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Abstract 

We present an efficient method for evaluating current-induced forces in 
nanoscale junctions, which naturally integrates into the non-equilibrium Green’s 
function formalism implemented within density functional theory. This allows us to 
perform dynamical atomic relaxation in the presence of an electric current while also 
evaluating the current-voltage characteristics. The central idea consists in expressing 
the system energy density matrix in terms of Green’s functions. In order to validate 
our implementation we perform a series of benchmark calculations, both at zero and 
finite bias. Firstly we evaluate the current-induced forces acting over an Al nanowire 
and compare them with previously published results for fixed geometries. Then we 
perform structural relaxation of the same wires under bias and determine the critical 
voltage at which they break. We find that, while a perfectly straight wire does not 
break at any of the voltages considered, a zigzag wire is more fragile and snaps at 1.4 
V, with the Al atoms moving against the electron flow. The critical current density for 
the rupture is estimated to be 9.6×1010A/cm2, in good agreement with the 
experimentally measured value of 5×1010A/cm2. Finally we demonstrate the 
capability of our scheme to tackle the electromigration problem by studying the 
current-induced motion of a single Si atom covalently attached to the sidewall of a 
(4,4) armchair single-walled carbon nanotube. Our calculations indicate that if Si is 
attached along the current path, then current-induced forces can induce migration. In 
contrast, if the bonding site is away from the current path, then the adatom will remain 
stable regardless of the voltage. An analysis based on decomposing the total force into 
a wind and an electrostatic component, as well as on a detailed evaluation of the bond 
currents, shows that this remarkable electromigration phenomenon is due solely to the 
position-dependent wind force. 
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I. INTRODUCTION 

In recent years nanoscale devices have attracted increasingly large attention. The 
interest is motivated by their potential as a viable technology for either extending or 
replacing the conventional Si MOSFET platform.1,2 However, as the device size 
shrinks, atomic rearrangements3-7  and diffusion of atoms8-12  in the presence of 
electrical currents become key problems, limiting the device mechanical stability and 
the persistence in time of uniform electron transport properties. These issues are 
closely related to the presence of current-generated forces acting upon the nuclei. The 
interaction between current-carrying electrons and ions manifests itself in two 
different ways, namely as local ionic heating and as current-induced forces.13-15 
Certainly they both may have significant effects on the atomic and electronic structure 
of a nanoscale junction.13-23 Local heating involves a series of inelastic transitions 
among states of different energy, and thus it is associated with the excitations of the 
corresponding vibrational modes. Current-induced forces in contrast mainly arise 
from the charge density redistribution caused by the electron flow. In a pictorial way 
this force is analogous to the one exerted by the running water of a river upon the 
stones in its bank, and is usually referred to as the wind-force. 

In the quasi-ballistic transport regime, the one investigated here, local ionic 
heating is small and usually gives an insignificant contribution to the atomic motion15, 
but what about current-induced forces? Interestingly, the typical current densities in 
nanoscale junctions are much larger than those in the conducting interconnects widely 
used in solid-state circuits. Since current-induced electromigration is already one of 
the major causes of device failure in microelectronics, 24 - 27  we expect that in 
nanodevices current-induced forces will play an even more important role in limiting 
their strutural stability. This clearly indicates that a deep understanding of  
current-induced forces may help us in the design of more robust devices possibly with 
longer lifetimes. Furthermore one may also speculate of using current-induced forces 
to operate a device, for instance as a tool for switching a resistor between different 
resistance values, or to assemble devices by drifting atoms at desired positions with 
electrical currents. 

Despite their importance, to our knowledge, only a few fundamental studies14,28 
have focused on the implementation of current-induced forces in a practical algorithm. 
Furthermore much remains still to be understood about the electromigration process 
and the calculations of diffusion paths. With these two goals in mind we have 
developed an efficient computational scheme for the calculation of forces at finite bias 
and implemented it in the ab initio electronic transport code Smeagol29-31. Smeagol is 
based on the non-equilibrium Green’s function (NEGF) method 32 - 34  and it is 
interfaced with the localized atomic orbital pseudopotential code Siesta35,36, from 
which it obtains the density functional theory (DFT) Hamiltonian matrix. We note that 
such an implementation based on the ground state DFT exchange-correlation 
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functionals corresponds to the special case where the NEGF scheme is applied within 
a mean field single particle approximation. As such the method is equivalent to single 
particle scattering theory. In order to maintain consistency with a large body of 
existing literature we will still refer to our method as the NEGF+DFT. Our scheme 
enables us to perform structural relaxation at finite bias and at the same time to 
monitor the device current-voltage (I-V) characteristics. Furthermore, it potentially 
opens up the possibility of performing molecular dynamics simulations under electron 
current flow conditions. 

The implementation of current-induced forces is a rather challenging task, since 
it involves the evaluation of the atomic forces in a non-equilibrium situation, where 
the total number of electrons in the simulation cell is not guaranteed and the total 
energy is not defined. For a closed, finite and time-independent system at equilibrium, 
the atomic forces are well defined and can be obtained from the conventional 
Hellmann-Feynman (HF) theorem37. In contrast, for an open and out of equilibrium 
situation we are no longer able to define the atomic forces from such a classical 
energy perspective and an alternative strategy is needed. To our knowledge there are 
two different starting points in the derivation of the atomic forces under the presence 
of a current. The first starts from a time-dependent Lagrangian mean-field theory38,39, 
while the second is completely based on quantum-mechanical many-body dynamic 
theory40. By using this second strategy it is possible to define the atomic forces for a 
general quantum mechanical system as the time derivative of the expectation value of 
the ionic momentum operators.15,28 The method holds true for the time-dependent 
situation as well. Although the physical origin and the formal definition of 
current-induced forces seem rather clear, in the past there has been some controversy 
over whether or not such forces are conservative41. More recently the controversy 
seems to have set pointing towards the non-conservative nature of current-induced 
forces.7,42  

