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This study examines photonic stop band reconfiguration upon magnetization reversal in 

multimode elliptically birefringent Bragg filter waveguides. Magnetization reversal in 

longitudinally-magnetized magneto-optic waveguides affects the character of the local 

orthogonal elliptically-polarized normal modes, impacting the filter’s stop band configuration. 

Unlike the standard case of circular birefringence in magneto-optic media, opposite helicity 

states do not transform into each other upon magnetization reversal for a given propagation 

direction. Rather, helicity reversals yield new and different normal modes, with perpendicularly-

oriented semi-major axes, corresponding to a north-south mirror reflection through the equatorial 

plane of the Poincaré sphere. For asymmetric contra-directional coupling between different-order 

waveguide modes in multimode magneto-photonic crystals, this symmetry breaking, namely, the 

obliteration of normal modes upon magnetization reversal, allows for strongly reconfigured stop 

bands, through the hybridization of the elliptically-polarized states. The effect of Bloch mode 

reconfiguration on the stop band spectral profile contributes to the magnetic response of the 

filter. In such elliptically birefringent media, input polarization helicity reversal also becomes a 
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powerful tool for optical transmittance control. Both magnetization and helicity reversals can 

thus serve as useful tools for the fabrication of on-chip magneto-photonic crystal switches.   
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I. Introduction 

Photonic crystals fabricated in magneto-optic media have been the subject of 

numerous studies in recent years. The enhancement of Faraday rotation in one-

dimensional layered stacks with resonant cavities was reported in [1-4]. Other authors 

have studied the band dispersion of photonic crystals containing magnetically-ordered 

materials [5], and electromagnetic unidirectionality in periodic magnetic stacks and two-

dimensional magneto-photonic crystals [6, 7]. Wang and Lakhtakia explored 

magnetically controllable band gaps in one-dimensional helicoidal magneto-photonic 

crystals [8]. One-way edge modes analogous to quantum Hall edge states in two-

dimensional photonic crystals in gyrotropic media were investigated by Haldane, Raghu 

and other authors [9-11]. Magnetization-induced second-harmonic-generation in 

magneto-photonic crystals was studied by Murzina and co-workers [12]. Levy and co-

workers reported on flat-top response in multiple resonator one-dimensional magneto-

photonic crystals [13] and large polarization rotations in waveguide nonreciprocal Bragg 

systems [14-16]. They also studied band gap formation, local normal mode coupling and 

Bloch states in birefringent magneto-photonic periodic stacks [17-20]. Degenerate band 

gap periodic magneto-optic systems were analyzed in [21], while applications of 

magneto-photonic waveguide Bragg structures to sensors and switches were reported in 

[22, 23]. 

Among the properties of photonic crystals, the dynamic tuning of their optical 

response is of particular interest because such dynamic control would enhance the 

functionality of photonic crystal-based devices. Tunability has been explored through 
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electrical [24-29], magnetic [8, 29, 30-32], thermal [30, 33], and mechanical control [34]; 

through immersion in coherent atomic gases [35], and through variations in the angle of 

incidence of the optical beam [36]. Magnetic tunability studies have consisted of 

theoretical band gap analysis focusing on dielectric permittivity or magnetic permeability 

control and their effect on gap width, band gap center wavelength [8, 29, 31, 32], and the 

effect of magnetic fields on the superconducting state in photonic crystals composed of 

copper oxide high-temperature superconductors [30]. Such magneto-photonic stop band 

manipulation is particularly interesting as it may have important technological 

implications for fast optical switching given the extremely fast magnetic response of 

magneto-optic media. Recent work has shown 40 fs magnetization switching effects [37]. 

Here we discuss and experimentally demonstrate a different mechanism of stop band 

magnetic tuning particularly suited to multimode one-dimensional magneto-optic 

waveguides and applicable to integrated on-chip devices. The essential cause of the effect 

can be traced to normal mode helicity reversals in inter-modal contra-directional coupling 

between different mode-orders. The effect is not due to band gap tuning per se but to 

mode conversion and mode hybridization upon helicity reversals under asymmetric 

contra-directional coupling conditions. Some degree of Bloch mode reconfiguration does 

take place, as discussed in Section IV, also impacting the stop bands. Large stop band 

detuning to magnetization and helicity reversals, applicable to controlled optical 

switching, are demonstrated below for high-order waveguide mode back-reflection. 

We address this question through an examination of Bragg reflection in elliptically 

birefringent waveguide media. Elliptical birefringence arises naturally in magneto-optic 

waveguides due to the combined effects of magneto-optic gyrotropy and shape 
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anisotropy [14, 15, 17, 19, 20]. Stress birefringence, due to lattice mismatch between 

waveguide film and substrate also contributes to the effect. 

