, followed by furnace-cooling at
∼ 300 ◦C/h to room temperature. The resulting prod-
uct was ground and pelletized and the above heat treat-
ment was repeated. The resulting product was character-
ized by x-ray powder diffraction and the majority phase
(≈ 83%) was found to be the desired ThCr2Si2 structure.
The major impurity phase was identified to be tetrago-
nal Ba2Mn3As2O. BaMn3As2O is an insulator, shows
low-dimensional magnetic behavior with a broad maxi-
mum in χ(T ) at 100 K and antiferromagnetic ordering
at ≈ 75 K.24,25 From x-ray diffraction measurements the
weight fraction of this impurity phase in the INS sample
was estimated to be ≈ 17%. The INS spectra at 8 K and
at 100 K (not shown) exhibited no noticeable differences.
Since 100 K is well above the purported ordering temper-
ature of the impurity phase, this eliminates any concern
for serious contamination of the magnetic INS data by
this phase.

About 20 g of the above material was used for INS
measurements. About 5 g of the polycrystalline material
was used to grow single crystals. About 3 g of polycrys-
talline BaMn2As2 and 20 g of Sn (Alfa Aesar, 99.999%)
were placed in an Al2O3 crucible and sealed in a quartz
tube. The crucible was heated at 250 ◦C/hr to 1000 ◦C
and kept there for 24 h and then cooled at 5 ◦C/h to
575 ◦C and kept there for 5 h at which point the excess
flux was centrifuged off to give isolated single crystals of
typical dimension 5× 5× 0.2 mm3. Energy-dispersive x-
ray (EDX) measurements using a Jeol scanning electron
microscope confirmed the composition of the crystals to
be BaMn2As2.

For the INS measurements, the powder sample of mass
≈ 20 g was characterized for phase purity by x-ray pow-
der diffraction as discussed above. The INS measure-
ments were performed on the Pharos spectrometer at
the Lujan Center of Los Alamos National Laboratory.
Pharos is a direct geometry time-of-flight spectrometer
and measures the scattered intensity over a wide range
of energy transfers h̄ω and angles between 1 and 140◦ al-
lowing determination of the scattered intensity S(Q,ω)
over large ranges of momentum transfer h̄Q and h̄ω. The
powder sample was packed in a flat aluminum can ori-
ented at 135◦ to the incident neutron beam, and INS
spectra were measured with incident energies Ei of 150
and 200 meV. The data were measured at a temperature
T = 8 K, well below the antiferromagnetic ordering tem-
perature of 625 K.13 The time-of-flight data were reduced
into h̄ω and scattering angle (2θ) histograms and correc-
tions for detector efficiencies, empty can scattering, and
instrumental background were performed.

The high-temperature anisotropic χ(T ) measurements

of a BaMn2As2 single crystal took place in a physical
properties measurement system (PPMS, Quantum De-
sign, Inc.) at the Laboratory for Magnetic Measurements
at the Helmholtz Zentrum Berlin für Materialien und En-
ergie. For these measurements the vibrating sample mag-
netometer option was used. Data were collected with the
magnetic field applied both parallel and perpendicular
to the Mn layers. For field pointing within the ab-plane
a sample of mass 15.31 mg was used. The sample had
to be cut for field parallel to c and the sample weight
was 12.058 mg. For all measurements a constant mag-
netic field H = 3 T was used while the temperature was
varied between 300 and 1000 K. To achieve these temper-
atures an oven set-up provided as an option by Quantum
Design was utilized. The crystal was fixed on a zirco-
nia sample stick containing a wire system that acts as a
heating element. The sample was glued on the stick with
heat-resistant cement and wrapped in low emissivity cop-
per foil to minimize the heat leak from the hot region to
the surrounding coil set. The measurements took place
with heating rates of between 1 and 2 K per minute. The
magnetic moment of the empty sample holder, 7.63 mg
of cement and of the copper foil was measured separately
and subtracted from the data.
The NMR measurements were carried out on a poly-

crystalline sample using the conventional pulsed NMR
technique on 75As nuclei (nuclear spin I = 3/2 and gy-
romagnetic ratio 75γ/2π = 7.2919 MHz/T) in the tem-
perature range 4 ≤ T ≤ 300 K. The measurements were
done at a radio frequency of about 52 MHz. Spectra were
obtained by sweeping the field at fixed frequency. The
75As spin-lattice relaxation rate 1/T1 was measured by
the conventional single saturation pulse method.

III. THE J1-J2-Jc HEISENBERG MODEL

A bipartite spin lattice is defined as consisting of two
distinct spin sublattices in which a given spin on one sub-
lattice only interacts with nearest-neighbor (NN) spins
on the other sublattice. In the FeAs-based supercon-
ductors and parent compounds, when the magnetism is
analyzed in a local moment model, the magnetic lattice
is found not to be bipartite.4 In addition to the in-plane
(J1) and out-of-plane (Jc) NN inter-sublattice interac-
tions, in-plane diagonal next-nearest-neighbor (NNN)
intra-sublattice interactions J2 are also present along
both diagonals of each square, as shown in Fig. 2. The
spin Hamiltonian in the J1-J2-Jc Heisenberg model is

H = J1
∑

NN

Si · Sj + J2
∑

NNN

Si · Sj (2)

+ Jc
∑

c

Si · Sj + gµBH
∑

i

Sz
i ,

where Si is the spin operator for the ith site, g is the
spectroscopic splitting factor (g-factor) of the magnetic
moments, µB is the Bohr magneton and H is the magni-
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FIG. 2: (Color online) Collinear commensurate in-plane mag-
netic structures in the J1-J2-Jc model for the square lattice
antiferromagnet. The top panel shows the G-type (Néel or
checkerboard) AF structure where nearest-neighbor spins are
aligned antiparallel. The bottom panel shows stripe-type or-
dering, along with the definitions of the in-plane exchange
constants J1 and J2. A J2 interaction is present for both di-
agonals of each square. According to Eqs. (4), the G-type
in-plane ordering is favored if J2 < J1/2, whereas the stripe-
type ordering is favored if J2 > J1/2. By examining the
bottom panel, one sees that the stripe magnetic structure
consists of two interpenetrating G-type magnetic structures,
each respectively consisting of next-nearest-neighbor spins.

tude of the magnetic field which is applied in the +z di-
rection. Throughout this paper, a positive J corresponds
to an antiferromagnetic interaction and a negative J to
a ferromagnetic interaction. The indices NN and NNN
indicate sums restricted to distinct spin pairs in a Mn
layer, while the index c indicates a sum over distinct NN
Mn spin pairs along the c axis. This is the minimal model
needed to explain our INS results below for BaMn2As2.
The classical energies of collinear commensurate or-

dered spin configurations in this model with H = 0 are
analyzed as discussed in Ref. 4. We consider four com-
peting magnetic structures in the J1-J2-Jc model. One
is the simple FM structure. The other three are two AF
stripe structures and the G-type (Néel) structure shown
in Fig. 2. By definition, the NN spins in alternate layers
are aligned antiferromagnetically in the G-type AF or-
dered state, whereas the stripe state can have either AF
or FM spin alignments along the c-axis which depend on
the sign of Jc. The classical energies of these states for
H = 0 are4

EFM = NS2(2J1 + Jc + 2J2)

Estripe = NS2(−2J2 ± Jc) (3)

EG = NS2(−2J1 − Jc + 2J2),

where N is the number of spins S and a factor of 1/2 has
been inserted on the right-hand sides to avoid double-
counting distinct pairs of spins. The ± signs in the ex-

pression for the stripe phase arise due to the possibili-
ties of either antiferromagnetic (− sign) or ferromagnetic
(+ sign) alignment of adjacent spins along the c-axis.
From these expressions, the in-plane G-type AF mag-
netic structure observed in BaMn2As2 is lower in energy
than the stripe structure if

J1 > 0 (G type AF)

J1 > 2J2. (4)

In order that G-type AF ordering occurs along the c-axis,
one also requires that

Jc > 0. (G type AF) (5)

These results place restrictions on the exchange cou-
pling parameter space that is relevant to the G-type AF
ordering observed in BaMn2As2. Equations (4) and (5)
require both J1 and Jc to be positive (antiferromagnetic),
but J2 can have either sign as long as it satisifies the sec-
ond of Eqs. (4). The compound BaFe2As2, on the other
hand, has an in-plane stripe AF state at low temperatures
(and with the ordered moment in the ab-plane instead of
along the c-axis as in Fig. 1 for BaMn2As2),

4 which in
a local moment model requires J1 < 2J2 according to
Eqs. (3). The in-plane stripe phase can be considered
to consist of two interpenetrating G-type AF sublattices,
where in this case a sublattice consists of all NNN spins
of a given spin, and which are connected by an antiferro-
magnetic interaction J2 (see the bottom panel of Fig. 2).

IV. INELASTIC NEUTRON SCATTERING
(INS) MEASUREMENTS AND ANALYSIS

Figures 3(a) and 3(b) show images of the INS data
taken at the base temperature of 8 K which share simi-
lar features at each incident energy. Unpolarized inelas-
tic neutron scattering contains contributions from both
magnetic and phonon scattering. The magnetic scatter-
ing intensity falls off with Q (or scattering angle 2θ) due
to the magnetic form factor, while phonon scattering in-
tensity increases like Q2. One can then observe a large
contribution from magnetic scattering between 60 and
80 meV, presumably due to spin wave excitations in the
magnetically ordered phase, whose intensity only appears
at small Q. On this intensity scale, strong phonon scat-
tering is apparent below approximately 40 meV.
This separation of magnetic and phonon scattering

is more clearly shown by plots of the Q-dependence of
the scattering averaged over different energy ranges, as
shown in Fig. 4. For an energy range from 30 to 40 meV,
the scattering is dominated by a large phonon contri-
bution, whose intensity is proportional to Q2, and a
large constant background due to multiple scattering and
other background contributions. Q-dependent oscilla-
tions arise from the powder averaging of the coherent
phonon scattering and weak magnetic scattering. At the
higher energy ranges between 60 and 90 meV, the Q2
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FIG. 3: (Color online) Inelastic neutron scattering data from
a powder sample of BaMn2As2 as measured on the Pharos
spectrometer with incident energies a) Ei = 150 meV and b)
Ei = 200 meV. The white lines delineate scattering angles of
7 and 30◦ where the magnetic scattering was estimated. Pan-
els c) and d) show calculations of the polycrystalline averaged
spin wave scattering using a Heisenberg model. The calcula-
tions in c) and d) are identical, however panel c) shows the
trajectories of the angle summation limits for Ei = 150 meV
and d) for Ei = 200 meV.

phonon contributions are gone and magnetic scattering
appears superimposed on a constant background. The
magnetic scattering intensity falls off with Q as the mag-
netic form factor for Mn2+ ion and is no longer visible
above ∼ 6 Å−1. Similar to the phonon cross-section, Q-
dependent oscillations in the magnetic scattering occur
due to coherent scattering of spin waves.

The spin wave spectrum can be obtained by averag-
ing the low Q (low 2θ) data to improve statistics. How-
ever, the magnetic scattering, especially below∼ 50 meV,
must be separated from the phonon scattering and other
background contributions. The pure phonon signal can
be estimated from the high-angle spectra, where mag-
netic scattering is absent. The magnetic scattering com-
ponent can then be estimated by subtracting the high
angle data (averaged from 2θ = 50–90◦) from low angle
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FIG. 4: (Color online) Q-dependence of the inelastic neutron
scattering intensity averaged over several energy ranges with
incident energies a) Ei = 150 meV and b) Ei = 200 meV. The
red lines show calculations of the polycrystalline averaged spin
wave scattering using the J1-J2-Jc Heisenberg model.

data (averaged from 2θ = 7–30◦ and indicated by the
white lines in Fig. 3) after scaling by a constant factor.
These spectra are shown in Fig. 5 and show a strong
and broad magnetic peak at ∼ 70 meV. At energies
below 50 meV, the subtraction of the phonon intensity
is subject to error since the phonon intensity may not
scale uniformly to low-Q due to coherent scattering ef-
fects and also due to the different Debye-Waller factors
for each atomic species. It is difficult to quantify this
error without detailed phonon models; however, most of
the magnetic scattering occurs above the phonon cut-
off. Thus the errors introduced are only a problem below
50 meV and the isolated magnetic data in this energy
range can contain large errors.
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FIG. 5: (Color online) Energy dependence of the inelastic
neutron scattering intensity averaged over a scattering angle
range from 7 to 30◦ with incident energies a) Ei = 150 meV
and b) Ei = 200 meV. The magnetic intensity was extracted
from the total scattering as described in the text. The red
lines show calculations of the polycrystalline averaged spin
wave scattering using the J1-J2-Jc Heisenberg model.

A. Spin Waves in the J1-J2-Jc Heisenbeerg Model
for a G-type Antiferromagnet

1. Spin Wave Theory

In order to analyze the Q and ω dependence of the
magnetic spectra, we utilize a model of the spin wave
scattering in BaMn2As2. Spin waves in insulators such
as BaMn2As2 with the ThCr2As2 structure can be de-
scribed by the Heisenberg Hamiltonian (2) except that
here we set the magnetic field H in the last term to zero.
The spin wave dispersions for the G-type AF struc-

ture are obtained from a Holstein-Primakoff spin-wave
expansion of the Heisenberg model. When the single-ion
anisotropy is zero, the dispersions with respect to the
body-centered-tetragonal (bct) I4/mmm unit cell con-
taining two formula units of BaMn2As2 are

[

h̄ω (q)

2SJ1

]2

=
{

2 +
Jc
J1

− J2
J1

[2− cos(qxa)− cos(qya)]
}2

−
{

cos
[

(qx + qy)
a

2

]

+ cos
[

(qx − qy)
a

2

]

+
Jc
J1

cos
(qzc

2

)}2

(6)

where a = 4.15 and c = 13.41 Å are the lattice parame-
ters of the bct unit cell at our measurement temperature
of 8 K.13

In the absence of an anisotropy-induced energy gap in
the spin-wave spectrum, the long-wavelength spin wave
energies are described for an orthogonal (cubic, tetrago-

nal, or orthorhombic) antiferromagnetically ordered spin
lattice by the generic dispersion relation

Eq = h̄ω(q) = h̄
√

v2aq
2
x + v2bq

2
y + v2cq

2
z , (7)

where va, vb and vc are the spin wave velocities (speeds)
along the respective axes. In our case of tetragonal sym-
metry we have

Eq = h̄ω(q) = h̄
√

v2ab(q
2
x + q2y) + v2cq

2
z , (8)

where vab ≡ va = vb. For G-type AF ordering of a spin
lattice with our bct unit cell, these velocities are derived
from the dispersion relation in Eq. (6) as

h̄vab = 2J1Sa

√

(

1− 2J2
J1

)(

1 +
Jc
2J1

)

(9)

h̄vc =
√
2J1Sc

√

Jc
J1

(

1 +
Jc
2J1

)

.

From the first of Eqs. (9) the in-plane spin wave velocity
vab decreases with increasing J2, consistent with expec-
tation since according to Fig. 2, a positive (AF) J2 is a
frustrating interaction for G-type AF ordering. Indeed,
vab vanishes when J2 = J1/2, which is the classical crite-
rion in Eq. (4) for the transition between the G-type and
stripe-type in-plane AF ordering arrangements.
In order to make contact with previous spin wave cal-

culations for isotropic and anisotropic primitive orthog-
onal spin lattices, one can change unit cell variables to
those of the primitive tetragonal (pt) spin lattice contain-
ing one spin at each lattice point with lattice parameters
a′ and c′. Referring to the bct structure with lattice pa-
rameters a and c in Fig. 1, the pt spin lattice parameters
are related to these according to

a =
√
2 a′ (10)

c = 2 c′.

Furthermore the pt unit cell is rotated about the c-axis
by 45◦ with respect to the bct unit cell, so the pt wave
vectors q′x, q

′
y and q′z are related to those with respect to

the bct cell qx, qy, qz by

qx + qy =
√
2 q′x

−qx + qy =
√
2 q′y (11)

qz = q′z .

With these conversion expressions, the dispersion rela-
tion in Eq. (6) becomes

[

h̄ω (q′)

2SJ1

]2

=
{

2 +
Jc
J1

− 2J2
J1

[

1− cos(q′xa
′) cos(q′ya

′)
]}2

−
[

cos(q′xa
′) + cos(q′ya

′) +
Jc
J1

cos(q′zc
′)
]2

.(12)



8

Our dispersion relation (12) is identical to that in Refs. 21
and 22 derived from linear spin wave theory for the J1-J2-
Jc model. Also, Eq. (12) with J2 set to zero is identical to
that in Eq. (5) of Ref. 26 and in Eq. (3) of Ref. 27 for the
anistropic simple cubic G-type bipartite antiferromagnet.
Using Eqs. (10), for the primitive tetragonal spin lat-

tice the spin wave velocities in Eqs. (9) become

h̄va′b′ = 2
√
2J1Sa

′

√

(

1− 2J2
J1

)(

1 +
Jc
2J1

)

h̄vc′ = 2
√
2J1Sc

′

√

Jc
J1

(

1 +
Jc
2J1

)

. (13)

In a simple cubic bipartite spin lattice with one spin
per lattice point and isotropic interactions with c′ = a′,
Jc/J1 = 1 and J2 = 0, the spin wave velocity is isotropic

with magnitude h̄v′ = 2
√
3J1Sa

′, which is the same as
given previously in Table I of Ref. 26 where a′ was set to
unity and is the standard well-known result when mag-
netocrystalline anisotropy is negligible.28

2. Application of Spin Wave Theory to BaMn2As2

Spin wave dispersions using the bct notation in Eq. (6)
are plotted in Fig. 6 (in units of SJ1) for three different
combinations of the exchange ratios J2/J1 and Jc/J1.
The notations in Fig. 6 and Table I for labeling the
zone boundary reciprocal space positions are given by
Kovalev.29 The magnetic excitation wavevector q values
are in reciprocal lattice units given by (H,K,L) r.l.u.
This is a shorthand for q expressed in inverse length units
of the bct chemical unit cell according to

q =
2πH

a
â+

2πK

a
b̂+

2πL

c
ĉ.

In the I4/mmm bct unit cell notation, the magnetic
propagation vector for G-type AF ordering is τG =
(1, 0, 1), which gives τG = (0, 0, 0) when translated by
a reciprocal lattice vector to the Γ-point in the Brillouin
zone. This corresponds to the more familiar G-type wave
vector τ ′G =

(

1
2 ,

1
2 ,

1
2

)

in the pt cell according to the

transformation q′ =
(

H+K
2 , H−K

2 , L
2

)

, where H,K,L are
referred to the I4/mmm crystallographic unit cell, as
shown in Eqs. (11).
For J2 = 0 and Jc/J1 = 1 (the top black curve in

Fig. 6), the dispersion is that of an isotropic G-type anti-
ferromagnet (similar to LaFeO3)

27 with a maximum spin
wave energy of 6SJ1. For the layered BaMn2As2 struc-
ture, Jc is expected to be much weaker than J1. When
J2 = 0 and Jc/J1 = 0.1 (the middle red curve in Fig. 6),
the maximum spin wave energy is reduced to ∼ 4SJ1
and the zone boundary M -point spin wave at q = (001)
is strongly reduced. If we now turn on antiferromag-
netic NNN interactions with J2/J1 = 0.25 (the bottom
blue curve in Fig. 6), we observe a further softening of
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FIG. 6: (Color online) The spin wave dispersion of the J1-
J2-Jc model along various symmetry directions for three dif-
ferent combinations of the exchange parameters: J2/J1 = 0
and Jc/J1 = 1 (top black curve); J2/J1 = 0 and Jc/J1 = 0.1
(middle red curve); and J2/J1 = 0.25 and Jc/J1 = 0.1 (bot-
tom blue curve). Energies are reported in units of SJ1. The Γ
point in the Brillouin zone corresponds to wave vector q = 0.
The q values corresponding to the high-symmetry M, X and
N points are given in Table I. These wave vector directions
are written with respect to the lattice translation vectors of
the I4/mmm chemical unit cell. The labels Σ, F, U, Y, ∆
and Λ correspond to high symmetry lines in reciprocal space.
In the far right-hand panel, the energy versus the spin wave
density-of-states is shown for J2/J1 = 0 and Jc/J1 = 1 (top
gray region) and J2/J1 = 0.25 and Jc/J1 = 0.1 (bottom blue
region).

the spin wave spectrum, most notably at the X-point.
When J2 > J1/2, the G-type ordering becomes unstable
and the stripe AF order is the new ground state with
ordering wavevector at the X-point as discussed above
in Sec. III, and our spin wave expressions are no longer
applicable. The spin wave theory for the stripe phase in
the Fe-based superconductor parent compounds with the
ThCr2As2 structure is reviewed in Ref. 4.
The powder-averaged spin wave scattering is closely as-

sociated with the spin wave density-of-states [SWDOS,
g(ω)]. The SWDOS is the distribution of spin wave
energies and is determined by the summation over all
wavevectors in the Brillouin zone (q),

g(ω) =
∑

q

δ [h̄ω − h̄ω (q)] . (14)

The SWDOSs versus energy h̄ω are shown on the right-
hand side of Fig. 6. It is observed that the SWDOS
remains sharply peaked when J2 = 0, and that J2 acts
to broaden the SWDOS. Table I indicates the energies of
the various extremal features in the SWDOS (van Hove
singularities) for ratios J2/J1 and Jc/J1 that are associ-
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TABLE I: Energies of various van Hove singularities in the
spin wave density-of-states of G-type antiferromagnets with
NN (J1), NNN (J2) and interlayer (Jc) exchange interactions.

q label van Hove singularity energy

(001) EM 4SJ1

√

2 Jc

J1

( 1
2
, 1
2
,0) EX 2SJ1

√

(

2 + Jc

J1
− 4J2

J1

)2
−
(

Jc

J1

)2

( 1
2
,0, 1

2
) EN 2SJ1

(

2 + Jc

J1
− 2J2

J1

)

( 1
2
, 1
2
, 1
2
) EP 2SJ1

(

2 + Jc

J1
− 4J2

J1

)

( 3
4
, 1
4
,0) E′ 2SJ1

√

(

2 + Jc

J1
− 2J2

J1

)2
−
(

1 − Jc

J1

)2

ated with zone boundary spin wave energies.