Our paper is organized as follows. In the next section we briefly introduce our 
computational methodology and the technical implementations adopted in Smeagol. 
Then we present a series of test cases for atomic forces calculated either at zero or at 
finite bias. In the case of finite bias calculations we choose a capacitor setup, where 
the electrodes are completely disconnected, so that no current flows. Such a setup 
allows us to verify the correctness of the NEGF-calculated electrostatic forces as these 
can be compared to those obtained by a corresponding DFT total energy calculation 
including a finite electric field35,36. We then present an investigation on the 
current-induced forces acting on Al point contacts, and compare the results to 
previous calculations for similar systems, where jellium leads were used. We also 
determine the critical bias leading to junction breaking for straight and zigzag wires, 
finding a rather good agreement with available experimental results. Finally, in the 
last section we present a series of numerical calculations demonstrating the capability 
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of our implementation to tackle the electromigration phenomenon. Our test case is 
that of one Si adatom drifting along the path of the current in the vicinity of a (4,4) 
armchair single-walled carbon nanotube (SWCNT). 

II. METHODS 

In order to define the atomic forces acting on a system sustaining a steady-state 
electric current we first provide a brief overview of the transformed HF theorem, 
which relates conservative atomic forces to classical energies. The HF theorem 
expresses the total force acting upon the I-th atom, IF , as the negative derivative of 

the total energy, E  , with respect to its position, IR  , 
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Here, ˆ ( )IH R is the many-electron Hamiltonian operator and |Ψ〉 is the associated 

many-electron normalized wave-function. The first term in the last equality of Eq. (1) 
is the well-known conventional HF force, while the second term is often referred to as 
the Pulay force43. This vanishes only if |Ψ〉 is an exact eigenstate of Ĥ  or if the basis 
set does not depend parametrically on the ionic coordinates (as for a plan-wave basis 
set) 28. In that particular case the Eq. (1) reduces to the conventional HF theorem. 

In DFT the ground state total energy is a well-defined quantity. As such the 
atomic forces can be calculated by taking explicitly the derivative of the total energy 
with respect to the atomic positions as written in the first equality of Eq. (1). This is 
well documented and a detailed description of the implementation used in Siesta can 
be found in references [35, 36, 44]. The result can be generally written as the sum of 
two terms 

.BS CF F F= +                                                        (2) 

Here BS BS IF E R= − ∂ ∂  describes the force originating from the band structure (BS) 

contribution of the total DFT energy, BSE , which is equal to the sum of the 

eigenvalues of the occupied states. The second term, CF , is obtained by taking the 

derivative of the remaining contributions to the DFT total energy.44 Importantly, the 
force given in Eq. (2) automatically includes also the Pulay corrections arising from 
the fact that the employed basis set is constructed with local atomic orbitals 
(numerical). The Kohn-Sham (KS) equation of the system reads 36 

i i iH Sμυ υ μυ υψ ε ψ=  ,                                                 (3) 
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where Hμυ  is the Kohn-Sham Hamiltonian matrix element, Sμυ  is the overlap 

matrix element, iε  is the i-th KS eigenvalue, iμψ  is the corresponding eigenvector 

and the indices μ and ν label the local orbital basis set. The density matrix of the 
system, μυρ , is then defined as 

*( )i i i
i

fμυ μ υρ ε ψ ψ=∑  ,                                               (4) 

where ( )if ε  is the occupation probability of the state having iε  as its KS 

eigenvalue. In our case ( )if ε  is the Fermi-Dirac distribution. The band structure 

force, BSF , can then be written as 

BS
I I

H S
F

R R
μυ μυ

μυ μυ
μυ μυ

ρ
∂ ∂

= − + Ω
∂ ∂∑ ∑  ,                                     (5) 

where μυΩ  is the so-called energy density matrix 44, defined as 
*( )i i i i

i
fμυ μ υε ε ψ ψΩ =∑  .                                              (6) 

Since our interest is that of extending the formalism to open systems described by the 
NEGF formalism30, it is convenient to re-write Eq. (4) and Eq. (6) in terms of the 

retarded Green’s function ( ) [ ] 1( )G E E i S Hμυ μυδ −= + − , with δ  being a small 

positive number. The Eq. (4) can then be re-casted as energy integral 30 
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and it is straightforward to show that a similar expression holds also for the energy 
density matrix 

( ) ( )†1 ( ) ( )
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Ω = − −∫  .                            (8) 

The only difference between Eq. (7) and Eq. (8) is the additional factor E  appearing 
in the integrand. The advantage of expressing the forces in terms of Green’s functions 
is that we can now extend the formalism to open systems.  

We now move to define the forces for a system out of equilibrium and sustaining 
a steady-state current. In this situation the HF theorem is not directly applicable. 
15,28,45,46 However, Di Ventra and co-workers have shown that the forces can be 
defined in a more general way, namely as the time derivative of the expectation value 
of the ionic momentum operator, 15,28 i.e. as 

( ) ( )I
I

F t i t
t R

∂ ∂
= Ψ − Ψ

∂ ∂
 ,                                           (9) 

where the wave function is in general time-dependent. Based on Eq. (9) and the more 
restrictive condition for the wave function 28  
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by some algebraic manipulations we eventually derive an Ehrenfest-like expression 
for the forces that applies to a generic time-dependent problem expanded over a finite 
basis set 
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Note that for steady-state transport problems the wave function of the system can be 
written as /( ) iEtt e ψ−Ψ = , where E is a phase factor with units of energy. By using 

this result and Eq. (11), a final form for the total atomic forces in a system with 
steady-state electrical current flow is given as 

ˆ
I

I

H
F

R
ψ ψ∂

= −
∂

 .                                                  (12) 

At this point we want to stress that Eq. (12) is formally identical to the HF force given 
in Eq. (1), although the two equations are based on a completely different derivation, 
and Eq. (12) holds under more general conditions. Because of this formal analogy, 
however, the expression in Eq. (2), derived for a closed system at equilibrium, is also 
valid for the steady-state transport problem, which is explored here. Importantly, all 

the terms contained in CF  depend entirely on the charge density matrix μυρ  35,44.  