We show that it is possible to induce significant changes in the stop band spectral 

dispersion in elliptically birefringent multimode waveguides through hybridized coupling 

between different forward and backward propagating elliptically-polarized waveguide 

modes. The reasons behind these phenomena are discussed below. This stop band 

reconfiguration is traced to the transmutation of elliptical normal modes into hybrid 

modes, through their effect on mode propagation in the waveguide. 

Normally, waveguide response is examined in terms of transverse electric (TE) and 

transverse magnetic (TM) modes. In the absence of longitudinal magnetization or 

gyrotropy, these are normal modes, as each maintains its polarization state as the wave 

propagates down the guide. However, optical gyrotropy couples TE and TM modes so 

that they are no longer normal modes. A magnetic bias along the direction of the light 

propagation in such waveguides activates the gyrotropy thus coupling TE and TM modes 

and rendering these no longer eigenmodes of the wave equation. 

However, elliptically polarized inputs can be shown to generate normal modes in 

elliptically birefringent waveguides. In other words, once launched into the waveguide 

they can be shown to propagate with minimal change to their polarization state. It is in 

this sense that we speak of elliptically polarized normal modes.  

The simultaneous presence of shape anisotropy, lattice mismatch strain and magnetic 

anisotropy establishes elliptical birefringence, where opposite-helicity states advance at 

different speeds through the guide. Generally the above conditions lead to different 

diagonal components in the relative permittivity matrix and semi-major axes of the 
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elliptical modes aligning with the directions of transverse electric and transverse 

magnetic polarizations [17, 20]. 

Of particular note in our treatment are the stop bands formed as a result of asymmetric 

contra-directional coupling between different-order forward and backward propagating 

elliptical waveguide modes. As a result, a magnetization reversal in the longitudinal 

direction completely changes the character of the normal modes in the photonic crystal. 

Normal modes for any given order differ in their elliptical polarization state. That means 

that, except for the case of circular polarization, the directions of their semi-major axes 

are different. Upon magnetization reversal, and for a given semi-major axis orientation of 

the normal mode polarization ellipse, the helicity of that normal mode gets reversed. We 

study the effect of this normal-mode helicity reversal on the stop band configuration of 

the magneto-photonic Bragg filter.   

Below we examine these changes from normal to hybrid modes upon magnetization 

reversal and their impact on stop band magnetic tuning. Elliptical birefringence differs 

essentially from circular birefringence (Faraday Effect) in that a magnetization reversal 

renders normal modes into hybrid modes in the former but not in the latter case, and has a 

profound effect on stop band tuning. 

In addition we discuss the effects of mode conversion and actual band gap tuning on 

the stop band reconfiguration. It is shown that changes in Bloch mode configuration upon 

magnetization reversal produce changes in transmittance and stop band spectra; however, 

these are small in comparison with those brought about by input polarization changes. 

This article is divided into three sections after this Introduction. Section II presents a 

theoretical discussion of electromagnetic wave propagation in birefringent magneto-optic 
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media. Following prior treatments based on stack-model approximations to magneto-

optic Bragg filters we put forth expressions for elliptically-polarized normal modes and 

Bloch states. These models perform extremely well as shown in a subsequent section 

comparing experimental and theoretical results. Our experimental approach is presented 

in Section III, labeled experimental background. Elliptically polarized states are launched 

into the magneto-optic waveguide and the one-dimensional magneto-optic Bragg 

reflector, and the transmittance and output polarization states are analyzed. Stokes 

parameter methodology and rotating polarizer analysis are utilized for this purpose. The 

experimental response of the elliptically birefringent magneto-photonic crystals is 

discussed in Section IV labeled results and discussion. A comparison with the theoretical 

predictions based on the model discussed in Section II is presented and shown to give 

remarkably good agreement, in support of the asymmetric scattering model and the 

helicity dependence of magneto-optic stop band tuning. The conditions for strong 

magneto-optic control of the stop band are analyzed. 

 

II. Theoretical background 

The electromagnetic wave equation in a birefringent magneto-optic medium is given 

by  

( )2 2
0 0 0I kk Ek kε − + =� i ,           (1)                                                                                     

[17, 20] 

where E0 is the plane wave amplitude, kk is a dyadic product of the wave vector, I is 

the 3×3 identity matrix, and 2
0k cω= , c is the speed of light, and ω  is its angular 
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frequency. The relative permittivity matrix, ε�  of the birefringent magneto-optic crystal 

magnetized along the direction of light propagation (z-direction) has the form: 

0
0

0 0

xx

yy

zz

ig
ig

ε
ε ε

ε

⎛ ⎞±
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

� ∓                          (2)                                                                             

The above relation assumes no absorption of light in the medium, with , ,xx yy zzε ε ε and g 

having real values. From Eq. 2, the condition for elliptical birefringence is given 

by xx yyε ε≠ . The non-reciprocal gyrotropy is parameterized by the off-diagonal 

components ig± in the relative permittivity matrix.  