B. Calculations of the Scattered Intensity

When performing an INS experiment on a powder, the
resulting INS intensities arise from the averaging of the
inelastic scattering structure factor S(Q, ω) over all ori-
entations of the crystallites. Despite the orientational
averaging, the spectra can show evidence of the spin
wave dispersions, especially at low angles (within the
first Brillouin zone) and in the vicinity of the first few
magnetic Bragg peaks. Due to the weighting of the spin
wave modes by coherent scattering intensities, the Q-
averaged intensity, S(ω), as shown in Fig. 5 does not
necessarily give the SWDOS. This is only true in the
incoherent scattering approximation, which does not ap-
ply to the case of scattering from a magnetically ordered
system. Therefore, model calculations of the powder-
averaged spin wave intensities are necessary for accurate
comparison to the data.
Numerical calculations of the spin waves in the Heisen-

berg model give not only the dispersion relation ωn(q) for
the nth (degenerate) branch [as shown in Eq. (6)], but
also the spin wave eigenvectors, Tni(q), for the ith spin
in the magnetic unit cell. The dispersion and associated
eigenvectors can be used to calculate the spin wave struc-
ture factor for unpolarized neutron energy loss scattering
from a single-crystal sample, Smag(Q, ω), given by

Smag(Q, ω) =
1

2
(γro)

2

[

1 +
(µ̂ ·Q)

2

Q2

]

(15)

×
∑

n

∣

∣

∣

∑

i

Fi(Q)σi

√

SiTni(q)e
−iQ·di

∣

∣

∣

2

×[n(ω) + 1] δ[ω − ωn(q)],

where the ith spin with magnitude Si pointed in direc-
tion µ̂ is located at position di and σi = ±1 is the
direction of the spin relative to the quantization axis
µ̂ for a collinear spin structure, as shown in the top
two rows of Table II. The vector q = Q − ~τ is the
spin wave wavevector in the first Brillouin zone. Fi-
nally, the function n(ω) is the temperature-dependent

Bose factor and Fi(Q) = 1
2gifi(Q)e−Wi(Q) is a product

of the spectroscopic splitting factor (g-factor), magnetic
form factor, and Debye-Waller factor for the ith spin,
respectively. The constant (γro)

2 = 290.6 millibarns
allows calculations of the cross-section to be reported
in absolute units of [millibarns steradian−1 meV−1 (for-
mula unit)−1]. ForBaMn2As2, all Mn ions in the mag-
netic cell are equivalent. The structure factor can then
be written

Smag(Q, ω) =
1

2
(γro)

2
SF 2(Q)

[

1 +
(µ̂ ·Q)

2

Q2

]

×
∑

n

∣

∣

∣

∑

i

σiTni(q)e
−iQ·di

∣

∣

∣

2

(16)

×[n(ω) + 1] δ[ω − ωn(q)].

In the calculations, we use the isotropic magnetic form
factor for Mn found in the International Crystallogra-
phy Tables30 and the Debye-Waller factor is set equal
to unity. The differential magnetic cross-section that is
measured in the inelastic neutron scattering experiments
is proportional to the structure factor.
To compare Heisenberg model spin wave results to the

powder INS data, powder-averaging of Smag(Q, ω) is per-
formed by Monte Carlo integration over 25000 Q-vectors
lying on a constant-Q sphere, giving the orientationally
averaged Smag(Q,ω) which depends only on the magni-
tude of Q. By a comparison of the total S(Q,ω) in Fig. 3,
the Q-cuts in Fig. 4, and the energy spectra in Fig. 5,
we arrive at the following parameters; SJ1 = 33 meV,
SJ2 = 9.5 meV (J2/J1 = 0.29), and SJc = 3 meV
(Jc/J1 = 0.09), as summarized in Table II. Figures 3(c)
and 3(d) show that calculations of Smag(Q,ω) at 8 K us-
ing these parameters compare well to the corresponding
data in Figs. 3(a) and 3(b) and show clearly the coherent
scattering of the powder-averaged spin waves. The most
obvious coherent scattering feature is the necking down
of acoustic spin waves in the vicinity of allowed magnetic
Bragg reflections. The first two observed magnetic Bragg
peaks are at Q = (101) and (103). Additional coherent
scattering features can also be seen for zone boundary
spin waves, where intensities tend to peak in between
the allowed magnetic Bragg peaks. Figure 3 enforces the
general agreement of the Heisenberg model calculations
of the spin wave intensity with neutron scattering mea-
surements.
More quantitative estimates of the agreement of the

calculated spin waves and the data are shown in Figs. 4
and 5. The calculations can be summed over scattering
angles in order to compare the equivalent angle-summed
data, as shown in Fig. 5. The success of the Heisenberg
model in estimating the measured spin wave intensities
is better observed by plotting constant energy Q-cuts,
as shown in Fig. 4. The plots show Q-oscillations of
the experimental magnetic spin wave scattering above a
background due mainly to phonon scattering and back-
ground/multiple scattering. A constant background and
incoherent phonon scattering intensity (proportional to



10

TABLE II: Parameters of the Heisenberg model in Eq. (2)
for BaMn2As2 determined from magnetic inelastic neutron
scattering measurements at a temperature of 8 K. The Mn
positions i in the top two rows refer to the crystallographic
I4/mmm unit cell with lattice parameters a = 4.15 and c =
13.41 Å at 8 K. The moment direction is along the c-axis. The
spin S of the Mn atoms is not independently determined from
the measurements. Only the products of S with the exchange
constants Ji can be modeled. All exchange parameters are
positive (antiferromagnetic). Also shown are the low-energy
spin wave velocities in the ab-plane vab and along the c-axis vc,
each multiplied by h̄, calculated from the exchange constants
using Eqs. (9).

i σi di

1 +1 (0,0,0)

2 −1
(

1
2
, 1
2
, 0
)

exchange constant value value (K)

SJ1 33 meV 380 K

J1 (S = 2, 5/2) 16.5, 13.2 meV 190, 150 K

SJ2 9.5 meV 110 K

J2 (S = 2, 5/2) 4.8, 3.8 meV 55, 44 K

SJc 3 meV 35 K

Jc (S = 2, 5/2) 1.5, 1.2 meV 18, 14 K

S(2J1 + Jc) 69 meV 800 K

2J1 + Jc (S = 2, 5/2) 18.0, 14.4 meV 400, 320 K

J2/J1 0.29

Jc/J1 0.09

spin wave velocity value

(meV Å)

h̄vab 180

h̄vc 190

Q2) are added to the calculated spin wave scattering in
order to compare to the measured data. The agreement
confirms the adequacy of the parameters.
The low-energy spin wave velocities in the ab-plane

vab and along the c-axis vc calculated from the exchange
constants in Table II using Eqs. (9) are shown in Table II
for our measurement temperature of 8 K. Remarkably, in
spite of the layered nature of the spin lattice, the ab-plane
and c-axis spin wave velocities are seen to have nearly
the same value h̄vab ≈ 180–190 meV Å. For comparison,
the spin wave velocities in the AFe2As2 compounds are
in the ranges h̄vab ≈ 280–570 meV Å and h̄vc ≈ 57–
280 meV Å.4

V. MAGNETIC SUSCEPTIBILITY
MEASUREMENTS

The anisotropic magnetic susceptibilites χ(T ) of a sin-
gle crystal of BaMn2As2 in an applied magnetic field
H = 3 T are shown in Fig. 7(a) for temperatures of
300 to 1000 K, together with our previous data11 below
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FIG. 7: (Color online) (a) Magnetic susceptibility χ versus
temperature T of single crystals of BaMn2As2 with the ap-
plied magnetic field parallel to the c-axis (χc) and to the ab-
plane (χab). The individual symbols are the data previously
reported in Ref. 11. The solid curves are the present data
obtained in an applied magnetic field H = 3 T. The Néel
temperature TN is indicated. (b) Expanded plot of χc(T ) for
temperatures around TN. The temperature of the maximum
slope of χc(T ) gives TN = 618(3) K.

350 K. Our χab(T ) data are consistent with the pre-
vious χab(T ) data over the temperature range of over-
lap (300–400 K),11 but there is a difference between
the c-axis data sets over that overlap temperature range
for reasons that are not clear to us. The temperature
of the maximum slope of χc(T ) from Fig. 7(b) gives
the Néel temperature as TN = 618(3) K, nearly the
same as the value of 625(1) K determined from the pre-
vious magnetic neutron diffraction measurements on a
powder sample.13 Above TN, the susceptibility is nearly
isotropic and exhibits negative curvature. The suscep-
tibility appears to reach a maximum at a temperature
Tmax ≈ 1000 K, where the value of the average suscepti-
bility is χmax

ave = 1.79× 10−3 cm3/mol and a “mol” refers
to a mole of formula units (f.u.) unless otherwise stated.
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TABLE III: Parameters describing the magnetic behaviors of
BaMn2As2. Here, TN is the Néel temperature, χab is the
magnetic susceptibility with the magnetic field aligned in the
ab-plane, χc is the magnetic susceptibility with the magnetic
field aligned along the c-axis, and χave = (2χab + χc)/3 is
the powder-averaged value of the susceptibility. Our χ(T )
results and those of Ref. 11 are on single crystals. The TN

value listed for Ref. 13 was obtained from magnetic neutron
diffraction measurements on a powder sample.

Property Value Reference

χab(10 K) 1.50(2) × 10−3 cm3/mol 11

χc(10 K) 0.20(2) × 10−3 cm3/mol 11

TN 625(1) K 13

TN 618(3) K This work

χorb 0.20(2) × 10−3 cm3/mol This work

χab(TN) 1.66 × 10−3 cm3/mol This work

χc(TN) 1.60 × 10−3 cm3/mol This work

χave(TN) 1.64 × 10−3 cm3/mol This work

χspin(TN) 1.44 × 10−3 cm3/mol This work

χab(1000 K) 1.81 × 10−3 cm3/mol This work

χc(1000 K) 1.76 × 10−3 cm3/mol This work

χave(1000 K) 1.79 × 10−3 cm3/mol This work

χspin(1000 K) 1.59 × 10−3 cm3/mol This work

The values of the anisotropic susceptibilities at several
distinctive temperatures are summarized in Table III.
One can partition the measured susceptibility χ(T ) of a

material into spin χspin and orbital χorb parts. Generally
the orbital part is independent of T but χspin does depend
on T , so one obtains

χ(T ) = χorb + χspin(T ). (17)

The χorb generally consists of paramagnetic Van Vleck
and diamagnetic core contributions, plus the Landau
diamagnetism of conduction electrons which is not sig-
nificant in semiconducting BaMn2As2. From Fig. 7(a),
the measured χ(T > TN) is (nearly) isotropic. There-
fore we infer that χorb is isotropic at all T . For
a collinear antiferromagnetic insulator (semiconductor)
such as BaMn2As2, one expects the spin susceptibility
parallel to the ordered moment direction, χc spin in our
case, to be zero at T → 0. From Fig. 7(a) we then obtain

χorb ≈ 0.20(2)× 10−3 cm3/mol, (18)

which we have included in Table III. Thus the spin sus-
ceptibility is given by

χspin(T ) = χ(T )− χorb. (19)

We have listed the values of χspin at T = TN and T =
1000 K in Table III. It appears from Fig. 7(a) that χ(T )
reaches a maximum at a temperature Tmax ≈ 1000 K.
Then one obtains from Table III the product

χmax
spinT

max ≈ 0.80
cm3 K

mol Mn
. (20)

Note that this value is for a mole of spins, not a mole of
formula units. We will use this value later when compar-
ing theory and experiment.
The temperature dependence of χ(T ) above TN in

Fig. 7(a) is opposite to that expected for a fully three-
dimensional antiferromagnet, where χ decreases rather
than increases above TN.

31 However, the behavior we
observe above TN is common in low-dimensional anti-
ferromagnets such as the tetragonal cuprate compound
Sr2CuO2Cl2 where the intralayer magnetic coupling
within the Cu+2 spin S = 1/2 square lattice is much
stronger than the interlayer coupling.6 Such antiferro-
magnets exhibit a susceptibility with a broad maximum
and the corresponding onset of strong short-range AF or-
dering at a temperature Tmax of order the mean-field AF
long-range transition temperature [see Eq. (41) below].
However, for the compound Sr2CuO2Cl2 one estimates
Tmax ∼ 1500 K but it exhibits long-range AF ordering
only at a much lower temperature TN = 250 K ≪ Tmax.
The interlayer coupling Jc is much smaller than the in-
plane coupling Jab in quasi-two-dimensional antiferro-
magnets. The suppression of TN with respect to Tmax

is due to fluctuation effects associated with the low di-
mensionality of the system.
In the following we consider what can be learned about

the signs and strengths of the exchange interactions in
BaMn2As2 from analysis of our experimental data on
this compound in terms of molecular field theory. Later
in Sec. IX we develop the theory for fitting the experi-
mental data taking into account the intralayer magnetic
correlations that are present above TN, which we will then
apply to fit the χ(T > TN) data in Fig. 7(a) in Sec. X.

VI. MOLECULAR FIELD THEORY (MFT)

We will be analyzing various experimental data
for BaMn2As2 using the Weiss molecular field theory
(MFT). To introduce the MFT, we first consider the
known results for a local magnetic moment model on
a bipartite spin lattice with equal numbers of spins S

in the two spin sublattices i and j interacting with the
same nearest-neighbor (NN) exchange constant J with
the Heisenberg Hamiltonian

H = J
∑

NN

Si · Sj + gµBH
∑

i

Sz
i , (21)

where g is the spectroscopic splitting factor (g-factor),
µB is the Bohr magneton and H is the magnitude of the
applied magnetic field which is in the z-direction. For
such a quantum local moment system of identical spins
interacting by NN interactions, if the susceptibility in the
absence of J follows the Curie law χ0 = C/T , then in
MFT the χ(T ) above the magnetic ordering temperature
follows the Curie-Weiss law31

χ =
C

T + θ
, (22)
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where the Curie constant C is

C =
Ng2µ2

BS(S + 1)

3kB
, (23)

N is the number of spins and kB is Boltzmann’s constant.
Taking N to be Avogadro’s number NA and g = 2 gives a
useful expression for the Curie constant per mole of spins
as

C = 0.50020S(S + 1)
cm3 K

mol spins
. (24)

The Weiss temperature θ is

θ =
zJS(S + 1)

3kB
, (25)

where z is the coordination number of each spin. Here,
positive θ corresponds to the case when J is positive (AF
interactions), whereas a negative θ corresponds to the
case when J is negative (FM interactions). If θ is positive,
then the magnetic ordering temperature is TN = θ for AF
ordering. On the other hand, if θ is negative, then FM
ordering occurs at the Curie temperature TC = |θ|.
As discussed in Appendix A, the Curie-Weiss law is

not simply a mean-field expression.6,32–34 It arises from
the first (1/T ) term in the exact quantum mechani-
cal high-temperature series expansion of the nearest-
neighbor two-spin correlation function and is accurate
in the limit that higher order 1/T n terms in the two-
spin correlation functions are negligible. Thus the Curie-
Weiss law, and hence our scaling expressions in Eqs. (82)
and (87) below, begin to fail when 1/T 2 and higher or-
der terms in the two-spin correlation functions become
significant compared to the 1/T term with decreasing T .
Another important conclusion from Appendix A is that

the Weiss temperature in the Curie-Weiss law results
from all the spins that a given spin interacts with, ir-
respective of the dimensionality of the spin lattice, of
whether or not the spin lattice is bipartite (see Sec. VII)
or whether all those interactions are the same, but where
all spins are equivalent. Thus if there are different in-
teractions present of a given spin i with other spins j,
in Eq. (25) for the Weiss temperature one can make the
replacement zJ → ∑z

j=1 Jij , where z is the total num-
ber of spins that spin i has interactions with, giving the
Weiss temperature as

θ =
S(S + 1)

∑z
j=1 Jij

3kB
. (26)

VII. THE J1-J2-Jc HEISENBERG MODEL
TREATED IN MOLECULAR FIELD THEORY

The Hamiltonian (2) represents a situation where there
is coupling both between the two spin sublattices and
within each sublattice, where the two sublattices 1 and
2 correspond to the red (up-pointing) and blue (down-
pointing) magnetic moments in the top panel of Fig. 2,

respectively. Consider a specific spin i in sublattice 1.
This spin i has four in-plane NN in sublattice 2 coupled
by J1 and two out-of-plane NN in sublattice 2 coupled
by Jc. Within the same sublattice 1, spin i is coupled
to four in-plane NNN by J2. Since there are multiple
exchange constants present from a given spin to its NN
and NNN spins, we have

10
∑

j=1

Jij = 2(2J1 + Jc + 2J2)

and the Weiss temperature (26) becomes

θ =
2(2J1 + Jc + 2J2)S(S + 1)

3kB
. (27)

We cannot measure θ for BaMn2As2 because according to
Fig. 7 the temperature range required for the susceptibil-
ity measurments to be in the Curie-Weiss regime would
be far above 1000 K.
In MFT, the magnetic induction B = Bk̂ seen by each

sublattice 1 and 2 is the sum of the applied field H = Hk̂

and the respective exchange field H = Hexchk̂, i.e.,

B1 = H +H1 exch

B2 = H +H2 exch. (28)

The MFT exchange field Hexch seen by each sublattice is
respectively

H1 exch = λsM1 + λdM2

H2 exch = λdM1 + λsM2, (29)

where λs is the net molecular field coupling parameter
for coupling within the same sublattice and λd is the net
molecular field coupling parameter for coupling between
the two different sublattices. We will obtain in Eq. (35)
below expressions for these λ values in terms of the J
parameters in Hamiltonian (2).
We only consider here the limit of low applied fields H .

In MFT, the magnetization of each sublattice 1 and 2 is
given by the response to the applied field plus the ex-
change field as

M1(T,H) =
χ0(T )B1

2

=
χ0(T )

2
(H + λsM1 + λdM2) (30)

M2(T,H) =
χ0(T )B2

2

=
χ0(T )

2
(H + λsM1 + λdM2),

where χ0(T ) ≡ limH→0 M/H is the temperature-
dependent spin susceptibility of the whole system in the
absence of the explicit exchange fields, the factors of 1/2
are there because each sublattice only has half of the total
number of spins, and Mi is the z-axis magnetization of
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the system induced by a magnetic field in the z-direction
with magnitude H . In the paramagnetic state, M2 = M1

and Eqs. (30) yield

Mi(H,T ) =
χ0(T )H/2

1− (χ0/2)(λd + λs)
,

where i = 1, 2. Since M = 2Mi, one obtains the spin
susceptibility χ(T ) = 2Mi/H as

χ(T ) =
χ0(T )

1− (χ0/2)(λd + λs)
. (31)

The inverse susceptibility is

1

χ(T )
=

1

χ0(T )
− λd + λs

2
. (32)

This is typical of molecular field theory, where the molec-
ular exchange field just shifts the inverse susceptibility up
or down by a temperature-independent amount that de-
pends on the sign and magnitude of the net molecular
field coupling constant. It is important to note, with re-
spect to fitting experimental data by molecular field the-
ory, that the presence of molecular fields cannot change
the temperature of peaks in the susceptibility χ0(T ) that
is assumed in the absence of explicit exchange couplings.
For example, one could take χ0(T ) to be the suscepti-
bility of the isotropic square lattice Heisenberg antiferro-
magnet such as in Fig. 17 below, which has a broad peak
at T ∼ J/kB. If one uses a molecular exchange field to
magnetically couple the square lattice layers, this molec-
ular field cannot change the temperature of the broad AF
short-range ordering peak.
To determine the magnetic ordering temperature(s)

Tm, we set the applied field H to zero in Eqs. (30) and
solve for nonzero M1 and M2. For the general case one
obtains

χ0(Tm)

2
(λs ± λd) = 1, (33)

so Tm depends on the assumed χ0(T ). From Eqs. (29),
we see that for G-type AF ordering, we need to have λd

to be negative, so we take the minus sign in Eq. (33) to
get

χ0(TN)

2
(λs − λd) = 1, (34)

where now Tm is the antiferromagetic ordering (Néel)
temperature TN. Now we can use the solution for a λ
in terms of the related J value(s) from Ref. 31 to get

λs = −
(

2

Ng2µ2
B

)

(4J2)

λd = −
(

2

Ng2µ2
B

)

(4J1 + 2Jc), (35)

which yield

λs − λd =

(

2

Ng2µ2
B

)

(4J1 + 2Jc − 4J2). (36)

Inserting this expression into Eq. (34) for G-type antifer-
romagnets gives

[

χ0(TN)

Ng2µ2
B/kB

]

4J1 + 2Jc − 4J2
kB

= 1. (37)

This is a constraint on the exchange parameters in
BaMn2As2 in addition to those in Eqs. (4). If χ0(T )
is the spin susceptibility per mole of spins, then N is
Avogadro’s number NA. Taking g = 2 we have

NAg
2µ2

B

kB
= 1.500

cm3

mol
(38)

and Eq. (37) becomes

4J1 + 2Jc − 4J2
kB

=
1.500 cm3/mol

χ0(TN)
. (39)

In the following sections we will assume that the spin
susceptibility in the absence of any explicit exchange
fields follows a Curie law, χ0(T ) = C/T . Then Eqs. (24)
and (39) yield

2J1 + Jc − 2J2
kB

=
3TN

2S(S + 1)
, (40)

or

TN =
2(2J1 + Jc − 2J2)

3kB
S(S + 1). (41)

Substituting Eq. (41) into (36) gives

λs − λd =
6kBTN

Ng2S(S + 1)µ2
B

. (42)

It is useful to express differently how the NNN intra-
sublattice interaction J2 affects TN. From Eq. (41), one
obtains

TN(J2)

TN(J2 = 0)
= 1− 2J2

2J1 + Jc
, (43)

which is independent of the spin S and only depends
on the ratio of the intrasublattice exchange constant J2
to the net intersublattice exchange constant 2J1 + Jc.
From Fig. 2 and Eq. (43), an antiferromagnetic J2 > 0
is frustrating for G-type AF ordering and hence lowers
TN, whereas a ferromagnetic J2 < 0 is nonfrustrating for
G-type AF ordering and instead enhances TN.

A. Néel Temperature Reduction Factor f

One can define a Néel temperature reduction factor f
for antiferromagnets by

f =
θ

TN
, (44)
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where θ is the AF Weiss temperature in the Curie-
Weiss law in Eq. (22). For molecular-field bipartite an-
tiferromagnets with only nearest-neighbor interactions,
f = 1.31 However, there are four classes of AF materials
in which f can be much different from unity: (1) mate-
rials in which fluctuation effects associated with a low-
dimensionality (0, 1 or 2) of the spin lattice are strong,
(2) three-dimensional materials in which geometric frus-
tration for AF ordering occurs, (3) spin lattices in which
the signs of the exchange interactions of a spin with its
neighbors frustrate the ordering, and/or (4) spin lattices
that are not bipartite; i.e., interactions between spins on
the same sublattice occur. In each of these classes of
materials, TN can be strongly suppressed, sometimes to
T = 0, which gives f ≫ 1. Alternatively, it can occur
that second neighbor interactions can enhance TN but
suppress |θ| as we will see below in Eq. (45) if J2 is nega-
tive (ferromagnetic). It can occur that a given compound
belongs to more than one class.

One of us has discussed class (1) in the context of
low-dimensional copper oxide compounds such as quasi-
two-dimensional La2CuO4 containing a Cu+2 d9 spin-
1/2 square lattice and quasi-one-dimensional Sr2CuO3

containing Cu+2 d9 spin-1/2 chains.6 In these mate-
rials the AF correlation length ξ grows with decreas-
ing T . In La2CuO4, long-range AF ordering occurs at
TN ∼ π(ξ/a)2Jc/kB, where the number of spins within
an AF correlated area in the plane is Nξ ∼ π(ξ/a)2,
Jc is the interplane nearest-neighbor exchange coupling
constant and a is the square lattice parameter. A large
number Nξ of spins within a correlated area amplifies the
effect of a small Jc. In Sr2CuO3, Nξ grows much more
slowly with decreasing T than in La2CuO4 because what
is relevant here is the number of spins within a correla-
tion length rather than within a correlation area, and the
former is much smaller than the latter at the same tem-
perature. Hence, one expects f for Sr2CuO3 to be much
larger than for La2CuO4, as observed. The ξ and the
Weiss temperature θ are determined by the in-chain or
in-plane exchange coupling Jab ≫ Jc, respectively, and
hence TN ≪ θ for both compounds.