This means that the forces can be computed exactly as in a standard DFT ground state 
calculation once the non-equilibrium μυρ  is known. Therefore in the remaining part 

of this section we focus on detailing how μυρ  and μυΩ  are extracted in the 

non-equilibrium case. 
The NEGF scheme implemented in Smeagol is based on dividing a two-terminal 

device into three parts: the semi-infinite left and right current/voltage electrodes (the 
leads) and the scattering region (or the extended molecule) 30. The effects of the leads 
on the scattering region are taken into account via the energy-dependent self-energies, 
and the associated coupling matrices, ( )L EμυΓ  for the left electrode, and ( )R EμυΓ  

for the right electrode. For such a system setup the non-equilibrium density matrix of 
the scattering region is given by 

1 ( )
2M MG E dE

iμυ μυρ
π

∞
<

−∞

= ∫  ,                                          (13) 

where the additional subscript M  indicates that the orbital indices ,μ ν  run only 

over the basis set functions localized in the scattering region. ( )MG Eμυ
<  is the 

energy and voltage dependent lesser Green’s function for the scattering region, and is 
given by 
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In the same way as for the equilibrium case [Eq. (8)], it is then straightforward to 
show that μυΩ  is calculated with an analogous equation to the one used to obtain 

μυρ  [i.e. Eq. (13)], but where the integrand is now multiplied by the energy E  

1 ( )
2M ME G E dE

iμυ μυπ

∞
<

−∞

Ω = ∫ .                                         (15) 

Although both M μυρ  and M μυΩ  depend on the charge density of the entire infinite 

open system (extended molecule plus leads), they can be calculated by using just the 
Hamiltonian of the scattering region and the self-energies of the leads, which also set 
the appropriate open boundary conditions. At zero-bias Eq. (13) and Eq. (15) are 
equivalent to Eq. (7) and Eq. (8), once these are evaluated only over the basis indices 
running over the scattering region.  

The scheme for calculating current-induced forces discussed up to this point has 
been implemented into the Smeagol code. Before going through a few examples, 
demonstrating our ability of performing structural relaxation at finite bias, we will 
now report some technical details of the implementation. In general, in order to ensure 
a more smooth convergence of the charge density, we always attach at each side of the 
scattering region one principal layer (unit cell) of the leads. Then, when performing 
structural relaxation, the atoms of such principal layers are always kept fixed at their 
equilibrium positions (the ones of the bulk crystal). We note that at zero-bias our 
formalism allows us to calculate the projection of the total energy onto the scattering 
region, just like in a standard ground state DFT calculation, as this ultimately depends 
only on M μυρ  and MH μυ . At finite bias a total energy is not defined, especially since 

the forces might not be conservative.7,42 
Under current flow conditions the density matrix of the scattering region 

responds to the applied bias, producing a redistribution of the electron density at the 
surface of the electrodes and inside the atomic junction itself (typically a molecule). 
The charge density accumulation at the surface of the electrodes generates an electric 
field, similarly to what happens in a parallel plate capacitor. As a consequence there is 
a force of purely electrostatic nature (also denoted as “direct force”47), originating 
from the charge accumulation at the surface of the electrodes, acting on the ions 
located in between the two surfaces. In contrast, the local change in the charge density 
of the bridging molecule itself gives rise to a second contribution to the 
current-induced forces, which we refer to as wind force (the force described as 
originating from the continuum wave functions in Ref. [47]). In literature the term 
“wind force” often refers to the force originating purely from the momentum transfer 
from the electrons to the ions;48,49 here we also include the forces originating from 
current-induced charge density rearrangements into the wind-force, since also these 
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are ultimately caused by the electron flow (wind). For a given device it is then 
interesting to analyse the direct force and wind force independently. 

Unfortunately purely electrostatic and wind forces are not observable separately, 
so that it is not formally possible to distinguish between the two. If we assume that 
there is a rather small bias induced charging of individual atoms in the bridging 
molecule, then we can use an approximate procedure 47,48. Firstly, for fixed structure 

and fixed bias voltage the total force, ( ); ( )F V H Vμυ μυρ⎡ ⎤⎣ ⎦ , is calculated. Then an 

approximation for the electrostatic force can be obtained by calculating the forces for 
the equilibrium zero-bias charge density and the corresponding Hamiltonian, to which 
we add a potential shift, HμυΔ . Such a shift describes an electrostatic potential offset 

between the two electrodes equal to V and a linear potential drop within the scattering 
region (as expected for a parallel plate capacitor). Technically HμυΔ  is obtained by 

adding to the Hamiltonian of the left (right) lead the corresponding overlap matrix 
multiplied by 2eV+  ( 2eV− ) and a linear potential drop in the scattering region, 

i.e. HμυΔ  describes a position dependent shift of the matrix elements of the 

Hamiltonian of the scattering region due to the electric field. We can then define the 

electrostatic force, ( )FieldF V , as 

( ) (0); (0) ( )FieldF V F H H Vμυ μυ μυρ⎡ ⎤= + Δ⎣ ⎦ .                               (16) 

Then the wind force, ( )WindF V , is simply obtained by subtraction as 

( ) ( ); ( ) ( )Wind FieldF V F V H V F Vμυ μυρ⎡ ⎤= −⎣ ⎦ .                               (17) 

Clearly this definition is only operational and it is not applicable in general (for 
instance when the charge density is severely distorted by the bias). However by using 
this simple separation we can often provide a reasonable estimate of the two 
contributions and understand which force dominates in a particular device (see Sec. 
V). 