The above formulation applies to a uniform medium. An exact treatment of a 

dielectric waveguide would require solving the wave equation separately in the 

waveguide core as well as in the cladding, and then matching boundary conditions. Here 

we use an alternative approach for the expressed purpose of obtaining expressions for the 

polarization of the elliptical eigenmodes. A layered stack (Fig. 1) is used to model the 

transmittance and polarization response of the magneto-optic photonic crystal, in 

conjunction with experimentally extracted waveguide mode parameters, as described in 

this section. 

The mode indices for all allowed TE and TM waves in the waveguide are measured 

experimentally using a prism-coupling technique and are also tested against the Bragg 

condition in the Bragg filter in transverse magnetization. Transverse magnetization 

condition allows us to determine mode indices in the absence of TE/TM coupling for 

linearly polarized inputs. Upon longitudinal magnetization, TE and TM modes couple as 

a result of the Faraday Effect (non-reciprocal gyrotropy).  
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For each TE/TM pair of a given mode order, the wave is treated as propagating in an 

anisotropic material having refractive indices for transverse horizontal and vertical 

polarizations equal to those of the given TE and TM waveguide modes in transverse 

magnetization. The elliptical polarization and mode indices for longitudinal 

magnetization are obtained by solving the dielectric permittivity eigenvalue problem in 

the presence of non-reciprocal gyrotropy. Thus, we approximate the diagonal components 

xxε and yyε of the relative permittivity matrix in Eq. 2 with the relative permittivity 

scalars (the squares of the mode indices for transverse magnetization) of the 

corresponding fundamental or high-order TE and TM modes, respectively. This approach 

works extremely well in predicting the elliptical normal modes of the waveguides as can 

be seen in the Results and discussion section below. 

By solving the wave equation Eq.1, upon normal incidence of a monochromatic plane 

wave propagating parallel to the z axis for the system in Eq. 2, the parameterized 

elliptical eigenmodes and their phase speeds v± are given by [17, 20, 38]: 

cos sin
1ˆ cos sin
2 0

e i i
α α
α α±

±⎛ ⎞
⎜ ⎟= ± −⎜ ⎟
⎜ ⎟
⎝ ⎠

,         (3) 

tan(2 )
2

yy xx
g

ε ε
α

−
= ,    (4) 

/v c n± ±= ,      (5) 

2 2 2n gε± = ± Δ + ,     (6) 

2
yy xxε ε

ε
+

=  ,       (7) 
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and ( ) / 2yy xxε εΔ = − .             (8)                                                      

n± are referred to as the mode indices of the elliptical eigenmodes. Below we use these 

eigenmodes as the eigenmodes of the elliptically birefringent media magnetized in the 

direction of light propagation. When the direction of magnetization is opposite to the 

direction of the light propagation, the gyration vector of the media is reversed and as a 

result the helicities of the eigenmodes are also reversed. This makes the relative 

permittivity matrix in Eq. 2 acquire both positive and negative signs in the nonreciprocal 

gyrotropic term. Magnetization reversal changes the sign of g in Eq. 4. As a result, 

α becomes 
2
π α−  and the eigenmodes of the wave Eq. 1, for the reversed magnetization, 

are parameterized as 

cos sin
1ˆ cos sin
2 0

re i i
α α
α α±

± +⎛ ⎞
⎜ ⎟= − ±⎜ ⎟
⎜ ⎟
⎝ ⎠

,    (8) 

where the superscript r indicates helicity reversal of the prior eigenmodes. 

Figure 2 plots the effect of magnetization reversal on the normal modes in a Poincaré 

sphere representation. While circular birefringence with normal modes on the north and 

south poles results in an interchange of modes, an elliptically birefringent medium 

acquires different modes for a given propagation direction. Magnetization reversal 

corresponds to a reflection through the equatorial plane. The effect is equivalent to a time 

reversal operation, with the original modes reversing their helicities. 