Ramirez has extensively discussed class (2).35 In frus-
trated three-dimensional antiferromagnets, the suscepti-
bility follows a Curie-Weiss-like temperature dependence
down to temperatures much less than θ. One can describe
the physics in two equivalent ways. In one view, the AF
correlation length ξ does not grow as fast as one would
predict from the Curie-Weiss law where one expects ξ to
diverge at the mean-field TN = θ. An alternate equivalent
explanation is that because the Curie-Weiss law holds to
low temperatures T ≪ θ, which results in f ≫ 1, the co-
efficients of the higher-order 1/T n terms (n > 1) in the
high temperature series expansions of the two-spin corre-
lation functions in Eqs. (A4) and (A5) in the Appendix
are strongly suppressed in frustrated antiferromagnets.
BaMn2As2 likely belongs to classes (1), (3) and (4).

Using Eqs. (27) and (41) which assume χ0 = C/T and
J1, Jc > 0, the ratio of the Weiss temperature to the Néel

temperature for G-type antiferromagnets in the J1-J2-Jc
model within MFT is

f =
θ

TN
=

2J1 + Jc + 2J2
2J1 + Jc − 2J2

=
1 + 2J2

2J1+Jc

1− 2J2

2J1+Jc

, (45)

which gives

2J2
2J1 + Jc

=
f − 1

f + 1
. (46)

Thus f depends on the sign and magnitude of the NNN
in-plane interaction J2. For an antiferromagnetic J2 > 0,
one gets f > 1, whereas for a ferromagnetic J2 < 0,
one gets f < 1. The constraint on J2 in Eqs. (4) that
J2 < J1/2 still applies, giving an upper limit (for which
Jc = 0) of

f < 3. (for G type AF ordering) (47)

Using Eq. (46), one can rewrite Eq. (43) as

TN(J2)

TN(J2 = 0)
=

2

f + 1
. (48)

In MFT in the paramagnetic state, the spin suscepti-
bility (22) follows the Curie-Weiss law χ(T ) = C/(T+θ),
and χ(T ) reaches a maximum at T = TN. Therefore we
obtain the product

χmax
spinT

max = χmax
spin(TN)TN =

C

TN + θ
TN

=
C

TN(1 + f)
TN =

C

1 + f

=
0.5002S(S + 1)

1 + f

cm3 K

mol spins
, (49)

where we used Eq. (24) in the last equality. This gives

f =
(0.5002 cm3 K/mol spins)S(S + 1)

χmax
spinT

max
− 1. (50)

From Eqs. (40) and (49) one can solve for 2J1+Jc and
J2 to obtain

2J1 + Jc
kB

=
(3 cm3K/mol)TN

8χmax
spinT

max
, (51)

J2
kB

=
2J1 + Jc

2kB
− 3TN

4S(S + 1)
.

Additional useful expressions include the following.
From Eqs. (27), (41) and (44) one obtains

2J1 + Jc =
3kBTN(f + 1)

4S(S + 1)
. (52)

Then from Eq. (46) one gets

2J2 =
3kBTN(f − 1)

4S(S + 1)
. (53)
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Now using Eqs. (52) and (53) we can rewrite the molec-
ular field coupling constants in Eqs. (35) in the simple
symmetric forms

λs = −TN(f − 1)

C
(54)

λd = −TN(f + 1)

C
,

where C is the Curie constant in Eq. (23).

B. Anisotropic χ(T ) below TN

We would like to compare our experimental anisotropic
χ(T ) data below TN with the MFT predictions using
the J1-J2-Jc model. We discuss first the perpendicu-
lar susceptibility χ⊥ and then the parallel susceptibility
χ‖, where χ⊥ refers to the susceptibility with the ap-
plied magnetic field perpendicular to the easy axis of the
collinear antiferromagnetic structure and χ‖ to the sus-
ceptibility when the applied magnetic field is parallel to
it. For BaMn2As2, χ‖ = χc and χ⊥ = χab. In the Heisen-
berg model, above TN the susceptibility is isotropic and
hence χ‖ = χ⊥. Below TN, χ⊥ and χ‖ are no longer the
same.
Below TN of a collinear antiferromagnet, one always

has χ‖ < χ⊥ (see also Fig. 13 below). Since the magnetic

energy of the system at low fields is −(1/2)χH2, if the
field is aligned along the ordered moment axis the spin
system can lower its energy via a “spin-flop” transition
where the ordered moment axis rotates to be perpendic-
ular to the applied field. To prevent this from happening,
one needs to have an anisotropy energy present that is not
included in the Heisenberg Hamiltonian. Otherwise one
could never measure χ‖. An important example of such
an anisotropy energy is the axial single ion anisotropy
energy with the form DS2

z (for S > 1/2) and D < 0,
and/or higher order forms, that arise from the spin-orbit
interaction of the magnetic moments with the crystalline
electric field of the lattice. Here we assume that an in-
finitesimal axial anisotropy is present with sufficient mag-
nitude to prevent the ordered moment axis from flopping
from the parallel to the perpendicular orientation when
we are measuring the parallel magnetization in the limit
of an infinitesmal field. We will not further consider the
spin-flop transition in this paper.
The χ⊥(T ) and χ‖(T ) are derived for the J1-J2-Jc

model at T ≤ TN in Appendix B. For the perpendic-
ular susceptibility, one obtains the constant value

χ⊥ =
1

|λd|
=

C

TN(1 + f)
=

C

TN + θ
= χ(TN), (T ≤ TN),

(55)
using f ≡ θ/TN. This result is similar to that for a
bipartite lattice,31 except in that case one has θ = TN

whereas in our case we have θ = fTN with, in general,
f 6= 1 from Eq. (45). The estimated values of f from
Eqs. (60) below are ∼ 3–5 in BaMn2As2, i.e., TN is much

smaller than θ, but within MFT the susceptibility still
follows the Curie-Weiss law χ = C/(T + θ) down to TN.
This interesting behavior is the result of bond frustration
for AF ordering (the antiferromagnetic NNN interaction
J2 frustrates the occurrence of G-type AF ordering) and
has been noted as a property of geometrically frustrated
antiferromagnets.35

The dependence of χ‖(T )/χ‖(TN) on t ≡ T/TN deter-
mined by solving Eqs. (B13), (B14) and (B18) is shown
in Figs. 8(a) and 8(b) for spins S = 1/2 and S = 5/2,
respectively, for various values of f = θ/TN. The value
f = 1 corresponds to the conventional nonfrustrated bi-
partite stacked square spin lattice as in the top panel of
Fig. 2 with J2 = 0. Figure 8 shows that the presence of
a nonzero diagonal coupling J2 has a strong influence on
χ‖(T )/χ‖(TN). Complementary plots of χ‖(T )/χ‖(TN)
versus T/TN at fixed f = 0, 1 and 3 for S = 1/2, 5/2
and 10 are shown in Fig. 9.

C. Ordered Moment versus Temperature below TN

The ordered moment in the antiferromagnetic state
of BaMn2As2, which is the staggered moment µ†

z in
Eq. (B16), has been previously measured, but not
modeled.13 In Appendix C we determine the MFT pre-
dictions on the basis of the J1-J2-Jc model. In Fig. 10 are
plotted the solutions of Eq. (C1) for the nonzero ordered
moment µz ≡ µ†

z versus reduced temperature T/TN for
classical spins and for four values of quantum spins. In
contrast to quantum spins for which µ†

z approaches the
respective saturation moment µsat = gSµB exponentially
fast for T → 0 due to an energy gap between the ground
state and the lowest excited states, the low-temperature
classical behavior is linear. This results in a magnetic
heat capacity Cmag → constant 6= 0 as T → 0 for classi-
cal spins, which violates the third law of thermodynam-
ics, whereas for quantum spins Cmag → 0 as T → 0 (see
Fig. 11).
Interestingly, the parameter f = θ/TN that character-

izes the influence of J2 on the magnetism has disappeared
from the expression for µ†

z(T ) in Eq. (B16) when the tem-
perature scale is normalized by TN. Thus Eq. (C1) and
the plots in Fig. 10 are identical to the corresponding
MFT predictions for an AF bipartite spin lattice with
J2 = 0. However, in our case with J2 6= 0, we must keep
in mind that J2 has already manifested its influence on
the magnetism by changing TN.

D. Zero-Field Magnetic Heat Capacity Cmag and
Entropy Smag below TN

The zero-field magnetic heat capacity Cmag(T ) is de-
rived in MFT in Appendix D as

Cmag(t)

R
= − 3S

S + 1
µ̄†
z(t)

dµ̄†
z(t)

dt
, (56)
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FIG. 8: (Color online) Parallel susceptibility χ‖ versus tem-
perature T through the Néel temperature TN for G-type AF
ordering using the J1-J2-Jc model in molecular field theory
(MFT) for various values of f = θ/TN, as listed, for spins (a)
S = 1/2 and (b) S = 5/2. The order of the curves from top
to bottom is the same as in the figure legends. At tempera-
tures T > TN, χ is isotropic. For T < TN, the perpendicular
susceptibility is constant, χ⊥ = χ⊥(TN) (not shown). The
G-type AF state is unstable against the stripe AF state for
f > 3.

where t = T/TN is the reduced temperature and µ̄†
z =

µ†
z/µsat is the reduced ordered (staggered) moment.

Since µ̄†
z does not explicitly depend on J2 as discussed

above, neither does Cave(T/TN), but rather implicitly
via the dependence of TN on J2. The µ̄†

z(t) is deter-
mined by numerically solving Eq. (C1). Inserting this
result into (56), Cmag(T ) was calculated for several spin
values as plotted in Fig. 11. One observes a triangular
shape for Cmag(t) near TN for each S, which is charac-
teristic of the mean field solution, with a discontinuous
increase (“jump”) in Cmag(T ) upon decreasing T through
TN given by36

∆Cmag(TN)

R
=

5

2

[

(2S + 1)2 − 1

(2S + 1)2 + 1

]

, (57)

where 2S + 1 is the Zeeman degeneracy in zero field for
a spin S. There is not a large range of ∆Cmag possible
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FIG. 9: (Color online) Parallel susceptibility χ‖ versus tem-
perature T through the Néel temperature TN for the J1-J2-Jc

model in molecular field theory (MFT) for spins S = 1/2, 5/2
and 10 and f = θ/TN values of (a) 0, (b) 1 and (c) 3. The
order of the curves in each panel from top to bottom is the
same as in the figure legends. The value f = 1 corresponds
to the conventional bipartite lattice with J2 = 0.

upon varying the spin S. From Eq. (57) one obtains

∆Cmag(TN)

R
=

3

2

(

S =
1

2

)

∆Cmag(TN)

R
=

5

2
, (S = ∞)

consistent with Fig. 11.
The evolution in Fig. 11 of the low temperature
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FIG. 10: (Color online) Ordered moment µz ≡ µ†
z versus tem-

perature T from molecular field theory of the J1-J2-Jc model
for a collinear antiferromagnet for classical spins and for sev-
eral quantum spins as listed, where the saturation moment is
µsat = gSµB. The order of the curves from top to bottom is
the same as in the figure legend. Remarkably, the results are
independent of J2.

Cmag(T ) with increasing spin S is interesting. It develops
a hump at a temperature that decreases with increasing
S, until in the classical limit S → ∞ the hump merges
into the classical finite-value behavior for T → 0. The
hump is required in order that the entropy of the disor-
dered spin system increase with increasing S (see below),
since Cmag(T ) is bounded from above by the classical pre-
diction. For quantum spins, the heat capacity approaches
zero exponentially at sufficiently low temperatures irre-
spective of the (finite) spin value, whereas for classical
spins the heat capacity approaches a nonzero finite value
for T → 0.

The magnetic entropy Smag is determined from the
magnetic heat capacity via

Smag(t)

R
=

∫ t

0

Cmag(t)/R

t
dt. (58)

The magnetic entropy obtained from Eq. (58) and from
the data in Fig. 11 is plotted versus temperature for quan-
tum spins in Fig. 12. The constant values for T ≥ TN

as indicated by the notations on the right-hand ordinate
agree with the values expected for disordered spins given
by the molar magnetic entropy Smag = R ln(2S + 1).
For classical spins the calculated entropy for T → 0 is
Smag(T → 0+)/R = limT→0 ln[T/(0 K)] = ∞, which
violates the third law of thermodynamics.
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FIG. 11: (Color online) Magnetic component of the heat ca-
pacity Cmag, divided by the molar gas constant R, versus the
ratio of the temperature T to the Néel temperature TN ac-
cording to the molecular field theory Eq. (56) of the J1-J2-Jc

model for a collinear antiferromagnet for classical spins and
for several quantum spins as listed. The order of the curves
from top to bottom is the same as in the figure legend. As in
Fig. 10, the results are independent of J2.
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FIG. 12: (Color online) Magnetic entropy Smag/R for quan-
tum spins versus reduced temperature T/TN according to
molecular field theory for the quantum spins S indicated. The
order of the curves from top to bottom is the same as in the
figure legend. In the disordered state at T > TN, the mag-
netic entropy is the constant value Smag = R ln(2S + 1) for
each S, as indicated along the right-hand ordinate.
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TABLE IV: Parameters determined from a fit of magnetic sus-
ceptibility data by molecular field theory of G-type antiferro-
magnetic BaMn2As2 with NN (J1), NNN (J2) and interlayer
(Jc) exchange interactions.

Quantity S = 2 S = 5/2

f = θ/TN 2.75 4.47

(2J1 + Jc − 2J2)/kB (K) 156 107

(2J1 + Jc)/kB (K) 293 293

2J1 + Jc (meV) 25.2 25.2

S(2J1 + Jc)/kB (K) 586 733

S(2J1 + Jc) (meV) 50.5 63.2

J2/kB (K) 68 93

J2 (meV) 5.9 8.0

SJ2/kB (K) 136 233

SJ2 (meV) 11.7 20.1

VIII. COMPARISON OF THEORETICAL
PREDICTIONS WITH EXPERIMENTAL DATA

FOR BaMn2As2

A. Comparisons with Molecular Field Theory

We expect the Mn+2 d5 ion in BaMn2As2 to have
the high-spin configuration with spin S = 5/2. On
the other hand, the observed ordered moment is µ =
3.9(1) µB/Mn,13 suggesting from the relation µ = gSµB

with g = 2 that S = 2. Therefore in the following we will
consider both of these possibilities.

1. Néel Temperature

Using Eq. (40) and TN = 625 K for BaMn2As2, one
obtains

2J1 + Jc − 2J2
kB

= 156 K (S = 2)

= 107 K. (S = 5/2) (59)

2. Magnetic Susceptibility

Inserting the experimental χmax
spinT

max value from

Eq. (20) into (50) gives

f = 2.75 (S = 2) (60)

= 4.47. (S = 5/2)

According to Eq. (47), the value of f for S = 5/2 is not
possible for G-type AF ordering and hence S = 5/2 is
ruled out by this criterion. The f value for S = 2 suggests
that interlayer coupling might have a significant effect on
the observed magnetic susceptibility above TN. On the
other hand, for the layered cuprate La2CuO4 one has
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FIG. 13: (Color online) Comparison of the MFT predic-
tion below TN of the anisotropic susceptibilities in Eqs. (55)
and (B18) versus temperature with the experimental data
from Fig. 7(a).

z = 4, J/kB = 1600 K, S = 1/2, and TN = 325 K,6 which
yields a Weiss temperature θ = 1600 K and f = 4.9, and
the magnetism of this compound is known to be described
very well by two-dimensional physics in the temperature
range above TN.

6 As a further comparison, the quasi-
one-dimensional spin-1/2 chain compound Sr2CuO3 has
z = 2, J/kB = 2200 K, S = 1/2, and TN = 5.4 K,6 which
yields θ = 1100 K and f = 200. This large f value is the
reason that Sr2CuO3 is often considered to be a model
quasi-one-dimensional Heisenberg antiferromagnet.6

Again using the experimental χmax
spinT

max value from

Eq. (20), Eqs. (51) yield

2J1 + Jc
kB

= 293 K (S = 2) (61)

= 293 K (S = 5/2)

J2
kB

= 68 K (S = 2)

= 93 K. (S = 5/2)

The above results, summarized in Table IV, are only ap-
proximate qualitative constraints on the exchange pa-
rameters in BaMn2As2, because they assume that the
susceptibility follows the Curie-Weiss law above TN,
which Fig. 7 shows is not accurate. In particular, if
Jc/J1 ≈ 0.1 as determined from the neutron scattering
results and the theoretical predictions in Sec. XII, one
obtains unrealistically large J2/J1 = 0.50 and 0.67 for
S = 2 and S = 5/2, respectively. The problem stems
from the fact that Tmax and TN do not coincide, which
is an inconsistency in the analysis.
A comparison of the MFT predictions below TN of

the anisotropic susceptibilities in Eqs. (55) and (B18)
with the experimental data from Fig. 7(a) is shown in
Fig. 13. For the MFT dashed-line predictions we used
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FIG. 14: (Color online) Ordered moment µz versus temper-
ature T measured for BaMn2As2 from Ref. 13 (filled red cir-
cles). The Néel temperature TN and saturation moment µsat

are given in the figure. Also shown are the molecular field
theory (MFT) predictions for quantum spins S = 1/2, 2 and
5/2 from Eq. (C1) (solid and dashed curves), where the order
of the curves from top to bottom is the same as in the figure
legend.

Eq. (17) with χorb = 0.2×10−3 cm3/mol and χspin(TN) =
1.35 × 10−3 cm3/mol. We used the value TN = 625 K
and the MFT parameter f = 2.75 listed in Table IV
for S = 2. The temperature dependences of the MFT
predictions for the anisotropic susceptibilities are seen to
be in semiquantitative agreement with the experimental
data. We do not consider the case S = 5/2 because the
large f = 4.47 > 3 in Eqs. (59) and Table IV for S = 5/2
makes the G-type AF structure unstable with respect to
the stripe AF structure in Fig. 2.

3. Ordered Moment

The results for the ordered moment versus temperature
in Fig. 10 for S = 3/2 to S = 5/2 are nearly the same,
so we do not expect to be able to differentiate between
the two possibilities of S = 2 and S = 5/2 for the Mn
spins in BaMn2As2 on the basis of the observed temper-
ature dependence of the ordered moment. This expecta-
tion is confirmed in Fig. 14 where we compare the MFT
predictions for S = 1/2, 2 and 5/2 from Eq. (C1) with
the experimental data from magnetic neutron diffraction
measurements in Ref. 13. Although the overall tempera-
ture dependence of the data agrees with MFT, the data
are not quantitatively fitted by the prediction for any
particular fixed S value.
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FIG. 15: (Color online) Heat capacity C versus tempera-
ture T . The experimental Cp(T ) data obtained for a single
crystal of BaMn2As2 (Ref. 11) are shown as the filled black
circles. The lattice heat capacity for a Debye temperature
ΘD = 300 K is plotted versus T as the solid red curve. The
sum of the lattice heat capacity and the magnetic heat capac-
ity for spin S = 2 is shown as the dashed blue curve.

4. High-Temperature Magnetic Heat Capacity

Here we will compare our experimental heat capacity
Cp data for BaMn2As2 single crystals at temperatures up
to 350 K with the prediction of MFT for the magnetic
heat capacity Cmag at high temperatures, i.e., near room
temperature. To do this we will need to estimate the
lattice heat capacity contribution using the Debye model.

The heat capacity at constant pressure Cp(T ) for a
single crystal of BaMn2As2, previously reported by Singh
et al.,11 is shown in Fig. 15 for the measured temperature
range 2–350 K. We fitted the data by the Debye function
for the molar lattice heat capacity of acoustic phonons at
constant volume, given by31

CDebye = 9nR

(

T

ΘD

)3 ∫ ΘD/T

0

x4ex

(ex − 1)2
dx, (62)

where n is the number of atoms per formula unit (n = 5
here) for various values of the Debye temperature ΘD.
In order that CDebye(T ) does not lie above the experi-
mental data over any temperature range, the minimum
value of ΘD is about 300 K, for which the Debye function
is plotted as the solid red curve in Fig. 15. The ΘD is
evidently temperature-dependent because the deviation
of the curve from the experimental data varies nonmono-
tonically with temperature. From the same set of exper-
imental Cp(T ) data,11 at low temperatures T ≤ 5 K a
value ΘD = 246(4) K was deduced using the Debye T 3
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law [the low-temperature limit of Eq. (62)] given by31

CDebye = βDT
3

βD = 0.65(3)
mJ

molK4
(63)

ΘD =

(

12π4Rn

5β

)1/3

.

The experimental data at the highest temperatures lie
above the lattice heat capacity curve for ΘD = 300 K
in Fig. 15, suggesting the presence of one or more heat
capacity contributions in addition to that due to acoustic
phonons.
We calculated the difference Cp − CV for the lat-

tice heat capacity for the compound BaFe2As2 ac-
cording to the thermodynamic relation Cp − CV =
VMβ2

V(T )B(T )T , where VM is the molar volume, βV

is the volume thermal expansion coefficient, and B
is the bulk modulus. For the 200–300 K tempera-
ture range, using the values βV ≈ 4.8 × 10−5 K−1,37

B = 6.6 × 1012 dyne/cm2,38 and VM = 61.5 cm3/mol,4

we obtained Cp − CV = (9.3mJ/molK2)T. This gives
(Cp−CV)(300K) = 2.8 J/molK, which is about a factor
of two too small to account for the difference between
the data and the Debye curve. It was not possible to
calculate a value of Cp − CV specific to BaMn2As2 be-
cause βV(T ) and B(T ) have not been measured for this
compound.
The magnetic contribution Cmag(T ) to the heat capac-

ity at high temperatures was calculated using the MFT
prediction in Eq. (56). We chose to calculate it for spin
S = 2 because the S = 5/2 possibility was ruled out by
the large value of f > 3 for spin S = 5/2 in Eq. (60).
Using TN = 625 K, the Cmag(T ) from two moles of
spins S = 2 per mole of BaMn2As2 was added to the
Debye heat capacity and is plotted as the dashed blue
curve in Fig. 15. Now the calculated curve lies above the
experimental data around room temperature, indicating
that the magnetic heat capacity is smaller than predicted
by MFT. The χ(T ) data in Fig. 7(a) appear to be ap-
proaching a maximum at a temperature Tmax ≈ 1000 K
that is far above TN = 625 K, indicating the occurrence
of strong short-range AF ordering above TN (see also
Sec. IX below). This removes spin entropy and decreases
Cmag below the value expected from MFT at tempera-
tures below TN. This may be the reason for the sup-
pression of Cmag(T ) in our measurements around room
temperature.

B. Comparison of Experiment with Spin Wave
Heat Capacity Theory at Low Temperatures in the

J1-J2-Jc Model

1. Theory

The lack of significant susceptibility anisotropy above
TN in Fig. 7 indicates that single-ion anisotropy is small.