III. FORCES FOR NON-CURRENT CARRYING SYSTEMS 

As a first test for our methodology in this section we present a set of calculations 
for systems where there is no current flow. Our aim is to compare forces calculated 
with the NEGF scheme implemented in Smeagol (open boundary conditions) to those 
obtained from a DFT ground-state calculation using periodic boundary conditions 
(PBC), as performed with Siesta. In order to compare results at finite bias (but still 
with no current) we consider a capacitor setup, where the two electrodes are so well 
separated to be electronically non-interacting among each other.  

A. Atomic forces at equilibrium: one-dimensional Au monatomic chain 

Our first goal is that of verifying the validity of the Green’s function approach in 
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calculating the energy density matrix at zero-bias [Eq. (8)] in a practical situation. To 
this goal we choose a simple and idealized one-dimensional (1D) system, where the 
scattering region consists of a gold chain of 9 atoms, connected to 1D gold electrodes. 
The lattice spacing is assumed to be uniform, 2.8 Å, with the leads unit cell containing 
two atoms. We then shift the middle Au atom in the scattering region by 1 Å in the 
direction transverse to the chain [see Fig. 1(a)], so that a rather large restoring force is 
expected. In Fig. 1(b) we present the calculated forces, where the solid black lines 
represent those obtained with a standard Siesta calculation for a system periodic along 
the z direction, whereas the dashed red lines represent the forces obtained by using our 
NEGF scheme. Note that all the forces are distributed in such a way to move the 
shifted atom back into the chain and that there is essentially no difference between the 
two methods. This confirms that the NEGF-calculated charge density is identical to 
numerical precision to that calculated with standard DFT and PBC, and also that the 
equilibrium M μυΩ  is calculated correctly by Eq. (15). In order to emphasize further 

the importance of calculating correctly M μυΩ , we also show the results for forces 

obtained by setting 0M μυΩ =  (dash-dotted blue lines). These are considerably larger 

and for some atoms they even point in the wrong direction. 

B. Field induced forces over the surface atoms of the electrodes 

In order to evaluate the accuracy of the calculated forces at finite bias, we now 
consider a parallel-plate capacitor that consists of two semi-infinite lithium electrodes 
separated by a 10 Å long vacuum gap [see Fig. 2(a)]. Each atomic layer contains 9 
atoms, and we use 4×4 k-points in the x-y plane to account for periodic boundary 
conditions in the orthogonal direction. There are 4 atomic layers in each lead unit cell. 
Fig 2(c) shows the planar average in the x-y plane of the difference between the 
electrostatic potential at finite and zero bias (dashed blue line) for a voltage of 2 V. 
Since the vacuum region electronically disconnects the two electrodes, the same 
calculation can be also performed as a ground state PBC calculation with an electric 
field applied along the z-axis (solid black line). Note that the discontinuity in the 
applied sawtooth-like potential is located in the middle of the vacuum region, and 
therefore does not affect the charge density. From the figure we note that at 
self-consistency the planar average of the potential is flat in the metal, while the field 
induced drop is located in the vacuum region. The resulting charge density for this 
system, and therefore also the forces, should be approximately equal across the two 
methods. 

We start our analysis of the forces by discussing again the zero-bias case 
presented in Fig. 2(b). In the figure the atoms are sorted along the z-direction: a 
negative index indicates an atom located in the left electrode, while positive indexes 
are for those in the right electrode. Atom 0 is the right-most atom of the left electrode. 
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We note that although both methods yield a similar trend, there are some 
non-negligible quantitative differences. Within the NEGF approach the forces acting 
on the atoms at the boundary of the scattering region are expected to be somewhat 
inaccurate, since it is the location where the scattering region is joined to the bulk 
semi-infinite leads. However, this does not pose a problem since the boundary atoms 
belong to those lead principal layers which in Smeagol are always kept fixed at their 
bulk positions. More worryingly however is the fact that some forces are different at 
the electrode surface, where atomic relaxation should be performed. In order to 
investigate the origin of this discrepancy in more details, we have calculated the 
forces for the same system, but where we now add respectively 4 [red dashed lines in 
Figs. 3(a) and (b)] and 8 [black lines in Figs. 3(a) and (b)] additional Li atomic layers 
at each side of the scattering region. We note that the NEGF calculation returns us 
forces almost constant with the length. This reflects the fact that the present 
calculations effectively concern only two semi-infinite leads, so that the number of 
layers inside the scattering region should not affect the result. In contrast the forces 
calculated with PBC converge towards the NEGF result only as the electrodes get 
longer. This demonstrates that the forces are basically identical within two methods, 
as long as a sufficiently large number of atomic layers are included in the PBC 
calculation. It also shows that finite size effects are smaller in the NEGF approach 
than in the PBC calculations. As such we believe that our open boundary condition 
approach constitutes an important calculation platform for studying surface 
reconstruction, since it naturally includes the correct boundary conditions, in contrast 
to standard periodic calculations for a finite slab. 

We now move to analyze the forces calculated with the NEGF scheme at finite 
bias. These are presented in Fig. 3(c), where we display the difference between the 
forces at finite bias and those at zero-bias plotted as a function of the atomic position 
(in practice the atomic index). The same quantity is shown in Fig. 3(d) for a PBC 
calculation with an equivalent applied electric field. The most notable feature is the 
presence of spurious NEGF-calculated forces on the atoms at the boundary of the unit 
cell. This is due to the fact that at finite bias Smeagol introduces a potential step at this 
boundary, which results in a spurious contribution to the forces. However, again this 
only affects the peripheral atoms of the leads, i.e. those that are not relaxed. In the 
center of the scattering region the charge induced change in the forces is basically 
identical when calculated with the two methods. This confirms the correctness of Eq. 
(15). Note that the field induced forces at the electrode interface layers, which have 
been discussed in this section, are expected to produce the main contribution to the 
finite bias relaxation of the metal-insulator interface in tunnel junctions, where the 
currents are usually very small50,51.  