The stop bands in magneto-optic Bragg filters have been discussed by Levy and co-

workers in several publications [2, 14, 15, 17, 19, 20] and have been shown to obey the 

Bragg condition ( )f bn nλ = + Λ , where λ is the wavelength in vacuum, fn and bn are the 
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mode indices of the forward- and backward-propagating modes, and Λ is the grating 

period. Multiple stop bands form as a result of the contra-directional coupling of 

fundamental forward-propagating modes to different back-reflected waveguide mode 

orders, as shown in Fig. 3. These multiple stop bands appear because the optical wave 

incident in the grating region and the back-reflected wave satisfy the phase matching 

conditionβ β Kback incident q= + . Here βincident and βback are the propagation vectors of 

the incident and back-reflected waves, respectively; K is the grating vector pointing in 

the direction of the ridge waveguide axis and related to the grating period 

Λ by 2 /K π= Λ . 0, 1, 2,...q = ± ± is the order of the coupling. The 

vectorsβ Kincident q+ are called space harmonics and are produced as a result of the 

spatial modulation of the dielectric permittivity in the grating region. Notice that 

waveguide mode propagation depends not only on the permittivity of the waveguide core 

but also on the permittivity of the cladding and cover, so that a relief grating introduces 

spatial modulation. The stop bands then form when the space harmonics match the 

propagation vectors of allowed waveguide modes traveling in the backward direction. 

Several stop bands occur because our waveguides are multimode. The order of the 

coupling is -1, that is, first order contra-directional coupling [39]. 

The modal character of the forward traveling and back-reflected waves has been 

determined by an analysis of the stop band spectrum. This information was supplemented 

by beam-propagation simulations to estimate that more than 90% of the coupled optical 

power in the forward direction is in the fundamental mode. A commercial optical-

waveguide simulation package distributed by RSoft Design was used for this purpose. 
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Back-reflected modes have different propagation vectors ( ) ( )2β m m
b bnπ

λ
= , where m is the 

mode order and ( )m
bn its effective refractive index or mode index [39]. These modes 

satisfy the phase-matching conditionβ β Kb f= − sequentially, from fundamental back-

reflection at the longest-wavelength stop band, through first, second and higher-orders 

towards shorter wavelengths in the stop band spectrum. Figure 3 labels the stop bands 

according to this trend. Stop band center-wavelengths computed from the Bragg 

condition, as well as calculated stop bands based on power transfer efficiency show very 

good agreement with the experimental data, with average departures of 2nm (0.15%) and 

less than 5nm between calculation and experiment. Power transfer efficiency is a function 

of the phase mismatch ( )β β Kb fΔ = − − [39]. 

Since forward fundamental and backward propagating high-order modes have 

different ellipticities, a magnetization- (or time-) reversal operation will produce a 

different transmittance effect through the filter on any given elliptically polarized input if 

the helicity of the input is maintained. The effect is also true for single-mode circularly 

birefringent waveguides, but is highly magnified in multimode elliptically birefringent 

ones, as shown in the section on results and discussion. The contra-directional coupling 

to highly birefringent elliptically-polarized high-order modes is responsible for this effect 

and leads to strong stop band detuning. This coupling results in Bragg reflection of the 

forward propagating light into high-order waveguide modes. 

A theoretical model, in the form of a multilayered stack as shown in Fig. 1, has been 

developed by Levy et al. to describe the formation of multiple stop bands in elliptically 

birefringent media based on the Floquet-Bloch theorem [17, 19, 20]. This model is 
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described in detail in references [17, 19, 20]. The authors analyze Bloch mode formation 

based on the analogy between local waveguide normal modes and local modes in each 

layer of periodic elliptically-birefringent stacks, and examine the formation of optical 

band gaps in such media. Their work expresses the Bloch mode in an arbitrary layer n of 

the stack as:         

01 02

03 04

ˆ ˆ( , ) exp( ( ) / ) exp( ( ) / )

ˆ ˆexp( ( ) / ) exp( ( ) / )

E f f b b
n n

f f b b
n n

z t e E i n z z c e E i n z z c

e E i n z z c e E i n z z c

ω ω

ω ω
+ + + +

− − − −

= − + − −

+ − + − −
, (9) 

where 1i = −  for a light-wave of frequency ω propagating in the z-direction [17, 19, 

20]. Here, the superscripts f and b refer to the forward and backward propagating modes, 

and nz  is the position of the interface. The mode indices ,f bn± are assumed to correspond 

to local waveguide normal modes of opposite helicity. The 0 jE , j=1-4 are partial-wave 

amplitude constants with zn as the location of the interface between two arbitrary layers n 

and n+1 in the media. The elliptical polarization-state unit-vectors ,ˆ f be± , in the form 

,ˆ ( )f be α± , are the elliptically polarized waveguide normal modes propagating in the 

forward or backward direction, respectively. Notice that forward and backward 

propagating normal modes have different elliptical polarizations. 

Upon magnetization reversal, the intrinsic normal modes of the structure will change, 

so that any polarization state will project over a new basis set of normal modes. 