This anisotropy, if present, gives rise to an energy gap in
the spin wave excitation spectrum. Here we assume that
the anisotropy gap is infinitesmally small and calculate
the low-temperature magnetic heat capacity of AF spin
waves in the J1-J2-Jc model. This is an extension of the
standard treatment for simple cubic spin lattices with
isotropic NN exchange interactions.
The original 1952 papers by Anderson39 and by

Kubo40 give a clear prescription of how to do this us-
ing a spin wave model with two AF sublattices 1 and 2
containing a total of N spins S. Their starting Heisen-
berg Hamiltonian is

H = J
∑

〈ij〉

Si · Sj (64)

where there is only a single J and the sum is over dis-
tinct nearest-neighbor spin pairs. In zero field and in the
absence of significant anisotropy the diagonalized spin
wave Hamiltonian contains the following term involving
the excitation energies of spin waves

E =
∑

q

(n1qh̄ω1q + n2qh̄ω2q), (65)

where q is the wave vector of a spin wave excitation,
niq is the occupation number of the mode for sublattice
i, and the two terms correspond to excitations on the
two degenerate spin wave branches ω1q and ω2q associ-
ated with the two spin sublattices, respectively. Since
n1qh̄ω1q = n2qh̄ω2q ≡ nqh̄ωq are degenerate, the excita-
tion energy of the system can be written

E = 2
∑

q

nqh̄ωq. (66)

The thermal-average energy of the spin waves is then

Eave = 2
∑

q

h̄ωq

eh̄ωq/kBT − 1
. (67)

where 〈nq〉 = 1/(eh̄ωq/kBT − 1) is the Planck distribution
function for the thermal-average number of quanta in an
oscillator at energy h̄ωq. One converts the sum into an
integral over q for a three-dimensional spin lattice via

∑

k

→ N

2

Vspin

(2π)3

∫ π/a

−π/a

∫ π/b

−π/b

∫ π/c

−π/c

dq, (68)

where Vspin is the volume per spin. The factor of N/2
arises because each spin sublattice has N/2 spins. Then
Eq. (67) becomes

Eave =
NVspin

(2π)3

∫ π/a

−π/a

dqx

∫ π/b

−π/b

dqy

∫ π/c

−π/c

dqz
h̄ωq

eh̄ωq/kBT − 1
. (69)
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FIG. 16: (Color online) Spin wave dispersion relation
h̄ω/4J1S of the isotropic two-dimensional square lattice over
the Brillouin zone of the primitive tetragonal space lattice.
The dispersion relation is doubly degenerate everywhere. At
low temperatures, there are two distinct doubly degenerate
spin wave branches that are relevant, one at the Γ point at
(0,0) and the other at (π

a
, π
a

) (and equivalent points).

Note that the integration in Eq. (69) is over the entire
Brillouin zone of the primitive direct lattice (containing
a single spin), not over the Brillouin zone of the mag-
netic lattice. The reason for this important fact is that
integrating over the Brillouin zone of a primitive space
lattice with one spin in the basis sums up the response
of a single spin, whereas if one were to integrate over
an antiferromagnetic Brillouin zone, this zone would in-
clude the response of more than one spin. Indeed, the
average energy per spin calculated this way does not de-
pend on the type of magnetic ordering at all, even if
the magnetic ordering is ferromagnetic or incommensu-
rate. The only relevant difference between the thermal
average energy per spin of different magnetic ordering
configurations is the difference between the specific ωq

functions and their degeneracies over the Brillouin zone
of the primitive space lattice.
The dispersion relation for a general spin lattice is

h̄ωq = zJS
√

1− γ2
q (70)

where

γq =
1

z

z
∑

i=1

eiq·ri , (71)

z is the coordination number of a spin on one sublat-
tice by spins on the other sublattice, and ri is a vector
from a spin to one of its z neighbors. We now need to
make a point that will be illustrated using the spin wave
spectrum of an isotropic two-dimensional square spin-S
lattice (z = 4). In this case Eq. (71) yields

γq =
1

2
[cos(kxa) + cos(kya)]

and Eq. (70) gives the doubly degenerate dispersion re-
lation as

h̄ωq = 4JS
√

1− [cos(kxa) + cos(kya)]2/4. (72)

This dispersion relation is plotted in Fig. 16. One sees
that ωq has doubly degenerate branches arising from zero
energy at the Γ point (0,0), as expected, but also at the
corners of the Brillouin zone at (πa ,

π
a ) and equivalent

points. In a three-dimensional spin lattice with Jc 6= 0,
using the dispersion relation in Eq. (12), one sees that the
low-energy points of the dispersion relation move from
the (πa ,

π
a , 0) points in the corners of the two-dimensional

Brillouin zone to the (πa ,
π
a ,

π
c ) and equivalent points at

the other four corners of the three-dimensional Brillouin
zone. Thus in either case there is another multiplicative
factor of two to include in Eq. (69) if we only integrate
over the two degenerate Γ point branches for T → 0.
Equation (69) is evaluated in Appendix E to yield the

magnetic heat capacity per mole of spins at low temper-
atures due to the spin waves as

Cmag =

(

4π2Rk3BVspin

15h̄3vxvyvz

)

T 3, (T ≪ TN) (73)

where R is the molar gas constant, Vspin is the volume
per spin, and vx, vy, vz are the spin wave velocities along
the a-, b- and c-axes, respectively. This expression in-
cludes the contribution of the low energy spin waves at
the Brillouin zone corners, and can be written in a form
analogous to Eq. (63) for phonons as

Cmag = βSWT 3,

βSW = 2

(

2π2Rk3BVspin

15h̄3vxvyvz

)

. (74)

By writing the Debye temperature in Eqs. (63) in terms
of its constituent quantities,31 one obtains the lattice heat
capacity coefficient βD per mole of atoms as

βD = 3

(

2π2Rk3BVatom

15h̄3v3

)

, (75)

where v is the wave speed, assumed isotropic, and Vatom

is the volume per atom. This expression is similar to
Eq. (74) except that prefactor is three instead of two, due
to the three sound wave polarization directions for each
sound wave mode (two mutually perpendicular trans-
verse polarizations and one longitudinal polarization)
which are assumed to have the same wave speed v in
the Debye model.

2. Application of the Spin Wave Theory for the Magnetic
Heat Capacity to the J1-J2-Jc Heisenberg Model and

BaMn2As2

From the expressions for the spin wave velocities in the
J1-J2-Jc model in Eq. (9), one has

vxvyvz = v2abvc =
4
√
2(J1S)

3a2c

h̄3

(

1 +
Jc
2J1

)3/2

×
(

1− 2J2
J1

)
√

Jc
J1

. (76)
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For BaMn2As2, there are two formula units, or four Mn
atoms, per unit cell with volume a2c. The volume per
spin is thus

Vspin =
a2c

4
. (77)

Dividing Eq. (76) by Eq. (77) gives

vxvyvz
Vspin

=
16

√
2(J1S)

3

h̄3

(

1 +
Jc
2J1

)3/2 (

1− 2J2
J1

)
√

Jc
J1

.

(78)
Inserting Eq. (78) into (74) gives

βSW =
π2R

60
√
2(J1S/kB)3

(79)

×
[

(

1 +
Jc
2J1

)3/2 (

1− 2J2
J1

)
√

Jc
J1

]−1

.

From Table II, the exchange constants from the neu-
tron data are J1S/kB = 380 K, J2/J1 = 0.29 and
Jc/J1 = 0.09. Inserting these values into Eq. (79) gives
the calculated value

βSW = 0.13 mJ/mol spinsK4 for BaMn2As2. (80)

From Eq. (63), the observed β value per mole of Mn
spins is 0.325 mJ/mol spins K4. The calculated βSW

value is thus 40% of the measured value, so the observed
β value contains a significant magnetic contribution if the
anisotropy gap in the spin wave spectrum is negligible.
However, an anisotropy gap would reduce the spin wave
contribution to the heat capacity to exponentially small
values at low temperatures.

IX. MONTE CARLO SIMULATIONS OF THE
MAGNETIC SUSCEPTIBILITY AND MAGNETIC

HEAT CAPACITY IN THE J1-J2-Jc MODEL

Both our classical and quantum Monte Carlo simula-
tions were carried out within the framework of the J1-
J2-Jc Heisenberg model introduced above in Sec. III. We
have calculated the magnetic heat capacity and magnetic
spin susceptibility versus temperature for various size lat-
tices of quantum spins S = 1/2, 1, 3/2, 2, and 5/2, and
for the classical model. We first motivate the scaling of
the axes of our theoretical plots of χ(T ), remark on the
temperature regime over which this scaling is expected
to hold, and then present our Monte Carlo simulation
results. Then we will compare our predictions for the
magnetic susceptibility with the experimental suscepti-
bility data for BaMn2As2 above TN in Fig. 7 to obtain
additional estimates of the exchange constants in this
compound.

A. Scaling of the Theoretical χ(T ) Axes

Using Eqs. (23) and (25) in the Heisenberg “J model”
for a bipartite spin lattice with equal NN exchange, the
Curie-Weiss law (22) can be rewritten as

χJ

Ng2µ2
B

=
1

3kBT
JS(S+1) + z

. (81)

The quantity on the left-hand side of Eq. (81) is the the-
orist’s definition of “χ”, which is the susceptibility per
spin, in units of 1/J , with gµB set equal to 1. On the
right-hand side, we see that if we use a temperature scale
defined by kBT/[JS(S+1)], then all spin lattices with the
same coordination number z but with different J and/or
S will all follow the same universal curve at high temper-
atures. Therefore in this paper we scale the calculated
susceptibilities when J2, Jc = 0 as

χJ1
Ng2µ2

B

versus
kBT

J1S(S + 1)
. (82)

This is the same scaling of the temperature axis as for
the magnetic heat capacity in Eq. (A10).
In the J1-J2-Jc model, according to Fig. 2 there are

four in-plane next-nearest-neighbor interactions

J2 = αJ1, (83)

two NN interactions along the c-axis

Jc = γJ1, (84)

in addition to the z1 = 4 ≡ z nearest-neighbor interac-
tions J1. When these additional interactions are present,
according to Eq. (26) the Weiss temperature becomes

θ =
zJ1(1 + α+ γ/2)S(S + 1)

3kB
, (85)

and the form of the new Curie Weiss law corresponding
to Eq. (81) is

χJ1(1 + α+ γ/2)

Ng2µ2
B

=
1

3kBT
J1(1+α+γ/2)S(S+1) + z

. (86)

A more accurate high-temperature scaling is obtained in
this case by replacing J1 in Eq. (82) by J1 + J2 + Jc/2 =
J1(1 + α+ γ/2) and scaling the data according to

χJ1(1 + α+ γ/2)

Ng2µ2
B

versus
kBT

J1(1 + α+ γ/2)S(S + 1)
.

(87)
The scalings in Eqs. (82) and (87) are expected to be

universal with respect to the spin and the exchange con-
stants only at “high” temperatures. Appendix A shows
that the calculations begin to deviate from the Curie-
Weiss molecular field behavior when 1/T 2 and higher or-
der terms in the two-spin correlation functions become
significant compared to the 1/T terms with decreasing
T .
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B. Classical Monte Carlo Simulations

The classical Monte Carlo (CMC) simulations were
performed on periodic L × L clusters for Jc = 0 and
for L × L × Lc clusters for Jc 6= 0 using a hybrid al-
gorithm that combines Metropolis and over-relaxation
sweeps.41 In order to obtain statistically reliable data we
have generated ∼ 105 configurations at each tempera-
ture and then averaged the results over 50 independent
annealing runs.
The spin Hamiltonian for our classical Monte Carlo

simulations is the classical analogue of the quantum spin
Hamiltonian (2), given by

Hclassical = J1S
2
∑

〈ij〉

Ŝi · Ŝj + J2S
2
∑

〈ik〉

Ŝi · Ŝk

+JcS
2
∑

〈il〉

Ŝi · Ŝk + gµBH
∑

i

Sz
i ,

(88)

where S is the magnitude of the spin, Ŝ is a classical spin
unit vector, and Ŝi · Ŝk = cos θij . According to Eq. (88),
the exchange parameters Jα are always combined with
the classical spin magnitude S in the combination JαS

2.
In the following, we first consider our simulations for

Jc = 0 and then for Jc 6= 0.

1. Jc = 0

The semiclassical magnetic spin susceptibilities χ ver-
sus T for the square lattice calculated using CMC sim-
ulations on 80× 80 spin lattices are shown in Fig. 17(a)
for Jc = 0 and J2/J1 = −0.4 to 0.4. Here, the term
“semiclassical” means that S2 in the final result of the
classical simulations is replaced by the quantum mechan-
ical expectation value 〈S2〉 = S(S+1). This replacement
allows the classical simulations to merge smoothly with
the quantum Monte Carlo simulations (see Fig. 23 be-
low). We carried out simulations of various other L × L
lattice sizes with L = 10–100 for J2/J1 = 0 and 0.2 and
found that finite-size corrections to both the calculated
magnetic susceptibility and magnetic heat capacity are
negligible for L ≥ 50.
The χ(T ) data in Fig. 17(a) show two interesting

trends. First, at high temperatures the Curie-Weiss law
C/(T +θ) is obtained, in which the (positive) Weiss tem-
perature θ is proportional to the sum of all interactions
of a given spin with its neighbors according to Eq. (26).
Thus for a negative (ferromagnetic) J2 that partially can-
cels the positive J1, the susceptibility increases at a fixed
T , and for a positive J2 it decreases. Second, at low
temperatures this trend is reversed. A negative ferro-
magnetic J2 is nonfrustrating with respect to J1, and
reinforces the short-range ordering that causes the peak
in χ(T ). This moves the peak up in temperature and
suppresses the susceptibility in the short-range ordered
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FIG. 17: (Color online) (a) Normalized magnetic spin
susceptibility χJ1/(Ng2µ2

B) versus normalized temperature
kBT/[J1S(S + 1)] for the classical spin S Heisenberg square
lattice with Jc = 0 and J2/J1 = −0.4 to 0.4, with S(S + 1)
replacing S2. The lattice size is 80 × 80 in each case. (b)
Expanded plot at low temperatures (open circles) of the data
for J2 = 0 in (a). The error bars are shown and are inside
the open circles. A linear fit to the data up to a reduced tem-
perature of 0.14 is shown as the solid straight line, and the
dashed line is an extrapolation of the fit. The coefficients of
the fit are listed in Eq. (89).

state at low temperatures below the peak temperature.
The opposite behavior is found for a positive AF J2 which
is frustrating with respect to J1. This J2 suppresses the
short-range AF ordering, which decreases the peak tem-
perature and increases the susceptibility below the peak
temperature compared to the case when J2 = 0.
These trends are illustrated in a different way if the

best high-temperature scaling for these plots, given in
Eq. (87), is used, as shown in Fig. 18. In addition, the
Curie-Weiss law from Eq. (86) is plotted in Fig. 18 as the
blue dashed line. From a comparison of the simulation
data with the Curie-Weiss prediction, one sees that the
two-spin correlations higher order than present in the
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FIG. 18: (Color online) Normalized magnetic spin suscep-
tibility χ(J1 + J1)/(Ng2µ2

B) versus normalized temperature
kBT/[(J1 + J2)S(S + 1)] determined from classical Monte
Carlo simulations for the spin S Heisenberg square lattice
with Jc = 0 and J2/J1 = −0.4 to 0.4, as indicated, with
S(S + 1) replacing the classical S2. The lattice size is 80× 80
in each case. The axis scaling is superior at high tempera-
tures to that in Fig. 17(a). A plot of the Curie-Weiss law in
Eq. (86) is shown by the black dashed curve.

Curie-Weiss regime (∼ 1/T ) begin to become observable
on the scale of the figure for T <∼ 5(J1/kB)S(S + 1).
According to Eq. (85), this latter value is about four
times the Weiss temperature θ, which has the value 4/3
on the horizontal scale in Fig. 18.
The data in Fig. 17(a) for J2 = 0 were obtained down

to a reduced temperature of 0.01 as shown in the ex-
panded plot in Fig. 17(b). The lowest temperature data
are linear in T . A linear fit yielded

χJ1
Ng2µ2

B

= 0.08333(2) + 0.0218(3)
kBT

J1S(S + 1)
, (89)

as shown by the solid line in Fig. 17(b). According to
Takahashi’s modified spin wave theory for the AF square
lattice, the classical limit (A9) in Ref. 42 reads

χJ1
Ng2µ2

B

=
1

12
+

1

24π

kBT

J1S2
+O(T 3). (90)

The zero-temperature reduced susceptibility 1/12 ≈
0.08333 in Eq. (90) is the same as our value in Eq. (89)
to within the errors of our Monte Carlo data, but the
theoretical initial slope 1/(24π) ≈ 0.01326 is too small
compared to our Monte Carlo value in Eq. (89). On the
other hand, in a 1/D expansion where D is the dimen-
sionality of the spins (D = 3 here), for the classical square
spin lattice at low T Hinzke et al.43 obtained

χJ1
Ng2µ2

B

=
1

12
+

1

32

kBT

J1S2
. (91)
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FIG. 19: (Color online) Classical Monte Carlo (CMC) simu-
lations on 80 × 80 spin lattices of the magnetic heat capacity
Cmag divided by the molar gas constant R versus the scaled
temperature kBT/J1S(S + 1) for Jc = 0 and J2/J1 = −0.4
to 0.4 as shown.

The zero temperature susceptibility is the same as our
and Takahashi’s value but Hinzke et al.’s initial slope is
1/32 = 0.03125, which this time is larger than our Monte
Carlo value in Eq. (89). Thus our value of the initial slope
is bracketed by the predictions of the modified spin wave
theory and the 1/D expansion.
The magnetic heat capacity is plotted in Fig. 19 ac-

cording to Eq. (A10) versus the scaled temperature for
exchange constant ratios J2/J1 = −0.4 to 0.4 on 80× 80
spin lattices. The broad peaks in the curves decrease in
temperature with increasing J2. This is understandable
in terms of the enhancement of short-range AF order for
ferromagnetic (negative) J2, which increases the temper-
ature of the peak, and the frustration effect for antiferro-
magnetic (positive) J2, which decreases the temperature
of the peak. The peak values and the temperatures at
which they occur are listed in Table V. It is interest-
ing that the variation in Cmag(T ) with J2 depends on
the sign of J2, in contrast with expectation from the first
term in the HTSE in Eq. (A9) in which the uniform J ap-
pears as the square and is hence independent of the sign.
Thus one cannot replace zJ2 in Eq. (A9) by

∑

j J
2
ij . This

constraint is not present when calculating the Weiss tem-
perature in the Curie-Weiss law from Eq. (26), in which
one includes the interactions of a given spin with all of
its neighbors algebraically and on the same footing.

2. Jc 6= 0

The classical Monte Carlo simulations do not produce
the same results as the molecular field theory does be-
cause the interaction between a spin and its neighbors
is not approximated by the interaction of the spin with
the average spin of its neighbors as in the molecular field
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TABLE V: Parameters obtained from semiclassical (SC)
Monte Carlo and quantum Monte Carlo simulations of the
magnetic heat capacity Cmag(T ) for the square lattice with
no interlayer coupling (Jc = 0). Here, Cmax

mag is the value of
Cmag at a magnetic ordering peak, Tmax is the temperature at
which the maximum occurs, and SC means we have replaced
S2 by S(S + 1) in the temperature scaling of the classical
Monte Carlo data. Note that the value of Tmax is different
than the temperature of the maximum in the magnetic sus-
ceptibility.

S lattice size J2/J1
Cmax

mag

R

kBTmax

J1S(S+1)

1/2 32 × 32 0 0.4606(7) 0.801(2)

1 32 × 32 0 0.885(2) 0.690(4)

64 × 64 0 0.879(2) 0.700(3)

3/2 32 × 32 0 1.159(2) 0.674(1)

2 32 × 32 0 1.325(2) 0.673(1)

64 × 64 0 1.295(2) 0.684(2)

5/2 32 × 32 0 1.428(2) 0.673(2)

SC 80 × 80 −0.4 1.801(5) 1.055(3)

SC 80 × 80 −0.2 1.752(3) 0.861(3)

SC 80 × 80 −0.1 1.699(1) 0.777(2)

SC 80 × 80 0 1.666(1) 0.678(1)

SC 80 × 80 0.1 1.621(2) 0.575(1)

SC 80 × 80 0.2 1.567(2) 0.471(2)

SC 80 × 80 0.3 1.498(3) 0.352(3)

SC 80 × 80 0.4 1.378(3) 0.232(2)

theory. In particular, according to the Mermin-Wagner
theorem,44 a Heisenberg spin system in one or two di-
mensions, as in the J1-J2 model with only intraplanar
exchanges, should not show long-range magnetic ordering
at finite temperature. This theorem is respected in our
classical simulations, but not in molecular field theory.
On the other hand, when the simulations are carried out
with Jc 6= 0, we find that long-range AF ordering does
occur, as expected. Because the uniform susceptibility
does not directly couple to the AF order parameter [the
staggered moment, see Eq. (B16)], these AF phase transi-
tions have rather subtle effects on the calculated uniform
susceptibility. They are much more clearly manifested in
the magnetic heat capacity which we will also present,
and would also be clearly delineated in calculations of
the staggered susceptibility in which the applied mag-
netic field has opposite directions for the two sublattices.

Throughout this section, we replace the classical vari-
able S2 by its quantum-mechanical counterpart S(S +
1). We show our results in two formats. First, in
Fig. 20 are shown the magnetic heat capacity Cmag and
the spherically-averaged magnetic susceptibility χ versus
temperature T for fixed J2/J1 = 0.1 and variable Jc = 0,
0.02, 0.05 and 0.1, where J1, J2 and Jc are all antiferro-
magnetic. From 20(a), one sees that Cmag(T ) for Jc = 0
just shows a broad peak characteristic of short-range AF
order. However, the Cmag quickly and clearly shows a

0.00

0.50

1.00

1.50

2.00

2.50

0 1 2 3

J
c
/J

1
 = 0.10

J
c
/J

1
 = 0.05

J
c
/J

1
 = 0.02

J
c
/J

1
 = 0.00

k
B
T / [J

1
S(S + 1)]

(a)

J
2
/J

1
 = 0.1

0.07

0.08

0.09

0.10

0.11

0.12

0 1 2 3

J
c
/J

1
 = 0.00

J
c
/J

1
 = 0.05

J
c
/J

1
 = 0.10

k
B
T / [J

1
S(S + 1)]

(b)

J
2
/J

1
 = 0.1

FIG. 20: (Color online) (a) Magnetic heat capacity and (b)
magnetic susceptibility χ versus temperature T from classical
Monte Carlo simulations for the spin S Heisenberg square
lattice with J2/J1 = 0.1 and with Jc/J1 = 0, 0.02, 0.05 and
0.1, as indicated. The order of the curves from top to bottom
is the same as in the respective figure legends. The lattice
size in each case is 20 × 20 × 10.

cusp-like behavior with increasing Jc at temperatures TN

corresponding to long-range AF order. Second, in Fig. 21
are shown Cmag(T ) and χ(T ) for fixed Jc/J1 = 0.1 and
variable J2/J1 = 0–0.4, where J1, J2 and Jc are again
all antiferromagnetic. For all combinations of J2/J1 and
Jc/J1 we have studied, to within the errors the peak in
Cmag at TN coincides in temperature with the peak in
d(χT )/dT on the low-T side of the broad peak in χ(T ),
in agreement with the Fisher relation.32 We note that the
TN and shape/magnitude of Cmag at TN determined in
our simulations may be affected by finite size effects.