IV. CURRENT-INDUCED FORCES IN Al NANOWIRES 

So far we have only investigated systems in which there is no current flow. In 
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this section we present results for current-induced forces and the associated 
bias-induced structural instabilities. In the last decade there have been a number of 
calculations on current-induced forces in metallic nanowires, 3,4,15,20,28,41,52,53 so that a 
few theory benchmarks exist. In order to test our implementation, we have decided to 
investigate the forces acting over a 4-atom long straight Al wire, a system, which was 
previously discussed by Di Ventra et al. in Ref. [20]. In Di Ventra’s work the forces as 
function of bias were calculated for Al wires of different lengths connected to jellium 
leads. In our simulation we attach the 4-atom long Al chains to the hollow sites of flat 
Al(111) electrodes. These contain 9 Al atoms per plane and we include in the 
scattering region 5 atomic layers on each side of the wire [see Fig. 4(a)]. The 
equilibrium bond lengths are found by first relaxing the structure of a straight infinite 
Al monatomic wire, and then by minimizing the bond length between a finite 4-atom 
long chain and an Al slab. The second electrode is added in a symmetric way.  

Once the cell is constructed we then relax further the 4-atom long wire, while 
keeping the electrodes atoms fixed. The final relaxed bond distances in the wire are 
respectively 2.46 Å, 2.45 Å and 2.46 Å, and the wire to surface distance is 2.02 Å. We 
note that in Ref. [20] the relaxed Al-Al bond length is uniform and equal to 3.069 Å. 
In all the calculations presented here we use a single-ζ plus polarization basis set, as 
control tests employing a basis of double-ζ plus polarization quality give essentially 
identical results (both at zero and finite bias). The real space mesh cutoff is equal to 
400 Ry, and 4×4 k-points are used in the x-y plane. Note that in order to obtain correct 
results for the forces at finite bias under current flow conditions, it is not possible to 
avail of time-reversal symmetry in the x-y plane, so that one needs to sample the full 
Brillouin zone. 

In Fig. 5 we show the calculated forces as function of bias for the straight 4-atom 
long Al chains. These can be compared with those reported in Fig. 1(d) of Ref. [20] 
for bias values ranging between -1 V and 0 V (note that positive bias in Ref. [20] 
corresponds to negative bias in our calculations). In general we find a good agreement 
with the previously published results, except for the forces acting on atom 3 which are 
somehow different from those of Ref. [20]. The differences however are not 
significant and can be easily accounted for by the different leads used in the two 
calculations and by the consequent different initial bond lengths. In fact different 
atomic configurations result in slightly different charge distributions and these play an 
important role in determining the current-induced forces.  

We then perform structural relaxations of the atoms in the chain under bias, and 
find very little change in the atomic structure for bias voltages down to -3 V (we 
apply negative bias for the structural relaxations in order to be consistent with the bias 
direction used in Ref. [20]). A similar result was found previously for Au wires. 52 The 
reason for this seemingly very large stability of the chain structure under bias has to 
be found in the somehow artificial setup of the perfectly straight chain. This causes 
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the forces along x and y to vanish almost exactly. In fact, in our calculations the x and 
y components of the forces are smaller than 10-3 eV/ Å at zero-bias and remain 
approximately constant for all voltages [figures 5(a) and (b)].  

The forces vanish in the x-y plane due to an approximate rotational symmetry of 
the wire about the z-axis. In general symmetries relate the forces on the different 
atoms. If we denote the position of the midpoint of the bond between Al2 and Al3 as 
x0, then the system is symmetric under reflection across the x-y plane passing for x0. 
Therefore we have the following symmetry relations Fx(Vb,Al1)=Fx(-Vb,Al4), 
Fy(Vb,Al1)= Fy(-Vb,Al4) and Fz(Vb,Al1)=-Fz(-Vb,Al4). The system is also approximately 
symmetric under rotations about the x-axis, with rotation center at x0. This additional 
symmetry implies Fx(Vb,Al1)=Fx(-Vb,Al4), Fy(Vb,Al1)=-Fy(-Vb,Al4) and 
Fz(Vb,Al1)=-Fz(-Vb,Al4). Mirror and rotation symmetry can only be fulfilled at the 
same time with Fy(Vb,Al1)= Fy(Vb,Al4)=0. If we also consider the rotation symmetry 
around the y-axis with rotation center at x0, we obtain in an analogous way 
Fx(Vb,Al1)=Fx(Vb,Al4)=0. The same can be shown for atoms Al2 and Al3. From Fig. 
5(c) we can see that for the remaining force along the z-direction we indeed have 
Fz(Vb,Al1)≈-Fz(-Vb,Al4) and Fz(Vb,Al2)≈-Fz(-Vb,Al3). We note again here that in 
order to obtain a zero force in the x-y plane for all bias voltages it is important to 
sample the k-points over the entire x-y Brillouin zone. 

In order to study the effects of the current-induced forces on a more realistic wire 
structure, we perform additional structural relaxation at zero-bias, this time by 
initializing the atomic coordinates of the two central atoms slightly off the wire axis. 
Interestingly the final relaxed structure presents a zigzag shape [Fig. 4(b)], with the 
zigzag plane mainly oriented along the y-axis (there is also a small shifts along the 
x-axis), so that the system is approximately symmetric under rotation about the x-axis 
at x0. This new structure has a total energy lower than that of the straight 
configuration, in agreement with previous studies54. In Fig. 6 the bias dependent 
forces acting on the atoms of the zigzag chain are shown. These are qualitatively 
different from those presented in Fig. 5 for the straight wire, since now there are large 
forces in all the directions. In particular the forces lie mainly in the plane spanned by 
the zigzag chain, while they are small along the direction perpendicular to the plane. 
This feature reflects well the approximate reflection symmetry across such a plane. 
We also note that the forces along the z-direction are substantially different from the 
ones calculated for the straight chain.  