Elliptically-polarized normal modes ,ˆ f be± , as in the systems under study here, reverse 

their helicity upon magnetization reversal, changing into the new basis set , ,ˆr f be± . Bloch 

states of the periodic structure, expressed as a linear combination of local normal modes 
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(Eq. 9), also change as a result of these helicity reversals in ,ˆ f be± . The new Bloch modes 

have the form 

, ,
01 02

, ,
03 04

ˆ ˆ( , ) exp( ( ) / ) exp( ( ) / )

ˆ ˆexp( ( ) / ) exp( ( ) / )

E r f f r b b
n n

r f f r b b
n n

z t e E i n z z c e E i n z z c

e E i n z z c e E i n z z c

ω ω

ω ω
+ + + +

− − − −

= − + − −

+ − + − −
 

We refer to this change in Bloch state as Bloch mode reconfiguration. This change results 

in different coupling strengths for elliptically-polarized input light. 

A transfer matrix formulation can be built based on this model to calculate the 

transmittance of the stack, as described in [17, 19, 20]. This transfer matrix approach 

shows that the magnetic reconfiguration of the photonic crystal itself does contribute to 

normal-mode-stop band spectral reshaping. These results are verified experimentally, as 

shown below. However, the effect is not as strong as the changes due to input beam 

polarization conversion in the feeder section before the photonic crystal structure. Strong 

reconfiguring of the normal mode stop bands are due to changes in input polarization 

state in waveguide sections that feed the light to the Bragg reflector. These can be traced 

to the transmutation of normal modes into hybrid modes upon magnetization reversal and 

subsequent polarization changes of the beam in the feeder section of the waveguide. 

Below we present experimental evidence of stop band reconfiguration, its dependence on 

magnetization direction and a comparison with the theoretical predictions of the model 

described above. Excellent agreement obtains. 
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III. Experimental background 

Sample preparation 

In order to study the magnetic tuning of stop bands in elliptically birefringent 

gyrotropic Bragg filters, waveguide magneto-photonic crystals were patterned on two 

sets of samples. The first set consisted of 2.7-μm-thick Bi0.8Gd0.2Lu2.0Fe5O12 films having 

an intrinsic Faraday rotation of 83°/mm. These single-layer bismuth-substituted-rare-

earth iron-garnet films were grown by liquid-phase-epitaxy (LPE) on (100) gadolinium 

gallium garnet (GGG) substrates. Three samples with multiple waveguides were 

fabricated in this material and four Bragg filters tested, yielding mutually consistent 

results. 6-μm-wide 600-nm ridge-height waveguide structures were patterned on the film 

by standard photolithography followed by plasma etching. 200-μm-long 700-nm-groove-

depth Bragg gratings at 343.3-nm-period were focused-ion-beam-milled into the ridge 

waveguides. The photonic crystal structure was positioned approximately 100-μm away 

from the output facet on two samples and 10-μm away from the input facet on another, on 

1.2-μm long ridge waveguides, spanning the length of the sample. Both input and output 

sides of the waveguide were lapped down to a 0.1-μm-grain diamond lapping-film finish.  

Refractive index measurements of waveguide modes of the film were done before surface 

patterning using a prism coupler. Fundamental to third order TE mode refractive indices 

measured in the slab were 2.2930, 2.2497, 2.1781, and 2.0765, respectively. Linear 

birefringence, defined as the difference between TE and TM mode indices, measured for 

the first four modes were 0.0005, 0.0047, 0.0120 and 0.0210, respectively. Figure 4 

shows a scanning-electron-micrograph of a Bragg filter patterned in one of these 

Bi0.8Gd0.2Lu2.0Fe5O12 films. 
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Stop band tuning tests were also conducted on a second set of (100) LPE-on GGG-

substrate films with composition Bi1.28Lu1.69Gd0.03Fe3.65Ga1.35O12 and 2.8-μm-thickness 

(±0.1-μm). A total of three samples and four Bragg filters were tested for this material 

with results consistent with the first set. 200-um-long photonic crystals with 348-nm-

period and 700-nm grating-groove-depths were fabricated in this material. The refractive 

indices of the first four TE waveguide modes were 2.2805, 2.2425, 2.1784, and 2.0876 

respectively. The measured linear birefringence of these waveguide modes were 0.0002, 

0.0041, 0.0097, and 0.0169, respectively. The intrinsic Faraday rotation of the film was 

95°/mm. Faraday rotation measurements were conducted at 1550-nm-wavelength across 

the thickness of the sample in un-patterned films using a rotating polarizer and phase-

sensitive detection. 