The temperatures TN of the peaks in Cmag(T ) and the
values of Cmag(TN) at the peak, versus the exchange con-
stant ratios J2/J1 and Jc/J1, are listed in Table VI and
plotted in Figs. 22(a) and (b). For J2 = 0, our TN values
are lower by <∼ 1% than the values obtained by Yasuda et
al. for Jc/J1 = 0.02, 0.05 and 0.1.45 For J2 = 0, a good
fit to TN versus Jc for various spin values was obtained
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FIG. 21: (Color online) (a) Magnetic heat capacity and (b)
spherically averaged magnetic susceptibility χ versus temper-
ature T from classical Monte Carlo simulations for the spin S
Heisenberg square lattice with J2/J1 = 0 to 0.4, as indicated,
and with fixed Jc/J1 = 0.1. The order of the curves from
right to left is given in the figure (a) legend. The lattice size
in each case is 20 × 20 × 10.

in Ref. 46 using the expression45

kBTN

J1S(S + 1)
=

A

B − ln(Jc/J1)
, (92)

where different values of the constants A and B were
required for different spin values. We fitted the classical
Monte Carlo data for J2 = 0 in Fig. 22(a) using Eq. (92)
and obtained a good fit with the values

A = 7.70 (93)

B = 6.87,

which are both about a factor of two larger than the
respective values A = 3.96 and B = 3.01 obtained in
Ref. 46 for the classical limit S = ∞. The fit is shown as
the solid red curve for J2/J1 = 0 in Fig. 22(a).
From Fig. 22(a), a positive antiferromagnetic J2 frus-

trates the G-type AF ordering and depresses TN approx-
imately linearly with J2, and the TN for each Jc value

TABLE VI: Temperatures TN of the magnetic ordering peaks
in the molar magnetic heat capacity Cmag and the values of
Cmag(TN) at the peak, versus the exchange constant ratios
J2/J1 and Jc/J1, obtained from classical Monte Carlo simu-
lations. The TN and Cmag values may be affected by finite
size effects. Here R is the molar gas constant.

J2/J1 Jc/J1 kBTN/[J1S(S + 1)] Cmag(TN)/R

0 0.02 0.717(2) 1.890(3)

0.05 0.773(1) 2.139(5)

0.10 0.842(1) 2.29(2)

0.1 0.02 0.611(1) 1.879(4)

0.05 0.667(1) 2.151(6)

0.10 0.735(1) 2.318(5)

0.12 0.06 0.661(1) 2.190(6)

0.2 0.02 0.502(1) 1.880(8)

0.05 0.557(1) 2.14(1)

0.10 0.619(1) 2.32(1)

0.3 0.02 0.390(1) 1.839(2)

0.05 0.439(1) 2.125(9)

0.10 0.497(1) 2.343(7)

0.4 0.02 0.263(1) 1.784(8)

0.05 0.313(1) 2.06(1)

0.10 0.360(1) 2.26(1)

extrapolates to zero at J2/J1 ≈ 0.6, which is close to the
value of 0.5 from Eq. (4) at which one classically expects
the G-type AF order to become unstable with respect to
the stripe AF order. Therefore, we fitted the dependence
of TN on J2/J1 of all the data for Jc/J1 = 0.1, 0.2, 0.3
and 0.4 together using the expression

TN(Jc, J2)

TN(Jc, J2 = 0)
= 1−

(

J2/J1
R1

)R2

(94)

and obtained the values

R1 = 0.644 (95)

R2 = 1.082.

The fits are shown as the solid curves in Fig. 22(b). Thus
the global function to fit all of our TN(Jc/J1, J2/J1) data
is

kBTN

J1S(S + 1)
=

A

B − ln(Jc/J1)

[

1−
(

J2/J1
R1

)R2

]

. (96)

The fits for TN versus Jc at fixed J2/J1 = 0.1–0.4
are shown as the solid curves in Fig. 22(a). We see
that Eq. (96), together with the four parameters in
Eqs. (93) and (95), provide a good global fit to all fif-
teen TN(Jc/J1, J2/J1) data points in Fig. 22(a) from
our CMC simulations.
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FIG. 22: (Color online) Antiferromagnetic ordering tempera-
ture TN versus (a) the interlayer coupling Jc for fixed values
of J2/J1 and (b) J2/J1 at fixed Jc/J1. In (b), the order of the
curves from top to bottom is the same as in the figure legend.
The solid curves are a global fit to all the data by Eq. (96),
using the parameters in Eqs. (93) and (95).

C. Quantum Monte Carlo Simulations

1. Magnetic Susceptibility

Our quantum Monte Carlo (QMC) simulations
were carried out with the ALPS47,48 directed loop
application49 in the stochastic series expansion
framework50 using version ALPS 1.3. Up to about
1 × 109 sweeps were carried out for the 32 × 32 lat-
tice and the sign-free situation J2 = 0. In order to
compensate for the sign problem introduced by J2 > 0
this was increased to about 2 × 1011 sweeps on the
6 × 6 lattice for J2 = 0.1. QMC simulations have been
previously reported for S = 1 over the temperature
range 0.5 ≤ kBT/J1S(S + 1) ≤ 5 by Harada et al.51

We have extended these simulations to much lower
temperatures (see Fig. 24).
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FIG. 23: (Color online) Normalized magnetic spin sus-
ceptibility χJ1/(Ng2µ2

B) versus normalized temperature
kBT/[J1S(S + 1)] determined from quantum Monte Carlo
(QMC) simulations for quantum Heisenberg square lattices
with (a) J2/J1 = 0 and spins S = 5/2, 2, 3/2, 1, and 1/2,
and (b) J2/J1 = 0.1 and spins S = 5/2 and 2. The data for
the semiclassical model (green) with J2/J1 = 0 and 0.1 are
included in the two panels, respectively. The lattice size for
each simulation is indicated in the respective figure.

Our QMC simulations of the magnetic spin suscep-
tibilities versus temperature for the square lattice with
quantum spins 1/2 to 5/2 with J2 = 0 are shown in
Fig. 23(a), and for J2/J1 = 0.1 and S = 2 and 5/2 in
Fig. 23(b). Various parameters obtained from these and
the above semiclassical data are listed in Table VII as
described in the caption. We checked by comparison of
the data for the 32× 32 lattice with 64× 64 lattice data
for S = 1 and S = 2 (see Table VII) that the 32 × 32
lattice data in Figs. 23 and 24 (below) are close to the
thermodynamic limit; i.e., finite size effects are smaller
than the size of the symbols (except probably the lowest
temperature datum for S = 1/2 in Fig. 24).

Hasenfratz and Niedermayer obtained the low temper-
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FIG. 24: (Color online) Normalized QMC magnetic spin
susceptibility χJ1/(Ng2µ2

B) versus normalized temperature
kBT/[J1S(S + 1)] data (symbols) at low temperatures from
Fig. 23(a) for spins S = 1/2 (bottom), 1, 3/2, 2, and 5/2 (top).
The error bars for the QMC data are also plotted. The corre-
sponding Hasenfratz-Niedermayer+spin wave theory predic-
tions (HN + SWT) for the low-temperature behaviors52,53

are also shown for these spin values as solid curves.

ature limit of the spin susceptibility of the Heisenberg
antiferromagnet on a square lattice from chiral perturba-
tion theory, given by52

χ(T ) =
2χ⊥(0)

3

[

1 +

(

kBT

2πρS

)

+

(

kBT

2πρS

)2

+ · · ·
]

,

(97)
where ρS is the spin wave stiffness, χ⊥(0) is the zero-
temperature perpendicular susceptibility given by

χ⊥(0)J1
Ng2µ2

B

=
ρSJ1a

2

(h̄c)2
, (98)

c is the spin wave velocity, and a is the square lattice
parameter. The χ⊥(0) and ρS depend on the spin S and
were calculated using spin wave theory (SWT) by Hamer
et al. as53

χ⊥(0)J1
Ng2µ2

B

=
1

8
− 0.034 446 959 42

S

+
0.002 040 06(7)

S2
+O(S−3) (99)

and
ρS
J1

= S2 − 0.117 628 254 4S− 0.010 207 987 3

− 0.003 16(2)

S
+O(S−2). (100)

The low-temperature QMC data from Fig. 23(a) are
shown in Fig. 24 together with the above predictions of
Hasenfratz and Niedermayer (HN) combined with the
SWT results of Hamer et al. The lowest-temperature
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FIG. 25: (Color online) Magnetic heat capacity Cmag divided
by the molar gas constant R versus normalized temperature
kBT/[J1S(S + 1)] for the square lattice with only nearest-
neighbor couplings J1 (exchange constants J2 = Jc = 0).
Quantum Monte Carlo (QMC) data (filled circles) for spins
S = 1/2 (bottom), 1, 3/2, 2, and 5/2 (top) are shown, to-
gether with classical Monte Carlo (CMC) data from Fig. 20(a)
(solid black curve at the top) and the first term in the high-
temperature series expansion HTSE for the magnetic heat
capacity from Eq. (A9) using z = 4 (dashed black curve).
The error bars for the QMC data are also plotted, and the
lines connecting the data points are guides to the eye.

QMC data for spins 1/2 to 5/2 in Fig. 24 are all seen to
be in good agreement with the HN + SWT predictions.
High resolution calculations of χ(T ) from the literature
for the S = 1/2 square lattice Heisenberg antiferromag-
net also confirm the form of Eq. (97).54,55 For S = 1
our value of χ(0) from Fig. 24 disagrees with the value
0.07197 given in Ref. 46. It was claimed in Ref. 42 that on
the basis of spin wave theory, the next-order term above
the T 1 term in Eq. (97) is O(T 3), as in Eq. (90) above,
in disagreement with Eq. (97). However, the next higher
order term is indeed the T 2 term.56

2. Magnetic Heat Capacity

The magnetic heat capacity Cmag versus temperature
data from our QMC simulations for the square lattice
with only NN interactions (J2 = Jc = 0) are shown
in Fig. 25 for spins S = 1/2, 1, 3/2, 2 and 5/2. Also
shown for comparison are our CMC heat capacity data
for J2 = Jc = 0 from Fig. 20(a) and the first term in
the HTSE Cmag ∝ 1/T 2 for the magnetic heat capacity
from Eq. (A9) using the nearest-neighbor coordination
number z = 4. The CMC and QMC data exhibit this
HTSE behavior for temperatures T >∼ 2J1S(S + 1)/kB.
The values of the heat capacities of the peaks in the sim-
ulation data for the spin values S = 1 to S = 5/2 and the
temperatures at which they occur are listed in Table V
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TABLE VII: Calculated values of (i) the maximum spin susceptibilities χmax and (ii) the temperatures Tmax at which they
occur for different lattice sizes, J2/J1 values and quantum and semiclassical S values, (iii) the product χmaxTmax/3C where
C is the Curie constant C per mole of spins in Eq. (23), (iv) the value of the product χmaxTmax for the listed S assuming
g = 2, and (v) the value of the product for an alternate semiclassical value of S = 5/2 assuming g = 2. By “semiclassical”
(SC) is meant that S2 in the final result of the classical calculation is replaced by the quantum mechanical expectation value
〈S2〉 = S(S + 1). In the last column is listed the molecular field Néel temperature TN, normalized by J1S(S + 1)/kB, according
to Eq. (41).

S lattice size J2/J1 Jc/J1
χmaxJ1

Ng2µ2
B

kBTmax

J1S(S+1)
χmaxTmax

3C
χmaxTmax χmaxTmax kBTN

J1S(S+1)

(cm3 K/mol) (cm3 K/mol)

1/2 32 × 32 0 0 0.09370(3) 1.248(3) 0.1169(3) 0.1316(4) 1.33

1 32 × 32 0 0 0.10438(5) 1.090(3) 0.1138(3) 0.3415(11) 1.33

64 × 64 0 0 0.10424(3) 1.085(3) 0.1131(4) 0.3394(11)

3/2 32 × 32 0 0 0.10790(3) 1.050(4) 0.1133(5) 0.638(3) 1.33

2 32 × 32 0 0 0.10952(4) 1.030(4) 0.1128(5) 1.016(4) 1.33

64 × 64 0 0 0.10957(6) 1.038(5) 0.1137(6) 1.024(6)

5/2 32 × 32 0 0 0.11040(3) 1.018(3) 0.1144(8) 1.50(1) 1.33

2 6 × 6 0.1 0 0.10882(6) 0.966(5) 0.1051(6) 0.946(6) 1.20

5/2 6 × 6 0.1 0 0.10966(6) 0.959(4) 0.1052(5) 1.381(6) 1.20

S = 2 S = 5/2

SC 80 × 80 −0.4 0 0.11115(5) 1.453(4) 0.1615(5) 1.454(5) 2.121(8) 1.87

SC 80 × 80 −0.2 0 0.11173(5) 1.225(4) 0.1369(5) 1.232(5) 1.797(8) 1.60

SC 80 × 80 −0.1 0 0.11210(4) 1.120(3) 0.1256(4) 1.130(4) 1.649(5) 1.47

SC 80 × 80 0 0 0.11235(3) 0.999(2) 0.1122(3) 1.011(3) 1.470(4) 1.33

SC 80 × 80 0.1 0 0.11274(3) 0.876(3) 0.0988(4) 0.889(3) 1.297(5) 1.20

SC 20 × 20 × 10 0.1 0.02 0.11216(6) 0.874(5) 0.0980(6) 0.883(6) 1.287(8) 1.21

SC 20 × 20 × 10 0.1 0.05 0.1113(1) 0.878(7) 0.0977(9) 0.880(8) 1.28(1) 1.23

SC 20 × 20 × 10 0.1 0.1 0.1098(1) 0.896(5) 0.0984(6) 0.886(6) 1.29(1) 1.27

SC 20 × 20 × 10 0.12 0.06 0.11126(8) 0.853(7) 0.0949(9) 0.854(8) 1.25(1) 1.21

SC 80 × 80 0.2 0 0.11325(2) 0.750(2) 0.0849(3) 0.765(2) 1.115(3) 1.07

SC 20 × 20 × 10 0.2 0.02 0.11275(5) 0.749(10) 0.0844(12) 0.76(1) 1.11(1) 1.08

SC 20 × 20 × 10 0.2 0.05 0.11187(10) 0.755(10) 0.0845(12) 0.76(1) 1.11(1) 1.10

SC 20 × 20 × 10 0.2 0.1 0.11029(5) 0.767(7) 0.0846(8) 0.762(7) 1.11(1) 1.13

SC 80 × 80 0.3 0 0.11391(3) 0.616(2) 0.0702(3) 0.632(3) 0.921(3) 0.93

SC 20 × 20 × 10 0.3 0.02 0.1134(10) 0.614(10) 0.070(1) 0.63(2) 0.91(3) 0.95

SC 20 × 20 × 10 0.3 0.05 0.11257(7) 0.627(7) 0.0706(8) 0.635(8) 0.93(1) 0.97

SC 20 × 20 × 10 0.3 0.1 0.1108(10) 0.652(7) 0.072(2) 0.65(1) 0.95(2) 1.00

SC 80 × 80 0.4 0 0.11509(4) 0.468(2) 0.0539(3) 0.485(2) 0.707(3) 0.80

SC 20 × 20 × 10 0.4 0.02 0.1147(10) 0.468(7) 0.054(2) 0.48(1) 0.70(2) 0.81

SC 20 × 20 × 10 0.4 0.05 0.1136(10) 0.467(10) 0.053(2) 0.48(1) 0.70(2) 0.83

SC 20 × 20 × 10 0.4 0.1 0.11175(5) 0.497(3) 0.0555(4) 0.500(3) 0.729(5) 0.87

above.

We checked finite-size effects associated with the QMC
data by simulating Cmag for 64 × 64 S = 1 and S = 2
lattices for comparison with the 32×32 lattices in Fig. 25.
On the scale of the figure, the 64× 64 data (not shown)
were close to the 32× 32 lattice size data. For example,
the peak heights differ by less than 2 percent between the
simulations for the different size lattices (see Table V).

According to Eq. (41), the Néel temperature in MFT
occurs in Fig. 25 at a value of 4/3 on the horizontal scale
and with a heat capacity jump on cooling below TN to

3/2 for S = 1/2 and 5/2 for S = ∞. The data in Fig. 25
are very different from these MFT predictions due to the
presence of short-range magnetic ordering and the lack of
long-range magnetic ordering44 in these two-dimensional
spin lattices at finite temperatures.

The expression of Hasenfratz and Niedermayer for the
low temperature magnetic heat capacity of the Heisen-
berg antiferromagnet on a square lattice from chiral per-
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FIG. 26: (Color online) Low-temperature magnetic heat ca-
pacity Cmag times S2 divided by the molar gas constant R
and T 2 versus normalized temperature squared, (kBT/J1)2,
for the square lattice with only nearest-neighbor couplings J1

(exchange constants J2 = Jc = 0). Quantum Monte Carlo
(QMC) data (filled symbols) for spins S = 1/2, 1, and 3/2
are shown, together with error bars. The dotted lines are
fits of the data by Eq. (103) assuming the specific A(S) y-
intercepts given in the text below Eq. (103). Only the slopes
D(S) were fitted. The fitting ranges of T 2 were 0–0.06 for
S = 1/2, 0–0.25 for S = 1 and 0–0.5 for S = 3/2.

turbation theory, per mole of spins, is52

Cmag =
6 ζ(3)R

π(h̄v/a)2
(kBT )

2 +O(T 4), (101)

where ζ(x) is the Riemann zeta function with ζ(3) ≈
1.20206 and a is the length of an edge of the square lattice
unit cell. The spin wave velocity v for the AF Heisenberg
square lattice is53,57

h̄v

a
= 2

√
2SJ1

[

1 +
0.157 947 421

2S
+

0.021 52

(2S)2
+O(S−3)

]

.

(102)
From Eqs. (101) and (102) one obtains

CmagS
2

R(kBT/J1)2
=

3 ζ(3)

4π

[

1 +
0.157 947 421

2S
+

0.021 52

(2S)2

]−2

+ D(S)

(

kBT

J1

)2

≡ A(S) +D(S)

(

kBT

J1

)2

. (103)

The factor A(S) is 0.2063, 0.2441, 0.2578, 0.2649 and
0.2692 for S = 1/2, 1, . . . , 5/2, respectively. Figure 26
shows our low-temperature Cmag(T ) data for S = 1/2,
1 and 3/2 plotted according to Eq. (103). The approxi-
mate extrapolated zero-temperature values are in accord
with the above A(S) values to within the data error
bars. After setting A(S) to the above respective fixed
values, the initial slopes were estimated by fitting the

data by Eq. (103), yielding D(S) = 1.8, 0.31 and 0.14
for S = 1/2, 1 and 3/2, respectively, as shown by the
respective dotted lines in Fig. 26. The slope D decreases
significantly with increasing S but remains positive from
S = 1/2 up to S = 3/2. The sign of D(S) was indeed
predicted by Hofmann to be positive using the effective
Lagrangian method.58

X. COMPARISON OF MONTE CARLO
SIMULATIONS OF THE MAGNETIC
PROPERTIES WITH EXPERIMENT

A. Néel Temperature

Using Eq. (96), we can predict the Néel temperature
from the values J1S/kB = 380 K, J2/J1 = 0.29, and
Jc/J1 = 0.09 in Table II obtained from the fit of the in-
elastic neutron scattering data by spin wave theory. Note
that the neutron fit only provides products of the J val-
ues with S. Using the above-given parameters, Eq. (96)
predicts

1. TN = 550 K for S = 2

2. TN = 640 K for S = 5/2.

A comparison of these values with the experimental value
TN = 620–625 K clearly favors spin 5/2 over spin 2 for
the Mn ions. Indeed, the TN calculated for S = 5/2 is
remarkably close to the observed value.

B. Magnetic Susceptibility

Our tables of calculated susceptibities are in the form
of Eq. (82). A very useful quantity for comparison
with experimental susceptibility data is the product of
the scaled maximum susceptibility χmaxJ1/Ng2µ2

B and
the scaled temperature at which the maximum occurs
kBT

max/J1S(S+1). Setting N equal to Avogadro’s num-
ber NA so that χ is the susceptibility per mole of spins,
the product of these two variables is

(

χmaxJ1
NAg2µ2

B

)[

kBT
max

J1S(S + 1)

]

=
χmaxTmax

3C
, (104)

where C is the Curie constant in Eq. (23). This prod-
uct does not contain any exchange constants and hence
is a potential diagnostic for the value of the spin S from
experimental data. One cannot hope to obtain a good
fit to an experimental χ(T ) data set by the theoretical
predictions unless one can at least fit the experimen-
tal χmaxTmax datum. The quantities χmaxJ1/Ng2µ2

B,
kBT

max/S(S +1)J1, and χmaxTmax/3C are listed in Ta-
ble VII for both the classical and quantum Monte Carlo
simulations. Using the values ofC obtained from Eq. (23)
using g = 2, the predicted values of χmaxTmax for direct
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FIG. 27: (Color online) Product of the maximum suscepti-
bility χmax per mole of spins and the temperature Tmax at
which it occurs for the J1-J2 model on a Heisenberg square
spin lattice for spins (a) S = 2 and (b) S = 5/2, versus the
ratio J2/J1 of the diagonal next-nearest-neighbor coupling to
the nearest neighbor coupling. Here a g-factor g = 2 was as-
sumed. The data were obtained using quantum Monte Carlo
(blue, QMC) and classical Monte Carlo (red, CMC) simula-
tions on the lattice sizes indicated. The χmaxTmax values ob-
tained from CMC for the three-dimensional lattices are very
insensitive to the coupling Jc between layers up to at least
Jc/J1 = 0.1 as shown in Table VII. The solid black curves in
(a) and (b) are least square fits to the respective data by the
second order polynomials in Eqs. (105).

comparison to our experimental datum are listed in Ta-
ble VII for the quantum value of S in the QMC simula-
tions and for classical values S = 2 and S = 5/2 in the
CMC simulations, respectively. One sees from the table
that the value of χmaxTmax is very sensitive to the ratio
J2/J1 but that it hardly changes for a given J2/J1 as the
interlayer coupling ratio Jc/J1 is changed over the range
from 0 to 0.1.

Plots of χmaxTmax versus J2/J1 are shown in
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FIG. 28: (Color online) Two fits (Fit 1 and Fit 2, dashed
curves) of the high-temperature magnetic susceptibility χ of
BaMn2As2 from Fig. 7(a) by CMC simulations. The fits are
only valid above TN but are extrapolated to lower tempera-
tures. The fit parameters are given in Table VIII. The tem-
peratures of the breaks in slope of the fits are discernable and
denote the predicted Néel temperatures in Eq. (96) for the re-
spective parameters, which are somewhat above the observed
value.

Figs. 27(a) and 27(b) for S = 2 and S = 5/2, respectively.
The data were fitted by the second-order polynomials

χmaxTmax = 1.012− 1.202

(

J2
J1

)

− 0.2712

(

J2
J1

)2

(105)

χmaxTmax = 1.478− 1.757

(

J2
J1

)

− 0.4146

(

J2
J1

)2

for S = 2 and S = 5/2, respectively, as shown by the
respective solid curves in Fig. 27, where the units of the
fits are cm3 K/mol. The rms deviations of the fits from
the data are 0.005 and 0.010 for S = 2 and S = 5/2,
respectively.
A comparison of the calculated values of χmaxTmax

in Fig. 27 and Eqs. (105) with the observed value
χmaxTmax = 0.80 cm3 K/molMn in Eq. (20) indicates
that the local moment model can reproduce the observed
χmaxTmax value with the following combinations of pa-
rameters

• g = 2, S = 2 and J2/J1 ≈ 0.17

• g = 2, S = 5/2 and J2/J1 ≈ 0.36.

In the J1-J2 model, the G-type AF magnetic structure
that is observed in BaMn2As2 is stable against the stripe
state as long as J2/J1 < 1/2 [Eq. (4)], which is satis-
fied by both of these estimates. We do not have simula-
tion data for precisely these two values of J2/J1. Also,
the parameter set {S, J1, J2, Jc} is underdetermined by
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TABLE VIII: Parameters determined from a fit of magnetic
susceptibility data for BaMn2As2 by classical Monte Carlo
simulations. The value Jc/J1 = 0.1 was chosen to agree
with the inelastic neutron scattering and band theoretical val-
ues which are both close to 0.1. The values of J2/J1 were
fixed at the listed values by comparing the predicted values
of χmax

spinT
max with the experimental values for S closest to

S = 2 and S = 5/2. Then the spin value S was determined
more precisely by fitting the respective CMC simulation to
the experimental value of χmax

spinT
max. Finally J1 was found by

fitting the experimental value of χmax
spin to the theoretical value

for the respective simulation.