We then perform structural relaxations under bias also for the zigzag setup and 
find dramatic changes in the structure as the voltage increases. Already for Vb=-0.2 V 
there is a transition to a different zigzag configuration, in which one atom only now 
lies off the z-axis [see Fig. 7(a)]. As the voltage is further increased we observe rather 
small but continuous changes in the structure. Finally at -1.4 V there is a new 
discontinuous structural change, which effectively corresponds to the wire breaking 
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[see Fig. 7(b)]. This final structure does not get modified any longer by any voltage 
increasing down to -3 V. A wire breaking voltage of -1.4 V is in a rather good 
agreement with the experimentally found breaking voltages for Au and Ir nanowires 55. 
For Al nanowires no such experimental data are available, however in Ref. [56] the 
lifetime of Al wires is shown to be rather long up to 0.8 V, and then to decrease with 
increasing the bias. Since in our simulations we do not consider local current-induced 
heating, the calculated break-voltage of the wire corresponds to the voltage at which 
the energy barrier for the breaking process becomes zero, which corresponds to a 
vanishing life time in experiments. By extrapolating the experimental data for the 
lifetime as function of bias, shown in Fig. 7 of Ref. [56], one might estimate the 
experimental lifetime to vanish at around 1.6 V. A further detailed study of the 
breaking and of the electromigration phenomenon in Al nanowires with more realistic 
junction geometries, such as those discussed in Refs. [57, 58, 59], will be presented 
elsewhere. 

Finally in Fig. 8 we discuss the effects produced by the structural relaxation on 
the electron transport properties of the wires. In particular we compare the I-V curves 
for both the straight and zigzag configurations obtained with a static geometry and by 
relaxing the structure under bias. For the straight chain the current is almost 
insensitive to structural relaxation since the atoms themselves move little. The 
situation is however different for the zigzag configuration. Interestingly the first 
structural transition at -0.2 V does not affect the current as both the geometries across 
the transition correspond to similar zigzag wires [compare Fig. 4(b) and Fig. 7(a)]. At 
-1.4 V however there is a drastic decrease of the current due to the wire breaking. If 
we take the van der Waals radius of Al, equal to 1.84 Å, as the radius of the Al 
monoatomic chain, we can estimate its cross section to be about 10 Å2. The critical 
current density for the wire breaking is then calculated to be about 9.6×1010A/cm2, in 
good agreement with the measured value60 of 5×1010A/cm2. Furthermore, at this 
point the transport changes from ballistic to tunnelling, with the residual bonding 
interaction being responsible for the non-zero current. 

V. ELECTROMIGRATION OF A Si ATOM ON (4, 4) SWCNT 

Carbon-based integrated circuits might be used as a complementary 
technological platform for silicon-based microelectronics.61-63 For instance, carbon 
nanotube interconnects were successfully employed to bridge on-chip silicon 
transistors in realistic operational environments.62,63 It is therefore desirable to explore 
the effects of current-induced forces over the electromigration of Si impurities on 
SWCNTs. In the last decade many theoretical studies have focused on calculating 
current-induced forces for single atomic small impurities (B, C, N, O and F) and alkali 
metal species sidewall adsorbed on CNTs.22,23,64 To our knowledge however the 
possibility of electromigration has never been explored before. Here we present a 
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series of calculations for the (4,4) metallic SWCNT incorporating a single silicon 
atom, sidewall adsorbed at the bridge position. By means of extensive optimization a 
user-defined double-ζ plus polarization basis set is constructed both for C and Si. We 
use an equivalent mesh cutoff of 400 Ry for the real space grid, while the cell 
simulation dimensions are set to be 20.0 Å, 20.0 Å and 19.846 Å respectively along 
the x, y and z directions (the transport direction is z). The initial relaxed atomic 
structure of a (4,4) SWCNT composed of 16 layers of carbon atoms [see Fig. 9] is 
obtained by conjugating gradient relaxation until any atomic forces is smaller than 
0.03 eV/Å. The lead unit cell contains 4 layers with each layer comprising 8 C atoms 
(for this first calculation the leads are also (4,4) SWCNTs). Two stable independent 
adsorption sites at the bridge position are determined by structural relaxations at 
zero-bias. These are indicated as the A site (SiA) and the B1 site (SiB1) in Fig. 9. The 
difference between the two bonding sites is that the A site lies on a C-C bond 
perpendicular to the tube axis and therefore perpendicular to the transport direction, 
whereas the B1 site is on a bond slanted from the tube axis.  

For both the configurations we calculate the I-V curves up to a voltage of 1.5 V, 
while at the same time we relax the structure at each bias step. We find that SiB1 starts 
to dramatically migrate along the SWCNT already at the rather low threshold bias of 
0.5 V (with a current of about 60 µA). Since in our calculations we do not include the 
ionic vibrations caused by local heating, the migration of SiB1 in our structural 
relaxation indicates a vanishing energy barrier along the migration path at 0.5 V. The 
migration path essentially involves positioning the Si atom alternatively at B1 
positions and on top of C atoms [see path B1→B3 in Fig. 9]. In contrast, SiA remains 
almost still for all the bias voltages considered. An analysis of current-induced forces 
at finite bias indicates that the force acting on SiA along the C-C bond (the y-axis) is 
negligible and therefore the SiA atom does not move. In contrast for SiB1 there is a 
substantial force along the C-C bond since it lies along the current flow. This causes 
migration at low bias. 