 

Beam preparation 

Elliptically polarized states from a tunable infrared (IR) 1480-1580-nm-wavelength fiber-

pigtailed source were prepared using a quarter-wave plate, an Agilent 11896A 

polarization controller and a linear polarizer. The laser beam goes through the 

polarization controller and a lensed fiber coupled to the output of the controller. It is then 

allowed to go through the quarter-wave plate. The latter’s fast axis orientation defines the 

semi-major axis of the input polarization state. To define the input beam ellipticity (the 

ratio of the semi-minor to semi-major axes amplitudes of the polarization ellipse), a linear 

polarizer placed after the quarter-wave plate is oriented so that its transmission axis forms 

an angle 
2
π θ−  relative to the latter’s fast axis, with tanθ equal to the desired ellipticity 

of the beam. The polarization controller is then adjusted to minimize the intensity of the 
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transmitted light emerging from these two optical components for said configuration. The 

light coming out of the lensed fiber has the desired polarization. 

An ellipticity check is done to confirm the polarization state of the beam by measuring 

its intensity coming out of the lensed fiber for all 360° orientations of the polarizer axis in 

steps of 0.1°. The measured ellipticity of a beam is given by the following expression: 

min

maxI
IEllipticity =  ,                                                     (13)            

where  minI    and  maxI  are the measured minimum and maximum intensities of the beam. 

The polarizer-angle corresponding to the minimum intensity denotes the semi-minor axis 

orientation of the elliptical polarization state. After the polarization state of the beam is 

prepared as described above, it is then coupled into the ridge waveguides by butt 

coupling. 

Stokes parameters ( 0,1,2,3)jS j = are used to determine the input beam helicity. Out 

of these four Stokes parameters 3S  (its sign) determines the helicity of the propagating 

beam. Experimentally, 3S  is measured using a quarter-wave plate and a linear polarizer. 

The beam intensity ),( φθI  , where φθ ,  are the linear polarizer axis and quarter-wave 

plate fast axis orientations, respectively, is first measured just with the linear polarizer at 

θ = 0° and 90°. Subsequently it is measured by inserting the quarter-wave plate (φ = 90°)   

into the beam path with the linear polarizer set at θ = 45° [40]. 3S  is given by 

).90,45(2)0,90()0,0(3 °°−°°+°°= IIIS     (14)             
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 In a Poincaré sphere representation, a beam with polarization coordinate 1 2 3( , , )s s s  

for normalized Stokes parameters 
0

j
j

S
s

S
= is located in the upper hemisphere if 3S  is 

positive and polarized in the counter-clockwise sense as observed from the source, or in 

the clockwise sense as observed from the detector point of view (positive helicity). For a 

negative value of 3S  the beam carries the opposite (negative) helicity. 

 

Measurements 

The polarization state of the input beam is prepared to coincide with that of the 

fundamental normal modes of the waveguide structure. Their ellipticity and helicity are 

determined using the values of the linear birefringence, the specific Faraday rotation of 

the film and Eq. 2. A saturation-magnetic field of 300 Oe collinear with the waveguide 

axis in the forward and backward directions is used to magnetize the sample.  

To confirm that the input beam couples into a normal mode, it is tested on a plain 

waveguide first, before launching it into a Bragg reflector. This test is done to verify that 

its polarization state remains largely unchanged as the beam propagates down the guide. 

Light prepared in normal mode polarization states is then launched from the feeder side 

to the Bragg reflector. Transmittance spectra for fundamental forward to high-order (first, 

second and third) as well as to fundamental-backward-propagating-mode stop bands are 

measured using normal mode and TE mode inputs. These measurements are done for  

parallel and anti-parallel directions of the longitudinal magnetic field relative to the beam 

propagation direction. Normal mode polarization states are prepared at center-wavelength 
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of the TE stop bands, with no significant input polarization-state departures observed for 

± 20-nm wavelength detuning away from the center-wavelength. 

 

IV. Results and Discussion 

Mode conversion in the waveguide feeder section 

Our analysis of the normal mode response in plain waveguides confirms that unlike 

other polarization states, normal mode polarization states remain unchanged as the beam 

propagates through the medium. Figure 5 plots the polarization response of an elliptical 

normal mode ( 3 0.48s = ) and a reversed helicity mode ( 3 0.48s = − ) having the same 

ellipticity ( 3 0.48s = ) before (Fig. 5(a)) and after (Fig. 5(b)) propagating through a 

typical magneto-optic ridge waveguide fabricated in Bi0.8Gd0.2Lu2.0Fe5O12 and 

magnetized in the longitudinal direction. Shown are 360° analyzer scans, where 0° and 

180° correspond to the orientation of the semi-minor axis. Figure 5(b) shows that the 

reversed helicity mode deviates significantly from the input, whereas the normal mode 

remains largely unaltered to within experimental accuracy ( 3 0.05sΔ ≤ ). Ellipticity is 

preserved to 3 0.05sΔ ≤  or better. Deviations of less than o8  in semi-major axis 

orientation over a 1mm feeder section are routinely recorded for the normal mode. This 

confirms that normal modes are magnetization-direction and helicity dependent.  