Quantity Fit 1 Fit 2

S 2.06 2.64

J1 207 K = 17.8 meV 210 K = 18.1 meV

J2 ≡ 41.4 K = 3.6 meV ≡ 85 K = 7.3 meV

J2/J1 ≡ 0.2 ≡ 0.4

Jc ≡ 21 K = 1.8 meV ≡ 21 K =1.8 meV

Jc/J1 ≡ 0.1 ≡ 0.1

the experimental susceptibility data, so we have to make
choices about some of the parameters when we fit the
experimental data by the available classical Monte Carlo
data. We choose Jc/J1 = 0.1 because this value is in-
dicated both from the neutron scattering fit in Table II
above and from the theoretical results in Table IX below.
For each of the two potential values S = 2 and 5/2, we
use the respective CMC J2/J1 simulation in Table VII
that shows the closest agreement with the experimental
χmax
spinT

max for that spin value, namely

1. Fit 1: J2/J1 = 0.2, Jc/J1 = 0.1, S = 2

2. Fit 2: J2/J1 = 0.4, Jc/J1 = 0.1, S = 5/2.

Next, we have a choice of how to obtain a precise fit to
the magnitude of the experimental data by the simula-
tion data for J2/J1 = 0.2 and 0.4, both with Jc/J1 = 0.1.
We could adjust the g-factor, the orbital contribution to
the susceptiblity, and/or the spin value. At this stage
such changes are just fitting parameters, so we arbitrar-
ily choose to adjust the spin value slightly to obtain a
good numerical fit of the particular simulation to the ex-
perimental value of χmax

spinT
max given in Eq. (20). Then we

fix the value of J1 by substituting the experimental value
of χmax

spin = 0.80 × 10−3 cm3/mol Mn and g = 2 into the

expression χmaxJ1/NAg
2µ2

B and equating that with the
χmaxJ1/Ng2µ2

B value listed in Table VII. The parame-
ters obtained from the two fits are listed in Table VIII.
Remarkably, the value of J1 is not sensitive to the val-
ues of S, J2 or Jc, and a consistent value J1 ≈ 210 K
= 18 meV is obtained for both fits. The two fits are
compared with the experimental data from Fig. 7(a) in
Fig. 28. When plotting the fits, the calculated spin sus-
ceptibility per mole of spins has to be multipled by two
(two atoms of Mn per formula unit) and then added to
the orbital contribution given in Eq. (18). These fits are
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FIG. 29: (Color online) 75As NMR spectra for polycrystalline
BaMn2As2 at different temperatures. The solid red line is a
fit to the spectrum at 4.2 K.

only valid in the paramagnetic regime above TN = 625 K,
but they are extrapolated to lower temperatures. The
quality of the fits to the experimental data is reasonable
for both fits. Thus we cannot distinguish between the
two possibilities S = 2 and S = 5/2 for the Mn spins on
the basis of magnetic susceptibility measurements alone.

XI. 75As NMR MEASUREMENTS AND
ANALYSIS

A. 75As NMR Spectrum

As shown in Fig. 1, each As atom is coupled to four
Mn atoms. Thus through 75As NMR one can probe the
magnetism of the Mn sublattice in BaMn2As2. Figure 29
shows typical 75As NMR spectra in the magnetically or-
dered state at different temperatures T < TN for a poly-
crystalline sample of BaMn2As2. At low temperatures,
along with the most intense central line the spectrum
contains extra shoulder-like features on either side. The
broad linewidth is attributed to the random orientation
of the internal field with respect to the external field in
the powder sample. 75As has an electric quadrupolar mo-
ment that interacts with the local electric field gradient
(EFG) in the crystal giving rise to the splitting of the
NMR line. Thus in principle one should see in the 75As
spectra three allowed transitions: an Iz = − 1

2 ↔ + 1
2

central transition, and two Iz = ± 1
2 ↔ ± 3

2 satellite
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transitions. Therefore in an attempt to fit the experi-
mental spectra taking into account both the EFG and
the isotropic spin shift effects, we find that the spec-
trum at 4.2 K can be fitted reasonably well with iso-
shift Kiso ≃ 0.38%, quadrupolar frequency νQ ≃ 2.1
MHz, width of central peak 0.43 kOe, width of satel-
lite 1.13 kOe, and EFG asymmetry parameter η ≃ 0.0.
The fit is shown as the solid red curve through the data
at 4.2 K in Fig. 29. The value of νQ is comparable to
that reported for BaFe2As2 in the ordered state.59

The linewidth and position were found to be almost
temperature independent. As shown in Ref. 13 from
magnetic neutron diffraction data, the sublattice mag-
netization is nearly saturated at 300 K. Since the NMR
linewidth in the ordered state is a measure of the sub-
lattice magnetization, the independence of the linewidth
over our temperature range is consistent with the neutron
diffraction results.

The internal field at the 75As site can be analyzed by
taking the crystal symmetry into consideration, which
has been adopted in an analysis of the hyperfine field
at the 75As site in BaFe2As2 by Kitagawa et al.59 Ac-
cording to their analysis, for a G-type antiferromagnetic
spin structure the internal field at the 75As site is zero
due to a perfect cancellation of the off-diagonal hyperfine
field produced by four in-plane NN Mn spins when the
spin moments are parallel to the c-axis. Thus the spin
components along this axis do not produce any magnetic
broadening in the 75As NMR spectra. Only the ab-plane
components of the ordered Mn spin can produce an in-
ternal field perpendicular to the c-axis at the 75As site.
On the other hand, for a stripe-type AF spin structure,
a c-axis component of the spin moments produces an in-
ternal field Hint = z′BS along the a-axis, where z′ is the
number of nearest neighbor Mn spins of the 75As site, B
is the off-diagonal hyperfine coupling constant and S is
the Mn spin.

Assuming that the broadening of the NMR spectra
originates from Hint at the 75As site, Hint is estimated
to be ∼ 215 Oe from the spectral width. Using the
ordered moment µ = 3.9 µB/Mn and z′ = 4, the off-
diagonal hyperfine coupling constantB is estimated to be
∼ 14Oe/µB for the case of stripe-type AF order. Such
a small B is of the order of the nuclear-nuclear dipo-
lar field and is not likely due to transferred hyperfine
couplings. For the G-type AF structure, the ab-plane
components can be produced by a canted component of
the Mn spins when the magnetic field is applied perpen-
dicular to the ordered moment axis, i.e., perpendicular
to the c-axis. Using the perpendicular component of
the spin susceptibility χ⊥ = 1.3× 10−3 cm3/mol from
Fig. 7(a) and H = 7.1 T that we used for measurements
of the spectra, the ab-component of the ordered Mn mo-
ment µab is evaluated to be 0.0083 µB/Mn in this field.
Now using Hint = 215 Oe and µab = 0.0083 µB, the
off-diagonal hyperfine coupling constant is calculated to
be B = 6.5 kOe/µB. This value of B is comparable to
B = 4.3 kOe/µB reported in BaFe2As2.

59 Thus our 75As
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FIG. 30: (Color online) Nuclear spin-lattice relaxation rate
(1/T1) measured at the 75As site versus temperature T . The
solid and dashed lines represent T 3 and T 5 behaviors, respec-
tively. The slope of the former line fitted to the 50–300 K
data is 2.51 × 10−6 s−1K−3. Inset: (T1T )−1 versus T .

NMR spectra observed in the AF ordered state are con-
sistent with the G-type AF structure reported from the
neutron experiment.13

B. Nuclear Spin-Lattice Relaxation Rate

The longitudinal nuclear magnetization recovery curve
following saturation was fitted by the double exponential
function60

1− M(t)

M(∞)
= 0.1 e−t/T1 + 0.9 e−6t/T1,

as expected for the center line of the spectrum of the
75As nuclear spin I = 3

2 , where 1/T1 is the 75As nuclear
spin-lattice relaxation rate and M(t) and M(∞) are the
nuclear magnetization at time t after saturation and the
equilibrium nuclear magnetization at time t = ∞, respec-
tively. The extracted 1/T1 as a function of temperature
is shown in Fig. 30, where 1/T1 is seen to increase rapidly
with increasing temperature. In the AF state, this rapid
increase in 1/T1 with T is a clear signature of relaxation
due to scattering of magnons by the nuclear spins. Ac-
cording to Beeman and Pincus,61 in the AF state for mag-
netic insulators, 1/T1 is mainly driven by such magnon
processes, leading to a power law T -dependence.61–63 For
T ≫ ∆/kB, where ∆ is the anisotropy gap in the spin-
wave spectrum, it either follows a T 3 behavior due to a
two-magnon Raman process or a T 5 behaviour due to a
three-magnon process, while for T ≪ ∆/kB, it follows a
thermally activated behaviour 1/T1 ∝ T 2e−∆/kBT . As
seen from Fig. 30, our 75As 1/T1 data in the T -range
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50 ≤ T ≤ 300 K follow a T 3 behavior rather than a
T 5 behavior indicating that the relaxation is mainly gov-
erned by the two-magnon Raman process. A T 3 fit over
this T range yields

1

T1
= (2.51× 10−6 s−1K−3)T 3, (106)

as shown in Fig. 30. The lack of activated behavior down
to 50 K indicates that ∆/kB is smaller than 50 K.
For the two-magnon process, 1/T1 is determined by the

slopes of the spin wave dispersion relations at ω ∼ 0 and
thus by the spin wave velocities. The spin wave veloci-
ties within the ab-plane and along the c-axis in terms of
the exchange constants in the J1-J2-Jc Heisenberg model
are given above in Eqs. (9). Since the spin wave veloc-
ity depends on the direction of propagation, 1/T1 should
also depend on the spin wave direction. Based on the
1/T1 expression for the two-magnon process reported by
Beeman and Pincus,61 we have calculated the 1/T1 for
BaMn2As2 with the body-centered-tetragonal structure
(I4/mmm) arising from the two spin wave velocities as

(

1

T1

)−1

i

=

(

A

h̄

)2
4z′zh̄ sin2 θ

(2π)3
(kBT )

3 (a2c)2

(h̄vi)4α2

×
∫ ∞

∆/kBT

x

ex − 1
dx, (107)

where z′ = 4 is the number of Mn nearest neighbors to
a given 75As site (see Fig. 1), z = 4 is the number of
nearest-neighbor Mn spins interacting with a given Mn
spin, i = ab with α = a or i = c with α = c, and θ
denotes the angle between the local hyperfine field at the
75As site and the anisotropy axis (c-axis) which is the
Mn ordered moment axis. We also have

A

h̄
= γngµBAhf ,

where g is the electronic g-factor, Ahf is the hyperfine
coupling constant and γn is the 75As nuclear gyromag-
netic ratio given by 75γn/2π = 7.2919 MHz/T. Using
g = 2 and Ahf = 6.5 kOe/µB that was estimated from
the spectrum analysis, one obtains

A

h̄
= 6.0× 107 s−1. (108)

For T ≫ ∆/kB as in our temperature range 50–300 K
where 1/T1 ∝ T 3, the integral in Eq. (107) approaches
its maximum value π2/6, so Eq. (107) reduces to

(

1

T1

)−1

ab

=

(

A

h̄

)2
z′zh̄a2c2k3B sin2 θ

12π(h̄vab)4
T 3. (109)

(

1

T1

)−1

c

=

(

A

h̄

)2
z′zh̄a4k3B sin2 θ

12π(h̄vc)4
T 3 (110)

≡ Cab or c T
3.

The ratio Rab/c of the relaxation rates for ab-plane and c-
axis spin waves should be independent of T . If we assume

that the hyperfine coupling A of the electronic spins to
the nuclear spins is isotropic, then Rab/c obtained using
Eqs. (9), (109) and (110) is given by

Rab/c =
(1/T1)ab
(1/T1)c

=
( c

a

)2
(

vc
vab

)4

(111)

=
1

4

( c

a

)6
[

(Jc/J1)(1 + Jc/2J1)

(1 − 2J2/J1)(1 + Jc/2J1)

]2

.

Taking a = 4.15 and c = 13.41 Å for the lattice parame-
ters at 8 K,13 and J2/J1 = 0.29 and Jc/J1 = 0.09 from
the neutron scattering fit in Table II, Eqs. (111) yield

Rab/c = 13. (112)

Thus the nuclear spin-lattice relaxation rate due to spin
waves traveling in the ab-plane is much larger than that
due to c-axis spin waves and we will therefore assume
that Eq. (109) gives the observed 1/T1 to a good approx-
imation.
Since Ahf was estimated in Eq. (108), one can obtain

information on the exchange constants from the coeffi-
cient of the T 3 fit in Eq. (106). Inserting h̄vab from
Eqs. (9) into (109) gives

(

J1
kB

)4

=
1

Cab

(

A

h̄

)2
( c

a

)2 z′zh̄〈sin2 θ〉
192πkBS4

(113)

×
[(

1− 2J2
J1

)(

1 +
Jc
2J1

)]−2

.

Our single fit parameter Cab in Eq. (106) can only be
used to determine a single exchange constant or a sin-
gle combination of them. We therefore estimate J1 using
the above values J2/J1 = 0.29 and Jc/J1 = 0.09 de-
rived from our inelastic neutron scattering experiments.
In Eq. (113), we also use z′ = 4, z = 4, we take S to be
the ordered spin 〈S〉 = 2 (from magnetic neutron diffrac-
tion experiments),13 and 〈sin2 θ〉 = (1/2)

∫ π

0 sin3 θ dθ =
2/3 (i.e. considering an average over all angles). Using
Eq. (113), we then obtain

J1
kB

= 160 K (S ≡ 2) (114)

J1 = 14 meV.

This value is close to the value J1 = 16 meV estimated
in Table II for S = 2 from our neutron scattering data.
If we take the spin to be S = 5/2, the value of J1 from
Eq. (113) would be a factor of (5/4)4 = 2.4 times smaller.
The overall temperature dependence of 1/T1 in

BaMn2As2 in Fig. 30 is similar to that reported for
KMnF3.

64 In KMnF3, a deviation from power law behav-
ior was observed at low temperatures and 1/T1 shows a
broad maximum. This broad feature at low temperature
was attributed to the effects of defects or extrinsic im-
purities. Thus in BaMn2As2, the deviation of the data
below 50 K from the higher-temperature T 3 fit in Fig. 30
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FIG. 31: (Color online) Total energy E of a system when the
the polar angle θij between two local magnetic moments i
and j is varied in band theory. The energies of the ferromag-
netic EFM and antiferromagnetic EAF magnetic structures
and their difference are indicated. Here the antiferromagnetic
state is the ground state. For a ferromagnetic ground state,
the minimum in energy would be at θij = 0.

is likely due to relaxation associated with defects and/or
extrinsic impurities.
For a metallic system, one would expect a Korringa-

like behaviour [(T1T )
−1 = constant] as has been observed

in (Ba,Ca)Fe2As2 (Refs. 59, 65, 66) and RFeAsO1−xFx

(R = La, Pr) (Refs. 67, 68) in the paramagnetic state.
In these compounds, (T1T )

−1 is also constant at low
temperature below TN due to their metallic character
and increases sharply near TN. In contrast, (T1T )

−1

in BaMn2As2 (inset of Fig. 30) shows a gradual in-
crease with increasing temperature signifying the insu-
lating ground state of the compound.

XII. BAND-THEORETICAL ESTIMATES OF
THE EXCHANGE COUPLINGS

The quantitative analysis of the magnetic interactions
in real magnets is based mostly on density functional
theory. To a large extent this theory is very similar
to the Fermi-liquid theory of Landau, however, strictly
speaking, it allows to obtain only the total energy of the
ground state, the distribution of charge and spin densi-
ties, and other quantities that can be directly determined
by these. Several notable exceptions (Mott insulators,
rare earth systems, systems near quantum critical points)
have been revealed but currently it is believed that for
magnets of the Fe group the accuracy of the commonly
used local density approximation (LDA) is acceptable for
the description of the ground state properties including
the equilibrium magnetic moments at T = 0 K.
While the numerical agreement between experimental

and theoretical magnetic moments is often very good,
there are certain cases when the local approximation

numerically violates quantum mechanical laws. For in-
stance, even in insulating systems or magnetic molecules
where the total magnetic moment is close to an integer
number of Bohr magnetons, the value obtained from den-
sity functional theory is usually not an integer. This dis-
crepancy is related to the fact that the wave function of
the density functional method is often not an eigenfunc-
tion of the square of total spin (even without relativistic
effects). This effect of ‘spin contamination’ usually can-
not be eliminated or easily resolved. While non-integer
values of the moment in metallic systems are traditionally
explained by itineracy of the system and partial occupa-
tion numbers, the problematic issue of whether or not S2

is an integral of the motion is usually ignored with the
hope that such errors are small. The relationship between
the single-particle spectrum obtained in the density func-
tional theory and the physical properties of the magnetic
excitations is not clearly defined. Nevertheless, the re-
search of the last 20–25 years revealed that LDA often
provides good agreement between theory and experiment
for the magnetic excitation spectra if the ground state is
properly described.
The description of the intersite magnetic interactions

represents a typical problem within the topic of magnetic
excitations. By itself, the determination of a pairwise ex-
change parameter Jij between atoms i and j in an arbi-
trary magnetic material is not well-posed. For instance,
in very itinerant systems the effective spin Hamiltonian
can have very non-Heisenberg behavior. However, from
the phenomenological theory of ferromagnetism69,70 the
energy of any weak and smooth variation of spin den-
sity can be described by the effective classical Heisenberg
Hamiltonian for equivalent classical spins Si and Sj with
magnitudes Si = Sj ≡ S given by

E =
∑

〈ij〉

JijSi · Sj = S2
∑

〈ij〉

Jij cos θij . (115)

Traditionally, a set {Jij} of exchange coupling con-
stants in the density functional theory can be calculated
using two approaches. In the first approach, using the ef-
fective Heisenberg model (115) one can solve for the Jij
from the set {Fαβ(Jij)} of equations for the differences
of the energies between different magnetic structures α
and β

Fαβ(Jij) =
Eα{Jij} − Eβ{Jij}

2S2
(116)

obtained from band structure calculations as shown in
Fig. 31. This is the usual way to obtain {Jij} for highly
localized magnetic insulators and is usually the most suit-
able method for the calculation of magnetic phase tran-
sition temperatures.
Another approach is based on the definition of Jij as

the second derivative of the total energy in Eq. (115)
with respect to rotation of moments from their magnetic
alignment in a given magnetically ordered ground state

Jij = − 1

S2

∂2E

∂θ2ij
, (117)
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TABLE IX: Parameters of BaMn2As2 with NN (J1), NNN (J2) and interlayer (Jc) exchange interactions obtained from density
functional theory. Here S is the calculated spin, E is the total energy per Mn atom, FM means ferromagnetic structure and
G-type AF structure is the Néel (checkerboard) antiferromagnetic structure with an in-plane structure shown in the top panel of
Fig. 2. The two stripe structures have the in-plane antiferromangetic structure shown in the bottom panel of Fig. 2, where the
Stripe-AF structure has AF stacking and the Stripe-FM structure has FM stacking along the c-axis. The estimated exchange
constants J in rows 5 and 6 are calculated from Eqs. (119)–(121) using the total energy values in column 4. Our exchange
constants using the LDA and GGA in the last two rows were calculated from the excitation energies from the magnetically
ordered ground state. In the reference (Ref.) column, “PW” means “present work”.

Magnetic µ S E/Mn 2J1 + Jc Jc J1 J2 Jc/J1 J2/J1 Ref.

Structure (µB/Mn) (meV) (meV) (meV) (meV) (meV)

FM 2.74 1.37 −330 12

G-type AF 3.20 1.60 −660 12

Stripe-AF ≡ 3.20 ≡ 1.60 −515 12

Stripe-FM ≡ 3.20 ≡ 1.60 −505 12

41.0a 2.0a 19.5a −5.4a 0.10a −0.28a 12, PW

28.5b 1.2b 13.7b −2.5b 0.09b −0.18b 12, PW

FM (LDA) 2.8 1.4 ≈ 0 −9.1 −2.2 PW

FM (GGA) 3.0 1.5 PW

G-type AF (LDA) 3.3 1.65 27.2 1.03 13.1 2.8 0.08 0.21 PW

G-type AF (GGA) 3.6 1.8 26.2 1.0 12.6 2.7 0.08 0.21 PW

aCalculated using Eqs. (119)–(121) as written.
bCalculated by replacing S2 by S(S + 1) in Eqs. (119)–(121).

which is proportional to the curvature of the total en-
ergy E versus angle θij near the minimum for an anti-
ferromagnet at θij = 180◦ in Fig. 31. This definition of
Jij corresponds to a linear response scheme and is usu-
ally the most suitable technique for the analysis of the
excitations above the ground state (spin waves) and is
directly related to the dynamical magnetic susceptibil-
ity measured in inelastic neutron scattering experiments.
The procedure for evaluating Eq. (117) depends on the
band structure methods and specifics of linear response
method employed. This technique has been used for
many magnetic materials in the past.71 This approach
can be understood as a static limit of the dynamic linear
response technique which has been used for calculations
of spin waves and Stoner excitation spectra in magnets.
One can analytically obtain an expression for the on-
site stability parameter J0 which should be the same as
∑

Jij . A comparison of J0 and
∑

Jij is a check on the
consistency of the calculations and the reliability of the
numerical scheme.
We first consider the exchange constants obtained from

total energy differences and then in the subsequent sec-
tion from the energy of excitations from the magnetically
ordered ground state.