In order to understand the nature of the current-induced forces acting on Si we 
decompose them into the two components described at the end of Sec. II, namely the 
electrostatic and the wind component (the total force is equal to the sum of the two). 
These are shown in Fig. 10 for both SiA and SiB1 as function of bias. As expected the 
electrostatic force increases approximately linearly with bias, but it is rather small for 
both the two Si positions. This is due to the fact that the electric field is rather weak 
along the long CNT considered and also because the Si adatom is almost in a charge 
neutral state. Furthermore, in order to confirm the small contribution made by the 
electrostatic forces, we also calculate the electrostatic forces for both the SiA and SiB1 
adatoms by using Siesta, where an electric field is applied along the tube axis, for a 
CNT of finite length. The results show that the electrostatic forces in both cases are 
negligibly small. In contrast the wind force for the SiB1 atom is large, so that in this 



 15

case it almost coincides with the total force. We can then conclude that it is the wind 
force to be responsible for the electromigration of SiB1.  

Interestignly for SiA there is a significant wind force acting along the x-direction, 
i.e. along the CNT radial direction. SiA is however tightly bound to the CNT along the 
radial direction and therefore it does not move. However, although the atom does 
change its position significantly away from the CNT, still a significant radial 
current-induced force should result in a measurable change in the desorption barrier 
height. This can be indeed measured in a STM experiment. We finally note that the 
z-component of the wind force acting on SiA is much smaller than that acting on SiB1. 
Since the wind force depends on the current-induced electron charge redistribution 
around the given scattering center, one might expect that such redistribution will be 
small if there is a small current along a bond. 

In order to verify this hypothesis we calculate the bond current for the two 
configurations. The bond current between two orbitals, Jμυ , is obtained as 65-67 

2 ( ) ( )M M
eJ H G E H G E dE

hμυ μυ υμ υμ μυ

∞
< <

−∞

⎡ ⎤= −⎣ ⎦∫ ,                           (18) 

while that between two atoms with indices I and K, IKJ , corresponds to the sum of 

the bond currents between individual orbitals located at those atoms 

,
IK
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= ∑ .                                                    (19) 

Furthermore the total bond current acting on an individual atom can be represented in 
vectorial form as 

I IK IK
K I

J J v
≠

= ∑ ,                                                     (20) 

where IKv is the vector connecting atoms I and K. The calculated bond currents for a 

bias voltage of 1 V are shown in Fig. 11. In the figure the dark arrows represent the 
current vector acting on an atom according to Eq. (20). First we show the bond 
currents for an infinite and defect-free (4,4) SWCNT [Fig. 11(a)] and find that the 
current flow is mainly along the longitudinal C-C bonds (the one along the SWCNT 
axis) with the transverse component vanishing. We then evaluate the bond currents for 
the SWCNTs with the Si adatoms. The presence of SiA perturbs only marginally the 
bond currents acting on the C atoms, which closely resemble those of the defect-free 
SWCNT [Fig. 11(b)]. This means that SiA acts as a weak scattering center, i.e. it is off 
the current flow. There are small bond currents between the Si atom and its 
neighboring C atoms, which results in a total bond current on SiA pointing against the 
overall current flow. Importantly, no currents pass across the transversal C-Si-C bonds 
either from C to Si or from C to C atoms, and this explains why the y-component of 
the force is very small. In contrast SiB1 lies in the current flow path and therefore acts 
as a strong scattering center [Fig. 11(c)]. As a result the current on the SWCNT atoms 



 16

significantly changes as compared to the case of the perfect SWCNT. This time there 
is a large bond current along the C-Si-C bonds and consequently a large z-component 
of the wind force.  

Further support to our analysis of the scattering properties of the two Si 
adsorption centers is provided by comparing the difference between the corresponding 
zero-bias transmission coefficients [see Fig. 12]. We note that for SiB1 there is a 
reduction in transmission around the Fermi energy (EF) significantly larger than that 
produced by SiA. This is fully consistent with the previous finding that SiB1 is a 
stronger scattering center than SiA. 

So far we have performed calculations for an infinite metallic (4,4) SWCNT with 
a single Si scatterer (this means that both the scattering region and the leads are 
formed by the same SWCNT). Clearly this does not correspond to a completely 
physical situation at finite bias as in our setup the potential imposed over the 
scattering region cannot be screened completely at the boundary with the leads.68 
Therefore, in order to verify whether or not the results presented in this section 
depend on these (artificial) boundary conditions, we set up a separate calculation, 
where the SWCNT is now attached to two Au electrodes. In this case the finite bias 
potential is fully screened by Au. The unit cell used for the SiB1 case is shown in Fig. 
13 and it is identical to the one used for SiA. Importantly the results obtained for the 
infinite SWCNT are fully preserved, namely SiA does not move at any bias, whereas 
SiB1 will migrate if the applied voltage is sufficiently large. The critical bias for the 
migration is now 0.8 V. This result is expected as the addition of two CNT/Au 
interfaces introduces a supplementary contact resistance (the current at the critical 
voltage for migration is about 45 µA). Most importantly the distribution of the bond 
currents around the Si adatom at 0.8 V is very similar to that at 0.5 V for the infinite 
SWCNT case, indicating once again that all the action is due to the large wind force. 

Finally, before concluding this section we analyze the effects of the Si adatom 
diffusion on the transport properties. We perform a structural relaxation for SiB1 at 
Vb=0.5 V, and calculate the current at each conjugate gradient step. The resulting 
simulated steady-state current behaves in an oscillation form, reflecting the diffusion 
of the SiB1 atom along the B1 to B3 path [see Fig. 9]. Our calculation reveals that the 
five turning points of the simulated current correspond to the specific atomic positions 
indicated in Fig. 14(a). The transient current for adsorption at the bridge site is about 
50% larger than that for the top site. Finally we calculate the energy dependent 
transmission coefficients at 0.5 V for Si positioned on two selected locations along the 
migration path, namely the B2 and T1 sites [see Fig. 9]. The results are shown in Fig. 
14(b). The transmission for adsorption at T1 is significantly reduced within the energy 
window between -0.5 eV and 0.5 eV when compared to that for B2 adsorption. This 
indicates that one of the two conducting channels incident from the nanotube lead is 
likely switched off near the Fermi level due to a localized impurity state around the 
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silicon adatom.69 From a scattering point of view, the Si adatom at the T1 position 
appears to be a much stronger scattering center for the current, and therefore at the 
considered voltage of 0.5 V it induces a larger force. This is 0.24 eV/Å, compared to 
the one for B2 adsorption, which is equal to only 0.10 eV/Å. 