 

Photonic crystal stop bands and magnetization reversal 

Next we consider the stop band response to normal modes and reverse-helicity modes. 

Significant departures are found upon magnetization reversal between opposite helicity 
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inputs on the same photonic bandgap structure. These are ascribed to changes in 

polarization state of the reverse-helicity mode as it propagates down the section of the 

guide feeding into the Bragg reflector (feeder section). Changes in the stop band spectral 

shape were also found for Bragg filters fabricated ~10 mμ  from the input facet. These 

changes are ascribed to changes in the Bloch mode configuration of the photonic crystal, 

as discussed below.  

Gyrotropic stop bands were studied by launching elliptical normal modes from the 

feeder side to the photonic crystal, as shown in Fig. 6. This figure displays normal mode 

transmittance for a fundamental forward-mode to second-order back-reflected mode stop 

band (black) for a Bi0.8Gd0.2Lu2.0Fe5O12 film. Plots are shown in absolute units (6(a)) and 

also in units normalized to the transmittance of a plain waveguide without Bragg filter 

(6(b)). Normalization takes into account spectral changes in input power at the power 

source. For comparison we also display here the TE stop band (blue). These results agree 

with theoretical calculations for normal and TE modes based on the model described in 

Section II, and plotted in Fig. 6(c).  

A different response is found upon magnetization reversal, as displayed in Fig. 6(d). 

Here the mode hybridizes as it is no longer a normal mode, even though the input 

polarization is the same. This change is due to the conversion of the normal mode into a 

hybrid mode and its subsequent evolution in the waveguide. Mode conversion into the 

reverse-helicity normal mode in the waveguide feeder section is almost complete, as the 

stop band shifts to the one corresponding to that mode. These results agree remarkably 

well with stop band calculations from the theoretical model described in Section II, as 

shown in Fig. 6(c). Mode conversion and strong stop band reconfiguration was 
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reproducibly observed in all samples tested. This reconfiguration is consistent with the 

mode conversion to a nearly-orthogonal mode in the feeder section (curve 2) in Fig. 5. 

Of particular note is the very large spectral detuning of the stop band upon 

magnetization reversal, as it may have useful applications to optical switching devices. In 

particular, it should be noted that reconfiguration of the stop band upon magnetization 

reversal or input-polarization helicity reversal can thus convert a stop band into a pass 

band, enabling optical switching. Given the demonstrated ultrafast response of magnetic 

switching [37], the kind of magnetic stop band tuning discussed here may be a promising 

route to ultrafast optical on-off devices. 

This detuning is a direct consequence of the inter-modal back-reflection from 

fundamental to second-order mode. The large refractive index difference between 

different-helicity backward propagating modes is responsible for this detuning. A change 

in helicity of the normal mode from positive to negative together with a change in 

magnetization direction restores the original normal mode spectral response (Fig. 6(e)). 

Thus, a change in helicity together with magnetization reversal preserves the normal-

mode character of the mode and yields an unchanged stop band. These results are 

repeatable and have been reproduced in three other samples for the same back-reflected 

second-order mode and for third-order back-reflected modes.  

 

Stop band spectra and Bloch mode reconfiguration upon magnetization reversal 

The effect on stop band reconfiguration as a result of Bloch mode reconfiguration 

upon magnetization reversal is studied experimentally through launching the normal 

mode from the near-side of the magneto-photonic crystal structure. We compare these 
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results with stack model calculations for the asymmetric scattering from forward 

fundamental mode to backward propagating second-order mode for photonic crystals 

with period 345nm patterned on Bi0.8Gd0.2Lu2.0Fe5O12, 2.7-μm-thick films.  

Upon magnetization reversal, polarization modifications of the coupled input light in 

the small feeder section of less than 10 mμ  (Fig. 4) are minimal. The polarization state of 

the mode entering the Bragg grating can therefore be assumed to be essentially 

unchanged in helicity and ellipticity by the magnetization reversal. However, a 

comparison of the experimental transmittance for forward- (normal mode) and backward 

pointing magnetization (not normal mode) in Fig. 7, shows that the transmittance inside 

the stop band increases. These results are reproducible and real, though not very large. 

We ascribe these changes to normal mode helicity reversal as these reversals impact the 

coupling strength of the elliptically polarized input and hence the transmittance.  