A. Exchange Interactions from Total Energy
Calculations

Using density functional theory in the LDA, An et al.
correctly deduced from total energy calculations, prior
to the availability of the experimental results, that the

G-type antiferromagnetic structure of BaMn2As2 has a
lower energy than either the FM structure or of two types
of stripe structure.12 Their predicted ordered moment for
the G-type AF structure was µ = 3.20 µB/Mn, somewhat
smaller than the value of µ = 3.9(1) µB/Mn observed
later.13 Their LDA total energies and ordered moments
for the FM and G-type AF structures are listed in Ta-
ble IX, together with their total energies of two com-
mensurate collinear stripe states with the in-plane stripe
structure shown in the bottom panel of Fig. 2.12 The
Stripe-AF structure has AF alignment of the ordered mo-
ments along the c-axis, whereas the Stripe-FM structure
has FM alignment along the c-axis. As seen in Table IX,
the ordered moment µ of the Mn in the FM structure is
not the same as the value of µ in the G-type AF struc-
ture.
From the LDA total energies and ordered moments cal-

culated by An et al.12 for the magnetic structures listed
in Table IX, one can obtain estimates of the exchange
couplings in BaMn2As2 using the value for the spin S
obtained from the ordered moment µ as

S =
µ

gµB
=

µ

2µB

with g = 2. The classical energies per spin of the mag-
netic structures in Table IX obtained using Eqs. (3) and
Fig. 2 are

EFM = S2
FM(2J1 + Jc + 2J2) (118)

EG = S2
G(−2J1 − Jc + 2J2)

EStripeAF = S2
G(Jc − 2J2)

EStripeFM = S2
G(−Jc − 2J2).
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We have taken the Mn spin in the two stripe phases to
be the same as in the G-type AF structure, since they
were not given by An et al. Because the total energy
contains a constant term proportional to the square of the
magnetization, we solve for the exchange constants using
only differences between these total energies according to
Eq. (116). From the last two expressions in Eqs. (118)
we obtain

Jc =
1

2S2
G

(EStripeFM − EStripeAF). (119)

From the first two expressions in Eqs. (118) we obtain

2J1 + Jc =
1

2

(

EFM

S2
FM

− EG

S2
G

)

. (120)

Thus Eqs. (119) and (120) determine the two exchange
constants J1 and Jc. Then from the second and fourth
of Eqs. (118) we solve for J2 according to

J2 =
J1
2

− EStripeFM − EG

4S2
G

. (121)

It is not clear whether to retain S2 or to insert the
quantum mechanical expectation value S(S + 1) of 〈S2〉
in place of S2 in Eqs. (119)–(121), so we calculate two sets
of exchange parameters based on these two assumptions,
which are given in Table IX. Using the second assump-
tion, the values of Jc and J1 are respectively about the
same as the values in Table II deduced from our inelastic
neutron scattering experiments, but J2 has the opposite
sign in the theory and experiment.
We studied the properties of BaMn2As2 using den-

sity functional calculations of the electronic structure and
magnetic interactions in the FM and G-type AF struc-
tures. For consistency, we used the experimental values
of the lattice parameters a = 4.15 Å and c = 13.47 Å
and the theoretically optimized value of the internal As
parameter zAs = 0.3524 utilized by An et al.12 Our elec-
tronic structure calculations were performed using the
recently developed full-potential linear muffin tin orbital
program.72 The accuracy of the exchange couplings ob-
tained is about 2–3%. The studies of the exchange cou-
plings were done using the static linear response tech-
nique described in Refs. 73 and 74.
Our results using LDA and the generalized gradient

approximation (GGA) are very similar to those reported
by An et al.12 We find that that BaMn2As2 has a rela-
tively large ordered moment in the G-type AF structure
with µ = 3.3µB/Mn in LDA and 3.6µB/Mn in GGA, as
listed in Table IX, with a small band gap (0.15 eV) in the
electronic spectrum as observed, and with the G-type AF
ordering having the lowest energy among all considered
magnetic structures. The ferromagnetic structure has no
charge gap, i.e., the compound would be metallic. Our
total energy EFM − EG differences were 350 meV/Mn
(LDA) and 375 meV/Mn (GGA), which are similar to
the values of 330 meV/Mn and 380 meV/Mn obtained in
Ref. 12, respectively.

While the magnetic moments are relatively large, they
show a significant dependence on the magnetic structure,
in agreement with the results of Ref. 12. For instance,
the ferromagnetically ordered BaMn2As2 has an ordered
moment of 2.8 µB/Mn in LDA and 3.0 µB/Mn in GGA,
which deviate from the corresponding values for G-type
AF ordering (Table IX) by about 20%. Due to this rel-
atively strong dependence of the ordered magnetic mo-
ment on the magnetic structure, estimates of exchange
couplings from total energy calculations should be used
with caution.

B. Exchange Interactions from Excitations from
the Magnetically Ordered Ground State

For comparison with the exchange constants deduced
from inelastic magnetic neutron scattering experiments,
calculations using the linear response technique71 are
preferable to the total energy technique, as noted above.
Our calculations of the parameters of the Heisenberg
model are: J1 = 13.1 meV, J2 = 2.8 meV, Jc = 1.03 meV
(LDA) and J1 = 12.6 meV, J2 = 2.7 meV, Jc = 1.0 meV
(GGA), as summarized in Table IX. These values are
quite comparable with the values deduced from our in-
elastic neutron scattering measurements in Table II, and
roughly similar to those in Table IV obtained from molec-
ular field analysis of our magnetic susceptibility data in
Fig. 7.
The G-type AF ordering temperatures obtained from

our spin value and exchange parameters in Table IX using
the molecular field expression (41) are

TN = 730 K (G type AF, LDA) (122)

TN = 810 K. (G type AF, GGA)

These mean-field Néel temperatures are somewhat larger
than the observed value of 625 K, as expected, and indeed
are approaching the temperature of the maximum of the
measured susceptibility in Fig. 7(a) which from Table VII
is of order the mean-field transition temperature.
The other longer-range pair exchange parameters ap-

pear to be much smaller, suggesting very short-ranged
exchange interactions in this material. In particular, the
difference between the above parameter J0 and

∑

Jij
over six NN and four NNN is only about 5%, suggesting
very short-ranged exchange interactions in BaMn2As2.
This is different from the corresponding results for many
Fe pnictides, where the exchanges with further neighbors
are not so small and definitely provide a finite contri-
bution to the spin wave spectrum.75 We attribute this
difference to the metallic character of the Fe pnictides
and the semiconducting character of BaMn2As2.
To check the dependence of {Jij} on the type of mag-

netic order we also performed linear response calculations
of the {Jij} for the FM phase. The stability parameter
J0 for this phase appears to be negative confirming the
instability of such order with respect to the deviation
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of a single spin from the ordered moment direction (i.e.,
from θij = 0). This directly supports the qualitative
behavior of the total energy versus θij in Fig. 31. The
pair exchanges in this phase are J1 = −9.1 meV and
J2 = −2.2 meV with a very weak coupling along the z-
direction, which are compared in Table IX with the other
exchange constant values discussed above. These results
indicate that not only the ordered moments are different
in the different magnetic phases, but the exchange cou-
pling parameters depend on the type of magnetic order
even in materials with a relatively large (3–4µB) mag-
netic moment.
Overall the localized Heisenberg model with four NN

interactions J1 and four NNN interactions J2 in the ab-
plane and two NN interactions Jc along the c-axis is suf-
ficient to theoretically describe the magnetic properties
of BaMn2As2 quite well.

XIII. ORDERED MOMENT IN THE J1-J2-Jc

HEISENBERG MODEL FROM SPIN WAVE
THEORY

As previously noted, an ionic picture suggests that the
spin of the Mn2+ ion in BaMn2As2 is S = 5/2, yielding
for g = 2 an ordered moment of

〈µ〉 = gSµB = 5 µB . (123)

On the other hand, the observed ordered moment

〈µ〉 = g〈S〉µB (124)

is only 3.9(1) µB/Mn (Ref. 13) implying a substantial
spin reduction 〈S〉. In view of the sizable frustrating
AF next-nearest-neighbor exchange J2 discussed above,
it is natural to ascribe the moment reduction to enhanced
quantum fluctuations. In the following, we shall use
the conventional spin-wave theory to examine the quan-
tum spin reduction for the layered J1-J2-Jc square-lattice
Heisenberg antiferromagnet.
The spin-wave theory provides an expansion of the sub-

lattice magnetization in powers of 1/S:

S − 〈S〉 = n0 +
n1

2S
+

n2

(2S)2
+ . . . , (125)

where the leading correction n0 is determined by non-
interacting spin waves, while higher order corrections
nk≥1 come from magnon interactions. For the nearest-
neighbor square-lattice Heisenberg antiferromagnet the
two versions of the spin-wave expansion based either on
the Dyson-Maleyev76 or the Holstein-Primakoff77 repre-
sentation of spin operators yield identical results: n0 =
0.19660, n1 ≡ 0, and n2 = −0.0035, such that the se-
ries (125) rapidly converges and compares extremely well
with existing numerical results.
Chandra and Doucot78 used the harmonic spin-wave

theory to investigate the quantum renormalization of

ordered moments for the next-nearest-neighbor J1-J2
square lattice Heisenberg antiferromagnet. They found
that the leading order correction n0 diverges as J2 →
J1/2 due to a softening of the excitation spectrum seen
in the first of Eqs. (13) above. This fact is considered
as an indication of a quantum spin-liquid state around
the strongly frustrated point J2 = J1/2. Subsequently,
Chakravarty, Halperin, and Nelson79 calculated the next-
order correction n1, which becomes finite for J2 6= 0, has
an opposite sign compared to n0, and also diverges at
J2 = J1/2. Below, we extend the results of Chakravarty
et al. to a finite coupling between frustrated antiferro-
magnetic layers. Comparison of two consecutive terms
in the series (125) is necessary to judge the accuracy of
the spin-wave expansion for large J2.
In the spin-wave calculations for the J1-J2-Jc model (2)

with H = 0 we use a single-rotating-sublattice basis80

for the Néel structure with Q = (π, π, π) and apply the
Holstein-Primakoff transformation for spin operators ex-
panded to first-order in 1/S. The quantum reduction of
ordered moments in the harmonic approximation is given
by an integral over the paramagnetic Brillouin zone

n0 = −1

2
+

1

N

∑

k

Ak

2ωk

, (126)

where N is the number of spins,

Ak = 1− j2(1− γ2k) +
1

2
jc , (127)

Bk = γ1k +
1

2
jc cos kz , ωk =

√

A2
k −B2

k

with j2 = J2/J1, jc = Jc/J1, where h̄ωk is the magnon
energy in units of 4J1S, and

γ1k =
1

2
(cos kx + cos ky) , γ2k = cos kx cos ky . (128)

Here the positive x and y-directions are defined to be
in the directions of the a and b primitive square-lattice
translation vectors, respectively, the positive z-direction
is perpendicular to the layers in the direction of the c

lattice translation vector, and we have set a = b = c = 1.
To treat the effect of magnon interaction one needs to

introduce various Hartree-Fock averages of the bosonic
operators compatible with the harmonic spectrum. For
the present model this procedure yields in addition to n0

in Eq. (126) three other integrals:

m =
1

N

∑

k

Akγ2k
2ωk

, ∆1 =
1

N

∑

k

Bkγ1k
2ωk

,

∆2 =
1

N

∑

k

Bk cos kz
2ωk

. (129)

Then, the leading nonlinear correction to the sublattice
magnetization in Eq. (125) is expressed as
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n1 =
1

N

∑

k

Bk

ω3
k

[

j2(m−∆1)γ1k(1− γ2k) +
1

2
j2jc(m−∆2)(1− γ2k) cos kz +

1

2
jc(∆1 −∆2)(γ1k − cos kz)

]

. (130)

TABLE X: The first-order and the second-order corrections,
Eq. (125), to the ordered moment in the J1-J2-Jc stacked
square-lattice Heisenberg antiferromagnet.

Jc = 0 Jc = 0.05 Jc = 0.1

J2/J1 n0 n1 n0 n1 n0 n1

0.00 0.1966 0.0000 0.1427 0.0087 0.1260 0.0088

0.05 0.2124 −0.0047 0.1529 0.0071 0.1347 0.0075

0.10 0.2312 −0.0117 0.1648 0.0045 0.1447 0.0055

0.15 0.2542 −0.0227 0.1790 0.0003 0.1566 0.0024

0.20 0.2828 −0.0405 0.1963 −0.0065 0.1709 −0.0028

0.25 0.3198 −0.0710 0.2177 −0.0182 0.1885 −0.0115

0.30 0.3698 −0.1278 0.2455 −0.0392 0.2111 −0.0270

0.35 0.4423 −0.2485 0.2832 −0.0809 0.2414 −0.0573

0.40 0.5605 −0.5691 0.3389 −0.1784 0.2853 −0.1264

0.45 0.8074 −1.9842 0.4354 −0.5045 0.3594 −0.3483

0.49 1.6005 −23.899 0.6257 −2.6777 0.5008 −1.7482

For vanishing interlayer coupling Jc = 0, Eq. (130) be-
comes

n1 = j2

[ 1

N

∑

k

γ2
1k(1− γ2k)

ω3
k

][ 1

N

∑

k

Akγ2k − γ2
1k

2ωk

]

ωk =
√

A2
k − γ2

1k , (Jc = 0) (131)

as in Eq. (A3) of Chakravarty et al.79 To obtain Eq. (131)
we replaced the factor (m−∆1) in Eq. (130) by its inte-
gral representation from Eqs. (129) and Bk by γ1k from
Eqs. (127), and set jc = 0 in A

k
.

Numerical values of n0 and n1 for a range of ratios
J2/J1 = 0 to 0.49 and for Jc/J1 = 0, 0.05 and 0.1
are listed in Table X. These allow one to compute
the spin reduction S − 〈S〉 for any value of S. The
spin reduction for S = 5/2 is plotted in Fig. 32 for
Jc/J2 = 0 and 0.1. Three-dimensional effects generally
suppress quantum fluctuations, as seen in a comparison
of Figs. 32(a) and 32(b), and extend the validity of the
spin-wave expansion (125) to somewhat larger values of
J2/J1 ∼ 0.44, although the series remain divergent at
J2/J1 ∼ 0.5.
The above fits to our experimental neutron scatter-

ing and magnetic susceptibility results for BaMn2As2
and the band theoretical estimates of the exchange pa-
rameters in this compound yielded Jc/J1 ≈ 0.1 and
J2/J1 = 0.2–0.4. According to the second-order cal-
culations in Fig. 32(b), together with Eq. (124) with
g = 2, this parameter regime predicts an ordered mo-
ment reduction of ≈ 0.34–0.52 µB/Mn due to quan-
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FIG. 32: (Color online) Reduction S−〈S〉 in the ordered spin
〈S〉 from its value S in the absence of quantum fluctuations
versus J2/J1 according to linear spin wave theory to first order
(solid curves) and second order (filled circles) in 1/S for (a)
Jc = 0 and (b) Jc/J1 = 0.1.

tum fluctuations.81 This result appears to rule out the
possibility that the spin of the Mn is S = 2 because
the ordered moment would then be a maximum of ∼
3.66 µB/Mn for g = 2, which is significantly smaller
than the observed value13 of 3.9(1) µB/Mn. On the other
hand, if S = 5/2, then the corresponding predicted or-
dered moment is <∼ 4.66 µB/Mn, which is too large com-
pared to the observed value.

It seems likely that charge and/or magnetic moment
amplitude fluctuations which arise from both on-site and
intersite interactions, can account for the additional re-
duction needed to reach agreement with the observed or-
dered moment for a Mn spin S = 5/2. For example, the
ordered moments of the Mn atoms are 3.50(4) µB/Mn in
Sr2Mn3As2O2,

14,15 4.15(3) µB/Mn in La2Mn2Se2O3,
82
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and 4.04(8) µB/Mn in Ba2MnMoO6,
83 all containing

Mn+2 ions with nominal spin S = 5/2. Such reductions
are often attributed to covalency. On the other hand, for
the more ionic compound MnF2, the ordered moment of
4.82 µB/Mn+2 is much closer to the value of 5 µB/Mn
expected for S = 5/2 with g = 2,84 consistent with ex-
pectation.

XIV. SUMMARY AND CONCLUSIONS

Our anisotropic magnetic susceptibility χ versus tem-
perature T measurements from 300 to 1000 K of sin-
gle crystals of BaMn2As2 yielded the Néel temperature
TN = 618(3) K, close to the value of 625(1) K previously
determined from neutron diffraction measurements on a
polycrystalline sample.13 The χ(T ) above TN is nearly
isotropic, indicating that single-ion anisotropy effects are
small and that a Heisenberg model for the spin interac-
tions is appropriate. Below TN, the χ becomes strongly
anisotropic, with χ⊥ nearly independent of T and χ‖

dropping nearly to zero for T → 0, which corresponds
qualitatively to the textbook behavior for collinear an-
tiferromagnets in molecular field theory (MFT). How-
ever, the temperature dependence of χ above TN con-
tinues to increase, rather than decrease as expected
from MFT, indicating the presence of strong short-range
AF order above TN. Such short-range AF order above
TN is expected for a quasi-two-dimensional spin lattice
as in BaMn2As2. Magnetic inelastic neutron scatter-
ing measurements were carried out on a polycrystalline
BaMn2As2 sample at 8 K with momentum transfers up
to 6 Å−1 and energy transfers up to 140 meV. These
data allow estimates of the magnetic exchange interac-
tions in this compound to be made using appropriate
models. We also report 75As NMR measurements in the
antiferromagnetically ordered state of a polycrystalline
BaMn2As2 sample from 4 to 300 K. The nuclear spin-
lattice relaxation rate is found to obey the power law de-
pendence 1/T1 ∝ T 3 from 50 to 300 K which we interpret
in terms of the exchange interactions in this compound.
We developed various theories for the J1-J2-Jc Heisen-

berg model in order to model our experimental data
and extract values of the exchange constants between
Mn spins and the value of the spin. Our inelastic neu-
tron scattering measurements indicate that this is the
minimal model needed to understand these data. For
G-type antiferromagnetic ordering shown for the square
spin lattice in the top panel of Fig. 2, and where the c-
axis alignment is also antiferromagnetic, linear spin wave
theory at T ≪ TN was used to calculate the magnon
dispersion relations in Sec. IVA1. The in-plane spin
waves soften as J2 increases, and become unstable for
J2 ≥ J1/2, signaling a phase transition to the in-plane
stripe state shown in the bottom panel of Fig. 2. Thus
the G-type AF ordered state requires J2 < J1/2. This
theory is used in Sec. IVB to fit our inelastic magnetic
neutron scattering data at 8 K, a temperature far below

the Néel temperature of ≈ 625 K, and obtain estimates
of SJ1, SJ2 and SJc for BaMn2As2, where S is the spin
on the Mn atoms that is not determined separately in
the spin wave fit to the data. From the ordered mo-
ment µ = 3.9(1) µB = gSµB, one would estimate S = 2
for g = 2. On the other hand for the d5 ion Mn+2 one
would estimate a high-spin S = 5/2. In Sec. VIII B 1
we also calculated the spin wave contribution to the low-
temperature heat capacity for comparison in Sec. VIII B 2
with our previously published11 experimental heat capac-
ity data for a single crystal of BaMn2As2. We also used
spin wave theory to extend the nuclear spin-lattice re-
laxation rate 1/T1 calculations of Beeman and Pincus
for the isotropic cubic Heisenberg spin lattice61 to the
J1-J2-Jc model. We obtained Eqs. (109) and (110) that
were used to analyze the fit to our 75As 1/T1 NMR data
with 1/T1 ∝ T 3 from 50 to 300 K for BaMn2As2.

A molecular field theory (MFT) treatment of the J1-
J2-Jc Heisenberg model was described in Sec. VII. In the
paramagnetic state the system follows the Curie-Weiss
law C/(T + θ) for T ≥ θ, which has the same form as
described in many textbooks for the J1-only model. The
ratio f of the Weiss temperature θ to TN, f = θ/TN, is
found to be f = 1 for J2 = 0, as expected for a bipartite
spin lattice, but is f > 1 for frustrating AF J2 > 0 and
is f < 1 for nonfrustrating reinforcing FM J2 < 0, which
are intrasublattice interactions so the spin lattice is no
longer bipartite. Thus for J2 > 0, the Curie-Weiss law
continues to be followed below T = θ down to T = TN, a
characteristic already noted by Ramirez for geometrically
frustrated antiferromagnets.35 As shown in Fig. 8, we find
that χ‖(T ) for T < TN strongly depends on J2, whereas
χ⊥ is independent of T and J2 at T < TN, apart from
the implicit influence of J2 on TN. We further find that
the staggered moment and the magnetic heat capacity
versus T/TN at T < TN are also independent of J2, again
apart from the implicit influence of J2 on TN.

We carried out quantum (QMC) and classical Monte
Carlo (CMC) simulations of both χ(T ) and the magnetic
heat capacity Cmag(T ) in H = 0 versus Jc/J1 and J2/J1.
Most of the QMC simulations were for J2 = 0 due to
severe negative sign problems when J2 was taken to be
positive, which is antiferromagnetic and frustrating for
G-type AF order. When we replaced the square of the
spin, S2, in the CMC simulations by the quantum me-
chanical expectation value S(S + 1), the QMC simula-
tions for J2 = 0 for increasing S merged smoothly with
the CMC simulation (which corresponds to S → ∞) as
shown in Fig. 23, so we used the CMC simulations to
fit the experimental χ(T ) data for T > TN. The CMC
simulations of Cmag(T ) as a function of Jc showed AF
phase transitions at temperatures TN that increased with
Jc > 0 but decreased with J2 > 0, as shown in Fig. 22.
The TN(Jc, J2) data are well-fitted by Eq. (96).

We also carried out band theoretical estimates of the
exchange couplings in BaMn2As2. There are two generic
ways to do this. The first is to take the differences be-
tween the total energies for different spin configurations
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such as in Eqs. (119–121), where the lowest energy spin
configuration is the ground state. This method is of-
ten used to determine exchange constants to be used in
the calculation of magnetic transition temperatures and
yields the exchange constants in rows 5 and 6 of Ta-
ble IX which will not be further discussed. The second
is to measure the change in the total energy due to small
deviations of the spin directions from the magnetically
ordered ground state via Eq. (117), which gives the ex-
change values in rows 9 and 10 of Table IX. These values
are considered to be more reliable for comparison with
values extracted from inelastic neutron scattering exper-
iments.

Our exchange constants from the MFT fit to our
anisotropic χ(T ) data for BaMn2As2 below TN in Fig. 28
and Table VIII are probably not reliable because that fit
assumes that χ(T ) follows the Curie-Weiss law above TN

(i.e., that there are no two-spin AF correlations stronger
than 1/T above TN), which is strongly violated by the
data in Fig. 7(a). Similarly, although our fits by MFT
to the ordered moment µ̄z(T ) from neutron diffraction
measurements13 on BaMn2As2 in Fig. 14 and to the heat
capacity Cp(T ) (Ref. 11) in Fig. 15 are reasonable, they
are not sufficient to distinguish between the possible spins
S = 2 and S = 5/2 discussed above. Furthermore, the
fit to the Cp(T ) data near room temperature by the sum
of the Debye lattice heat capacity and the MFT pre-
diction of the magnetic heat capacity indicated that the
measured magnetic heat capacity is too low. This dis-
crepancy suggests the presence of strong AF fluctuations
above TN that reduce the magnetic entropy and magnetic
heat capacity below TN, consistent with the behavior of
the magnetic susceptibility above TN in Fig. 28. The cal-
culated T 3 contribution to the heat capacity at low tem-
peratures from spin waves, without an anisotropy gap in
the spin wave spectrum, is about 40% of the measured
value. However, an anisotropy gap would suppress the
spin wave contribution exponentially to zero at low tem-
peratures.

We have gathered together in Table XI our most re-
liable exchange constants in BaMn2As2 from our band
theory calculations and from the theoretical fits to our ex-
perimental data by the J1-J2-Jc Heisenberg model. Sev-
eral features are noteworthy. First, all three exchange
constants are consistently positive (antiferromagnetic).
Second, the estimates give similar values of J1 ≈ 13–
18 meV for S values in the range from 2 to 5/2. For the
susceptibility fits, nearly the same J1 was obtained from
the two fits despite the significant differences between
the respective S and J2/J1 values. Third, the estimates
of J2/J1 from band theory and from analysis of the neu-
tron and magnetic susceptibility measurements are in the
range 0.2–0.4, which are below the value of 0.5 at which
the in-plane G-type AF order would classically become
unstable with respect to the stripe AF order [see Fig. 2
and Eq. (4)], and are therefore consistent with the ob-
served G-type AF order. From our classical Monte Carlo
simulations of the heat capacity of stacked square lattice

TABLE XI: Summary of our most reliable exchange constants
in BaMn2As2 obtained from band theory and from fitting our
experimental data by our predictions of the J1-J2-Jc Heisen-
berg model. The notation “≡” means that the value that
follows it was assumed, not fitted. Two spin values for the
neutron fit are listed because the neutron fit gives the product
of the spin S and the respective exchange constant, not the
two separately. For the χ fit, a range of spin values can fit
the data. We chose two spin values close to 2 and 5/2, cor-
responding to J2/J1 = 0.2 and 0.4, respectively. Two band
theory estimates were obtained using the LDA and the GGA,
as noted.