VI. CONCLUSIONS 

In conclusion we have presented an algorithm for evaluating current-induced 
forces in atomic junctions and a few applications for systems of scientific and 
technological interest. The algorithm naturally integrates into the NEGF plus DFT 
framework and it is implemented in the Smeagol code. This enables us to perform 
atomic relaxations out of equilibrium in the presence of an electrical current and 
thereby to investigate the interplay between structural relaxation and transport 
properties. The algorithm is first thoroughly tested against known results and 
benchmarked against total energy calculations, whenever possible.  

We have then taken on two systems of significant scientific interest. Firstly we 
have studied current-induced forces in Al nanowires either with a straight or a zigzag 
configuration and discussed their bias-induced structural instabilities. Importantly we 
have estimated a critical current density for the junction breaking rather close to the 
one measured experimentally. Finally we have explored the possibility for 
current-induced forces to manipulate the position of a Si adatom on the surface of a 
(4,4) metallic SWCNT. Remarkably our calculations predict electromigration as soon 
as the bias voltage exceeds a certain critical value. We have then demonstrated that 
the position dependent wind force is the one responsible for the diffusion process. A 
close analysis of the transmission has revealed that the wind-type current-induced 
forces are closely related to the local electron scattering strength. 
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Figure captions 
 
Fig. 1: (Color online) Zero-bias test for the atomic forces calculated from the NEGF 
scheme. The system investigated is a linear Au chain where one atom has been 
displaced from the chain axis (a). In (b) we show the x-, y- and z-component of the 
atomic forces acting on these nine Au atoms. 
 
Fig. 2 (Color online) Zero-bias test for the forces acting on a parallel plate capacitor. 
(a) Schematic representation of the system investigated, namely a parallel-plate 
capacitor composed of two semi-infinite lithium bulk electrodes separated by 10 Å 
long vacuum gap. (b) Atomic forces acting of every atom calculated with both 
Smeagol and Siesta at zero-bias. (c) Planar average of the electrostatic potential for 
the system in (a) when a voltage of 2V is applied. 
 
Fig. 3 (Color online) Finite-bias and zero-bias tests for the field-induced forces acting 
on a parallel plate Li capacitor as a function of the number of atomic layers included 
in the simulation cell. In (a) and (b) we show the forces at zero-bias for the system in 
Fig. 2(a), where 4 (dashed red lines) and 8 (solid black lines) additional Li layers have 
been added to each electrode; in (c) and (d) the bias induced change in the force is 
shown for different bias voltages (this is the difference between the forces at zero- and 
finite bias). Panels (a) and (c) show results obtained using the NEGF formalism, 
whereas the results in (b) and (d) are obtained by using PBC and an equivalent applied 
electric field. 
 
Fig. 4 (Color online) Schematic representations of the atomic structure of the straight 
(a) and the zigzag (b) 4-atom long Al wires anchored to Al electrodes investigated 
here.  
 
Fig. 5 (Color online) Forces as function of the applied bias voltage acting on a 4-atom 
long Al wire with straight configuration [see Fig. 4(a)]. Note that the forces are not 
zero only along the wire direction z. 
 
Fig. 6 (Color online) Forces as function of the applied bias voltage for a 4-atom long 
Al monatomic chain with zigzag configuration [see Fig. 4(b)]. Note that the forces are 
significant only in the zigzag plane (y-z plane). 
 
Fig. 7 (Color online) Relaxed structures at 0.2 VbV = −  (a) and 1.4 VbV = −  (b) 

obtained as the bias voltage increases from the original zigzag atomic configuration of 
Fig. 4(b). 
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Fig. 8 (Color online) Current as function of the bias voltage, I-V, for the straight (a) 
and zigzag (b) configurations. The solid black line corresponds to calculations 
performed at fixed geometry while the red dashed curves are obtained by relaxing the 
geometry at each bias voltage. 
 
Fig. 9 (Color online) Schematic representation of an infinite (4,4) SWCNT with one 
Si atom sidewall attached at the B1 site. The zoom-in figure below shows the 
diffusion path of the Si atom from the B1 to B3 site (red dashed line). The adsorption 
site A is also represented. 
 
Fig. 10 (Color online) The current-induced forces acting upon the Si adatom as a 
function of bias are decomposed into electrostatic forces and wind forces along the 
three cartesian directions [see Eq. (16) and Eq. (17)]. 
 
Fig. 11 (Color online) Schematic pictures of bond current distribution in three systems 
at the bias voltage of 1 V: (a) an infinite and perfect (4,4) SWCNT, (b) an infinite (4,4) 
SWCNT with SiA and (c) with SiB1. The red lines in (a) illustrate that the total current 
vector on each C atom is mainly given by a sum of the bond-current vectors from its 
two longitudinally neighboring C atoms thus the transverse component in the total 
current vector vanishes. 
 
Fig. 12 (Color online) Zero-bias transmission coefficients as function of energy for 
the three systems illustrated in Fig. 11: an infinite and perfect (4,4) SWCNT, an 
infinite (4,4) SWCNT with either SiA or SiB1. 
 
Fig. 13 (Color online) Two-terminal device constructed by attaching a SWCNT to two 
Au electrodes. The SWCNT includes also a SiB1. This is equivalent to the device 
geometry of Fig. 9, where now the SWCNT leads are replaced by Au. 
 
Fig. 14 (a) The current at Vb=0.5 V oscillates with the SiB1 migration process; the 
characteristic transient Si bonding locations are seen as turning points; (b) 
transmission coefficients at Vb=0.5 V for Si adsorbed at the T1 and B2 position 
respectively [see Fig. 9]. 
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