Theoretical calculations (Fig. 7(c)) based on the model described in Section II agree 

very well with these measurements. Bloch mode reconfiguration as a result of 

magnetization reversal is due to helicity reversal of the local normal modes in the 

photonic crystal. This reconfiguration impacts the coupling of the input polarization to 

the Bloch state and hence the transmittance. Forward propagating modes, but especially 

back-reflected high-order modes exhibit strong elliptical anisotropy and impact the 

transmittance upon helicity reversal. Magnetization reversal rotates the local polarization 

vectors ,
,ˆ f be+ − affecting the back-reflection even if the input polarization and its helicity is 

not altered. This reconfiguration reduces the coupling to the back-reflected modes inside 

the stop band, as shown in Fig. 7. 
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Figure 7(d) plots the transmittance spectra of a horizontal normal mode upon coupling 

from the near and far sides of the photonic crystal, respectively. Clearly, the normal mode 

transmittance spectra from both sides of the photonic crystal coincide, except for small 

deviations on the side wings. We ascribe these to mode conversion effects from fiber 

mode to waveguide mode on the near side, and to small semi-major axis reorientations in 

the feeder section on the far side. It should be noted that Bloch mode reconfiguration 

affects the center stop band and is not due to mode conversion effects. 

 

Conclusion 

The key finding here is that magnetization and helicity reversals induce a change in 

the stop band spectral shape in elliptically birefringent gyrotropic photonic crystals. This 

change is caused by the transmutation of the normal into non-normal modes and the 

reconfiguration of Bloch modes upon magnetization reversal. The effect is very 

pronounced for asymmetric back-reflection between different order-modes in multimode 

photonic crystals. In the waveguide feeder section, the very same polarization state 

changes character upon magnetization reversal and this change of character is the cause 

of the stop band retuning. No longer being a normal-mode upon magnetization-reversal 

the mode breaks up into other normal modes that propagate with different effective 

indices and produce a different transmittance response. In the photonic crystal itself, 

magnetization reversal brings about a change in the helicity of the local normal modes 

resulting in stop band reconfiguration even when the input polarization maintains it 

helicity and ellipticity. The large spectral detuning for high-order mode asymmetric 
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contra-directional coupling presented here may be applicable to fast on-chip optical 

switching devices. 
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FIGURE CAPTIONS 

Fig. 1. Layered stack used for modeling the transmittance for inter-modal scattering. 

The model makes use of a bilayer unit cell with period Λ. Propagation is in the z-

direction, normal to the layer planes. 

Fig. 2. Poincaré sphere showing complementary elliptical normal modes for a given 

propagation direction, joined by either of the double-tipped arrows.  

Fig. 3. Normalized transmittance of a waveguide Bragg reflector fabricated in a 2.7-

μm-thick Bi0.8Gd0.2Lu2.0Fe5O12 film. The spectrum displays several stop bands 

corresponding to back-reflections into different-order modes for TE and TM fundamental 

mode inputs. The spectra are taken for transverse magnetization in order not to mix the 

modes. 

Fig. 4. Scanning electron micrograph of a magneto-photonic crystal waveguide sample 

fabricated in a 2.7-μm-thick Bi0.8Gd0.2Lu2.0Fe5O12  film. 

Fig. 5. Polarization response for plain waveguide of a normal mode (curve 1) and a 

reversed-helicity mode (curve 2) having the same ellipticity and semi-major axis 

orientation. The figure plots polarization analyzer 360°-scans, showing overlapping 

inputs into the waveguide (Fig. 5(a)) and different outputs (Fig. 5(b)) after propagating 

through a 1.2mm-long waveguide.  

Fig. 6. Transmittance profile of fundamental-forward to backward-propagating 

second-order-mode stop band measured for horizontally-oriented semi-major-axis 

elliptical normal modes in a Bi0.8Gd0.2Lu2.0Fe5O12 film (6(a) in absolute units and 6(b) in 

normalized units to the transmittance of a plain waveguide). The stop band for a TE input 

in a transverse magnetic field is also shown for comparison. Figure 6(c) plots the 
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theoretically-calculated stop bands for opposite helicity elliptical normal modes. Strong 

experimentally-measured stop band reconfiguration due to mode conversion is shown in 

Fig. 6(d) for a reversed-helicity mode (not normal) stop band (red). Figure 6(e) plots the 

stop band for simultaneous helicity- and magnetization- reversal.   

Fig. 7. Bloch mode reconfiguration is experimentally shown in 7(a) (absolute units) 

and 7(b) (normalized units) through the stop band corresponding to second-order 

backward-propagation for a normal mode and reversed normal mode for a photonic 

crystal 10- mμ  away from the input side on the waveguide. Theoretical calculations 

confirm the Bloch mode reconfiguration (7(c)). Figure 7(d) plots the stop bands from the 

far-side (green curve) and near-side facet (black curve).  



 27

FIGURES 

 

 

  

 

 

 

Fig. 1 



 28

 

 

 

Fig. 2 



 29

 

 

 

Fig. 3 



 30

 

 

Fig. 4



 31

 

 

 

 

 

 

 

 

 

Fig. 5 
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Fig. 7 a, b, c, d
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