Data S J1 J2/J1 Jc/J1

(meV)

neutrons 2 16.5 0.29 0.09

5/2 13.2 0.29 0.09

χ(T > TN) 2.06 17.8 ≡ 0.2 ≡ 0.1

2.64 18.1 ≡ 0.4 ≡ 0.1
75As NMR ≡ 2 14 ≡ 0.29 ≡ 0.09

(T ≪ TN)

band theory

LDA 1.65 13.1 0.21 0.08

GGA 1.8 12.6 0.21 0.08

layers, the exchange parameters from the neutron scat-
tering fit predict TN ≈ 640 K if the Mn spin is S = 5/2, in
close agreement with the experimental value of ≈ 625 K.

Finally, with the above range of exchange parameters,
our second-order spin wave calculations in Sec. XIII show
that the ordered moment reduction due to quantum fluc-
tuations alone is at least∼ 0.4 µB/Mn. Because the mea-
sured ordered moment is 〈µ〉 = 3.9(1) µB/Mn, this argues
against assigning a spin S = 2 to the Mn+2 ions which
gives 〈µ〉 = gSµB = 4 µB/Mn and favors S = 5/2 for
which one would obtain 〈µ〉 = 5 µB/Mn for g = 2 in the
absence of quantum fluctuations. The additional reduc-
tion needed to reach the experimental value is likely due
to charge and/or magnetic moment amplitude fluctua-
tions which arise from both on-site and intersite interac-
tions, consistent with the reduced ordered moment mea-
sured for other Mn+2 compounds.14,15,82,83 This effect
cannot be described in the Heisenberg model formalism
used in this paper. For instance, in Sec. XII we discussed
that despite the large moment of the Mn, the magnitude
of the magnetic moment can vary by ∼ 20% depending
on the specific magnetic configuration, suggesting that
amplitude fluctuations of the magnetic moment may in-
deed be relevant.

As noted in the introduction, the view that BaFe2As2
is an itinerant antiferromagnet is not universally held.
Furthermore, the results of many magnetic inelastic neu-
tron scattering measurements on BaFe2As2 have been an-
alyzed in terms of local moment Heisenberg models, even
when the authors of this modeling believe that the itin-
erant model is valid. The reason for this latter analysis,



42

as has been stressed in the literature, is that the mag-
netism of itinerant models can often be parametrized by
local moment Heisenberg models. Further review and
discussion of this issue is given in Ref. 4.

We therefore now compare the exchange constants in
BaMn2As2 with those in the isostructural (at room tem-
perature) high-Tc AFe2As2 parent compounds (A = Ca,
Sr, Ba) within the context of the J1-J2-Jc local mo-
ment Heisenberg model. The AFe2As2 compounds or-
der into an in-plane stripe-type antiferromagnetic struc-
ture below ∼ 200 K (lower panel of Fig. 2) and the
lattice distorts to orthorhombic symmetry at or above
TN.

4 Within the orthorhombic structure and assuming
S = 1/2 and gSµB ≈ 1 µB, one defines the average
〈J1〉 = (J1a + J1b)/2, yielding 〈J1〉/J2 = 0.7–1.4 for a
variety of AFe2As2 compounds,4 which is in the regime
〈J1〉/J2 < 2 expected for in-plane stripe-type order-
ing [see Eq. (4)]. These values can be compared with
those for BaMn2As2 in Table XI where J1/J2 ∼ 3. In
BaMn2As2 and also in the AFe2As2 compounds, the in-
terlayer coupling Jc is weak compared to the in-plane
couplings and the systems should be considered to have
strongly spatially anisotropic exchange, but not nec-
essarily two-dimensional. Thus, the AT2As2 systems,
where T is a 3d-transition metal element, appear to
be ideal systems to study the physics of the J1-J2-Jc
Heisenberg model, including the possibility of tuning
the system to and through the quantum critical point
J1/J2 = 2 by doping. Indeed, doping-dependent stud-
ies of Ba(Fe1−xCrx)2As2 have recently revealed a tran-
sition from stripe-type AF order to G-type AF order at
x ≈ 0.3,85 and studies of Ba(Fe1−xMnx)2As2 have re-
vealed a transition to a new state, possibly due to com-
petition between G-type and stripe-type AF ordering, at
x ≈ 0.1.86
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Appendix A: High-Temperature Series Expansions

From quite general considerations, one can show that
the results of MFT at high temperatures for the mag-
netic susceptibility (the Curie-Weiss Law) is an exact
result arising from a quantum mechanical treatment of
local moment magnetism using a high-temperature se-
ries expansion HTSE. We also discuss a complemen-
tary “Curie-Weiss Law” for the magnetic heat capacity
at high temperatures, which is useful when discussing our
Monte Carlo simulations of the magnetic heat capacity
in Sec. IX.

1. Magnetic Susceptibility and the Curie-Weiss
Law

Using the fluctuation-dissipation theorem, one can ex-
press the diagonal αα components χα (α = x, y, z) of the
magnetic susceptibility tensor in terms of the two-spin
correlation functions

Γα
r ≡ 〈Sα

0S
α
r 〉 (A1)

where r is the distance measured in the number n of
bonds, including zero, of spin Sr from a typical cen-
tral spin S0.

6,32 In the isotropic Heisenberg model, one
obtains32

χ =
Ng2µ2

B

kBT

∑

r

Γz
r . (A2)

If one only considers the single-spin autocorrelation func-
tion (r = 0), then one has Γz

0 = 〈S2
z 〉 = 〈S2〉/3 =

S(S + 1)/3 which gives the Curie law

χ =
Ng2µ2

BS(S + 1)

3kBT
, (A3)

which in turn is the Curie-Weiss law (22) with θ = 0 and
Curie constant (23).

Writing r ≡ n = 0, 1, 2, ..., in terms of the dis-
tance of a spin in number of bonds from the central spin
at position 0 (i.e., n means the nth-nearest-neighbor of
the spin at the origin in terms of the minimum number
of bonds between them), one can express the temper-
ature dependences of the two-spin correlation functions
as high-temperature series expansions in 1/T with the
general form

Γz
n =

Γz
n,n

(kBT/J)n
+

Γz
n,n+1

(kBT/J)n+1
+ · · · , (A4)

where Γz
0 = S(S + 1)/3 as noted above and the lowest-

order term for a given Γz
n is 1/T n.32 Substituting the first
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three terms of Eq. (A4) into Eq. (A2) gives

χ =
Ng2µ2

B

kBT

[

S(S + 1)

3
+

Γz
1,1

kBT/J
+

Γz
1,2 + Γz

2,2

(kBT/J)2
+ · · ·

]

=
C

T

[

1 +

+
3

S(S + 1)

(

Γz
1,1

kBT/J
+

Γz
1,2 + Γz

2,2

(kBT/J)2
+ · · ·

)

]

, (A5)

where the Curie constant C is the same as in Eq. (23). If
one keeps only the first two terms in the square brackets
and uses the Taylor series expansion 1 + x ≈ 1/(1 − x)
for small x to put the quantity in square brackets into
the denominator, one gets the Curie-Weiss law (22) with
Weiss temperature

θ = −
3Γz

1,1J

S(S + 1)kB
. (A6)

Comparing Eqs. (25) and (A6) gives the coefficient

Γz
1,1 = −z[S(S + 1)]2

9
. (A7)

2. The HTSE for the Magnetic Heat Capacity

We discussed above that the Curie-Weiss law for the
magnetic susceptibility of equivalent spins is rigorously
derived from the first (1/T ) term in the HTSE of the
nearest-neighbor two-spin correlation function and hence
does not depend on the particular crystal structure or
spin lattice dimensionality. This suggests that there is
an analogous term in the HTSE of the magnetic heat
capacity Cmag. We show this to be the case [Eq. (A9)]
and apply the result in Sec. IX.
From Hamiltonian (21), the thermal-average magnetic

configuration energy in zero field only depends on the
nearest-neighbor two-spin correlation function as32

Emag(T ) =
1

2
NzJ〈S0 · S1〉T(T ), (A8)

where the factor of 1/2 is introduced to avoid double
counting the distinct AF NN bonds and 〈· · ·〉T denotes a
thermal average of the quantum mechanical expectation
value. The magnetic specific heat Cmag(T ) is obtained
by differentiating Eq. (A8) with respect to T . Thus the
first 1/T HTSE term of Emag(T ) gives the first term in
the HTSE of Cmag(T ) as a 1/T 2 term.
Rushbrooke and Wood showed that the first six terms

of the HTSE of χ(T ) and Cmag(T ) of a Heisenberg spin
lattice containing equivalent spins S can be expressed
in terms of the identical NN exchange couplings J and
the bond connectivity (“lattice parameters”) of the spe-
cific spin lattice.33 With respect to the present discussion,
they found that the first (1/T 2) term of the HTSE for
Cmag(T ) is independent of the type of spin lattice and of

z

x

γ

γ

φ

M1

M2

H

FIG. 33: (Color online) Influence of a perpendicular mag-
netic field H⊥ on the sublattice magnetizations of an ordered
antiferromagnet. The H⊥ tilts the ordered sublattice mag-
netizations M1 and M2 that are initially pointed along the
z-axis by an angle γ towards the applied field H⊥ along the
x-axis. The angle γ is greatly exaggerated for clarity.

the spin lattice dimensionality and only depends on z, S,
and J according to33

Cmag

R
=

z

6

[

JS(S + 1)

kBT

]2

. (A9)

This term is the same for FM and AF interactions be-
cause the exchange constant is squared, which gives a
positive-definite result for Cmag(T ). Thus when compar-
ing calculated Cmag(T ) data for lattices with the same
coordination number z but different and exchange con-
stants and/or spins, a universal high-temperature behav-
ior is obtained if the data are scaled according to

Cmag

R
versus

kBT

JS(S + 1)
. (A10)

The Curie law for the magnetic susceptibility arises be-
cause there is a nonzero susceptibility for isolated spins.
This is modified at high temperatures by the addition of
a 1/T 2 term in Eq. (A5) arising from spin interactions,
yielding a Curie-Weiss law with nonzero Weiss tempera-
ture θ. On the other hand, the magnetic heat capacity
of isolated spins is zero, and hence there is no equivalent
Curie law for Emag(T ) or Cmag(T ): the values are just
zero. Equation (A9) can therefore be considered to be a
“Curie-Weiss law” for Cmag(T ).

Appendix B: Anisotropic Susceptibility below TN for
the J2-J2-Jc Model in Molecular Field Theory

1. Perpendicular Susceptibility χ⊥ below TN

Setting the external field H to zero and using the ex-
change fields in Eq. (29), the average exchange energy of
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the spin system is

Eexch = −M1 ·B1 = λsM
2
1 + λdM1 ·M2. (B1)

We do not add a second term −M2 ·B2 to this, because
that would double-count the exchange interactions be-
tween the spins which occur pairwise.
We apply an external magnetic fieldH⊥ that is perpen-

dicular to the ordered moment direction in the antiferro-
magnetically ordered state that induces a perpendicular
magnetizationM⊥ in the sample, whereM⊥ = M1+M2

is the vector sum of the sublattice magnetizations. From
Fig. 33, the angle φ between M1 and M2 is

cosφ = cos(180◦ − 2γ) = − cos(2γ) ≈ −
(

1− 2γ2
)

,

where we used cos(A−B) = cosA cosB+sinA sinB and
on the right-hand side we used the small angle approxi-
mation cosx ≈ 1−x2/2. We assume that γ is very small
because χ⊥ = limH⊥→0 M⊥/H⊥ by definition. Thus the
exchange energy in Eq. (B1) becomes

Eexch = M2
i [λs + λd(1 − 2γ2)], (B2)

where M1 = M2 ≡ Mi.
A perpendicular magnetic field H⊥ = H⊥ î causes

the ordered AF spin sublattices to tilt towards the ap-
plied field direction, away from the ordered moment z-
direction, as shown in Fig. 33. The magnetic energy due
to the perpendicular field is

E⊥ = −2Mi ·H⊥ = −2MiH⊥ sin γ ≈ −2MiH⊥γ, (B3)

where we have used the small-angle approximation
sinx ≈ x. Thus the total magnetic energy is

E = Eexch+E⊥ = M2
i [λs+λd(1−2γ2)]−2MiH⊥γ. (B4)

The stable configuration minimizes the energy. Taking
the derivative of E with respect to γ and setting it to
zero and setting λd = −|λd| because λd is negative gives

γ =
H⊥

2|λd|Mi
.

Thus the interactions within the same sublattice (λs, i.e.,
J2) have no influence on this equilibrium condition. The
equilibrium value of the component M⊥ of the total mag-
netization in the direction of H⊥, using the small-angle
approximation sin θ ≈ θ, is

M⊥ = 2Mi sin γ ≈ 2Miγ =
H⊥

|λd|
,

which gives the perpendicular susceptibility as

χ⊥ =
M⊥

H⊥
=

1

|λd|
.

Note that Mi and hence also its temperature dependence
have dropped out, so that χ⊥ in this treatment is inde-
pendent of T below TN.

From Eqs. (54) we have

|λd| =
TN(1 + f)

C
. (B5)

Thus we obtain

χ⊥ =
1

|λd|
=

C

TN(1 + f)
=

C

TN + θ
= χ(TN), (T ≤ TN)

which is Eq. (55) in the text. Although J2 is not present
explicitly, its influence is expressed through the implicit
dependence of TN on J2.

2. Parallel Susceptibility χ‖ below TN

Here again we assume that the susceptibility in the ab-
sence of explicit exchange couplings is χ0 = C/T , which
is isotropic above TN. We apply a small magnetic fieldH .
Below TN a large exchange field develops as seen by each
sublattice because of the ordered moments. Therefore we
must use a Brillouin function to describe the magnetiza-
tion of each sublattice.
The saturation magnetic moment of a spin S is

µsat = gµBS.

For N spins, the saturation magnetization is therefore

Msat = NgSµB. (B6)

The magnetization of the N spins is written

Mz = MsatBS(y) (B7)

where BS(y) is the Brillouin function given by

BS(y) =
1

2S

{

(2S + 1) coth
[

(2S + 1)
y

2

]

− coth
(y

2

)}

,

(B8)
where 0 ≤ BS(y) ≤ 1 for y ≥ 0,

y =
gµBH

kBT
(B9)

and the g-factor is usually set to the value g = 2.
In MFT, we replace H in the Brillouin function by

the magnetic inductions Bi in Eqs. (28) and (29), which
include the exchange fields. Thus we have

M1 =
1

2
MsatBS

(

gµBB1

kBT

)

=
1

2
MsatBS

[

gµB(H + λsM1 + λdM2)

kBT

]

(B10)

M2 =
1

2
MsatBS

(

gµBB2

kBT

)

=
1

2
MsatBS

[

gµB(H + λdM1 + λsM2)

kBT

]
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Substituting for λs and λd from Eqs. (54) gives

M1

Msat
=

1

2
BS







gµB

[

H − TN(f−1)
C M1 − TN(f+1)

C M2

]

kBT







(B11)

M2

Msat
=

1

2
BS







gµB

[

H − TN(f+1)
C M1 − TN(f−1)

C M2

]

kBT







.

To simplify the notation and the solution to Eqs. (B11)
we define reduced magnetic field, temperature and or-
dered moment variables, respectively, by

h̃ =
gµBH

kBTN(H = 0)

t =
T

TN(H = 0)
(B12)

µ̄iz =
µiz

µsat
=

µiz

gSµB
.

Then using Mi = Nµiz/2 and Msat = Nµsat = NgSµB

and the expression for the Curie constant C in Eq. (23),
Eqs. (B11) become

µ̄1z = BS

[

h̃

t
− 3(f − 1)

2(S + 1)

µ̄1z

t
− 3(f + 1)

2(S + 1)

µ̄2z

t

]

(B13)

µ̄2z = BS

[

h̃

t
− 3(f + 1)

2(S + 1)

µ̄1z

t
− 3(f − 1)

2(S + 1)

µ̄2z

t

]

.

For specified S, f , h̃ and t, one can solve these two simul-
taneous equations numerically for µ̄1z(t, h̃) and µ̄2z(t, h̃).
The average reduced magnetization per spin is

µ̄z(t, h̃) =
1

2
[µ̄1z(t, h̃) + µ̄2z(t, h̃)]. (B14)

This solution is valid in both the paramagnetic and anti-
ferromagnetic states. The reduced parallel susceptibility
per spin is

χ̃(t) = lim
h̃→0

µ̄z(t, h̃)

h̃
. (B15)

In the AF phase, the order parameter is the staggered
ordered moment

µ̄†
z =

µ̄1z − µ̄2z

2
, (B16)

which is one-half the difference between the z-
components of the ordered moments of the two sublat-
tices. The term “ordered moment”, when used in the
context of a collinear antiferromagnet, is the staggered
moment.
The susceptibility is isotropic at TN (at reduced tem-

perature t = 1). Therefore setting t = 1 and µ̄1z = µ̄2z

in Eqs. (B13) gives

µ̄iz = BS

[

h̃− 3f

S + 1
µ̄iz

]

,

where i = 1, 2. Using the expansion BS(y) = (S + 1)y/3
for y ≪ 1 and solving for µ̄iz gives

µ̄iz(t = 1) =
S + 1

3(f + 1)
h̃. (B17)

Then Eq. (B15) gives

χ‖(T )

χ‖(TN)
=

χ̃‖(t)

χ̃‖(t = 1)
=

3(f + 1)

S + 1
lim
h̃→0

µ̄z(t, h̃)

h̃
. (B18)

Appendix C: Ordered Moment versus Temperature
below TN

In the AF state, setting the applied magnetic field h̃ =
0 and the ordered moment µ̄2z(t) = −µ̄1z(t) in the first
of Eqs. (B13) gives the simple result

µ̄†
z(t) = BS

[(

3

S + 1

)

µ̄†
z(t)

t

]

. (C1)

Thus the reduced exchange field is

h̃(t) =
3

S + 1
µ̄†
z(t). (C2)

Appendix D: Zero-Field Magnetic Heat Capacity
Cmag below TN

In the presence of the staggered exchange field with z-
components H1 exch = −H2 exch and nonzero µ1z = −µ2z,
the energy of a collinear G-type AF system in zero ap-
plied field is

Eave = −N

2
µ1zH1 exch = −1

2
M1zH1 exch, (D1)

where the factor of 1/2 is included to avoid counting each
magnetic moment twice (once in µ1z or M1z and again
in H1 exch). The exchange field seen by sublattice 1 can
be written using Eqs. (29) and (42) as

H1 exch = (λs − λd)M1z =
3kBTN

g2µ2
BS(S + 1)

µ1z. (D2)

Then using the expression for the saturation moment
µsat = gSµB, one can rewrite this as

H1 exch =

(

3kBTNS

S + 1

)

µ1z

µ2
sat

. (D3)

Inserting Eq. (D3) into (D1) gives

Eave(T ) = −3NkBTNS

2(S + 1)

[

µ1z(T )

µsat

]2

. (D4)

Using the dimensionless reduced variables introduced in
Eqs. (B12) and the definition (B16) of the staggered mo-
ment, we obtain

Eave(t) = −3NkBTNS

2(S + 1)
(µ̄†

z)
2(t). (D5)
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By setting N equal to Avogadro’s number NA and us-
ing the definition of the molar gas constant R = NAkB
one obtains from Eq. (D5) the molar magnetic energy

Eave(t) = − 3RTNS

2(S + 1)
(µ̄†

z)
2(t). (D6)

The molar magnetic heat capacity is then

Cmag(t)

R
=

1

RTN

dEave(t)

dt
= − 3S

S + 1
µ̄†
z(t)

dµ̄†
z(t)

dt
. (56)

Appendix E: Low-Temperature Heat Capacity of
Spin Waves

At low temperatures, only the lowest energy spin waves
contribute to the heat capacity, so we can use generic
Eq. (7) for the dispersion relation. To evaluate the in-
tegrals in Eq. (69), we change variables in the integrals
from wave vector q to the vector ~ǫ with dimensions of
energy and with components

ǫx = h̄vxqx, ǫa = h̄vxπ/a

ǫy = h̄vyqy, ǫb = h̄vyπ/b (E1)

ǫz = h̄vzqz , ǫc = h̄vzπ/c.

Now the dispersion relation (7) is written symmetrically
as

E~ǫ = h̄ω~ǫ =
√

ǫ2x + ǫ2y + ǫ2z ≡ ǫ (E2)

and Eq. (69) becomes

Eave =
NVspin

(2π)3h̄3vxvyvz
(E3)

×
∫ ǫa

−ǫa

dǫx

∫ ǫb

−ǫb

dǫy

∫ ǫc

−ǫc

dǫz
E~ǫ

eE~ǫ/kBT − 1
,

in which the anisotropy in the dispersion relation (7) has
been moved to anisotropies in the limits of integration
and in the prefactor.
At low temperatures, only the lowest energy spin wave

states are populated, so we can take the limits of each
integral to be −∞ to ∞, which also eliminates the
anisotropy between the limits of integration of the three
integrals. We can then convert the integrals over the
three Cartesian coordinates to an integral over radius in
spherical coordinates according to E~ǫ → ǫ and

∫ ∞

−∞

dǫx

∫ ∞

−∞

dǫy

∫ ∞

−∞

dǫz → 4π

∫ ∞

0

dǫ ǫ2.

Now we will integrate only about the Γ point, so we must
multiply by two to take into account the low-energy spin

wave branches at the corners of the Brillouin zone of the
primitive tetragonal direct lattice as discussed in the text.
We then obtain

Eave =
NVspin

π2h̄3vxvyvz

∫ ∞

0

ǫ3

eǫ/kBT − 1
dǫ. (low T ) (E4)

Changing variables in the integral to x = ǫ/kBT gives

Eave =
NVspin(kBT )

4

π2h̄3vxvyvz

∫ ∞

0

x3

ex − 1
dx. (low T ) (E5)

The integral is π4/15, yielding

Eave =
π2NVspin(kBT )

4

15h̄3vxvyvz
. (low T ) (E6)

Then setting N = NA (Avogadro’s number), the mag-
netic heat capacity due to the spin waves per mole of
spins is

Cmag

R
=

1

R

dEave

dT
=

(

4π2k3BVspin

15h̄3vxvyvz

)

T 3, (T ≪ TN) (73)

where R = NAkB is the molar gas constant.

We now calculate the two-dimensional spin wave
theory prediction of Cmag to check consistency with
Eq. (101) that was derived using chiral perturbation the-
ory. In two dimensions (i.e., Jc = 0), the area of the
sample is A = Na2, where N is the number of spins and
ab = a2 is the area of the square unit cell which contains
one spin in its basis. Then Eq. (69) is replaced by

Eave =
1

(2π)2

Na2

∫ π/a

−π/a

dqx

∫ π/b

−π/b

dqy
h̄ωq

eh̄ωq/kBT − 1
. (E7)

Following the same steps as for the three-dimensional
case above, converting the two-dimensional integrals to
polar coordinates according to

∫ ∞

−∞

dǫx

∫ ∞

−∞

dǫy → 2π

∫ ∞

0

dǫ ǫ,

and multiplying by two to take into account the spin wave
excitations at the corners of the Brillouin zone, gives

Cmag

R
=

6ζ(3)

π(h̄v/a)2
(kBT )

2, (E8)

where v is the isotropic spin wave velocity in the ab-plane

and we have used
∫∞

0
x2

ex−1dx = 2ζ(3). Equation (E8) is

identical to Eq. (101) obtained for the isotropic Heisen-
berg square lattice from chiral perturbation theory.52
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