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Relaxing the assumption of an “ infinite and homogenous background”, the dielectric response
function of one-dimensional (1D) semiconducting nanowires embedded in a dielectric environment is
calculated. It is shown that a high-κ (higher than semiconductor dielectric constant) dielectric envi-
ronment reduces the screening by the free carriers inside the nanostructure, whereas a low dielectric
constant environment increases the Coulombic interaction between free carriers and enhances the
strength of screening function. In the long wavelength limit, dielectric screening and collective ex-
citations of electron gas are found to be strongly influenced by the environment. Behavior of static
dielectric function is particularly addressed at a specific wavevector q = 2kF ; a wavevector that
ubiquitously appears in charge transport in nanostructures. It is shown that the exclusion of the
dielectric mismatch effect in free carrier screening results in erroneous charged impurity scattering
rate, particularly for nanowires embedded in low-κ dielectrics.

Low-dimensional structures such as semiconducting7

nanowires (1D) are being investigated intensively for8

their potential applications in high-speed electronic9

and optical devices1. These nanowires can either be10

freestanding, or can be coated with different dielectric11

environments appropriate to device application. For12

example, in nanowire-based field effect transistors13

(FETs), they are usually coated with high-κ dielectrics14

(HfO2, ZrO2, etc.)
2 for improved charge control and high15

electron mobility3. On the other hand, for exciton-based16

devices, use of low-κ (lower than semiconductor dielec-17

tric constant ǫs) dielectric is beneficial as it enhances18

the excitonic binding energy5. These advantages in19

electronic and optical properties stem from the fact20

that the Coulomb interaction between carriers and/or21

impurities inside the nanowires can be altered by altering22

the environment. This tunability of the carrier-carrier23

interaction by dielectric environment is expected to24

modify many-body effects such as dielectric screening25

by one dimensional electron gas (1DEG) inside the26

nanowire.27

28

Dielectric screening by free carriers plays a crucial role29

in the transport quantities (conductivity, mobility, etc) of30

a nanostructure. In a scattering event, the momentum-31

relaxation time (τ) strongly (τ ∼ |ǫ(q, 0)|−2) depends32

on the free electron screening inside the semiconductor.33

Hence an accurate knowledge of dielectric screening is34

necessary for a precise prediction of transport coefficients35

of a nanowire. The dielectric function of a semiconductor36

nanowire is composed of i) ionic (ǫion) and ii) electronic37

(ǫel) contributions. ǫion is a inherent property (crystal38

property) of semiconductors, while ǫel (commonly known39

as the screening function) depends on the magnitude of40

the electron-electron interaction inside a material. As the41

dielectric environment can alter the Coulomb potential42

inside a nanowire, it is expected that dielectric environ-43

ment will have a pronounced effect of the free electron44

screening6. Previous models7–10 for the dielectric func-45

tion of 1DEG assumes that the electron gas has a infinite46

homogenous background having dielectric constant (ǫs)47

same as the semiconductor. For a nanowire of few nm ra-48

dius, “infinite background” approximation breaks down49

and at the nanowire/environment interface “homogenous50

background” assumption fails. In this work, assumptions51

are relaxed. By incorporating the dielectric mismatch52

factor at the nanowire/environment interface, a consis-53

tent theory of dielectric function is presented following54

the method of “self consistent field”4,8,11 (also known as55

the random-phase approximation or RPA).56

It is worthwhile to mention that the dielectric mis-57

match effect on the static screening is incorporated58

in recent numerical approaches (see Ref.4) for Si/SiO259

nanowires. The main concern of the work by Jin60

et. al was to investigate the surface roughness and61

the diameter-dependent electron mobility in nanowires62

mostly restricted to Si/SiO2 nanowires. The effect of63

the dielectric environment on the free carrier screening64

was not analyzed and hence the idea remained dormant65

so far. Here, following the general formalism developed66

in Ref.4, and including the dielectric mismatch effect,67

an analytical expression of dynamic dielectric function68

is evaluated. Both the static dielectric function and the69

collective excitations of 1DEGs in the long-wavelength70

limit are found to be solely determined by the dielectric71

environment. The importance of the modification of the72

static electronic screening by the dielectric environment73

is illustrated by calculating the screened ionized impurity74

scattering rates for nanowires embedded in both high and75

low-κ dielectrics.76

We consider an infinitely long semiconductor wire (di-77

electric constant ǫs) of a radius (R) of few nanome-78

ters embedded in a dielectric (dielectric constant ǫe)79

environment. To investigate the dielectric response of80

the electron gas inside the wire, we place an oscillat-81

ing test charge at (r0,z0)=(0,0) of density n0(r, t) =82

eδ(r)e−iωt. This test charge creates an oscillating poten-83

tial V0(r, z)e
−iωt in the nanowire and in response to this84
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perturbation, free electrons inside the nanowire rearrange85

themselves to screen the field. The resultant Hamiltonian86

of electrons confined in the wire is H = H0 + V (r, t),87

where V (r, t) is the self-consistent potential in response88

to the perturbation V0(r, t). The unperturbed single-89

particle Hamiltonian H0 = p
2/2m⋆ + Vcon(r) satisfies90

the Schroedinger equation H0|n, k〉 = En,k|n, k〉. Here91

m⋆ is the effective mass of electrons, k is the one di-92

mensional wave vector, |n, k〉 and En,k are the eigen-93

vectors and eigen-energy of the unperturbed Hamilto-94

nian, and Vcon(r) is the confinement potential for elec-95

trons inside the nanowire. Assuming electrons are con-96

fined in a infinite-barrier potential, the eigen-energies97

are En,k = En + h̄2k2/2m⋆, where En is the ground98

state energy of the nth 1D subband and h̄ is the re-99

duced Planck constant. The corresponding wavefunc-100

tion is Ψn,k(r, z) = 〈r|n, k〉 = φn(r) · [exp(ikz)/
√
L],101

where φn(r) is the radial part and L is the length of102

the nanowire. The dielectric function of an electron gas103

is defined by the relation12104

Vnn′ =
∑

mm′

ǫ−1
nn′,mm′(q, ω)V

0
mm′ , (1)

where ǫ−1
nn′,mm′(q, ω) is the four dimensional dielectric105

matrix and Vij(V
0
ij) = 〈j, k + q|V (V0)|i, k〉 are the tran-106

sition matrix element between states |i, k〉 and |j, k + q〉.107

Diagonal elements of the dielectric matrix represent the108

intrasubband polarization of the 1DEG whereas, the off-109

diagonal terms result from inter-subband transitions. In110

the size quantum limit (SQL) carriers are confined in the111

lowest ground state and intersubband separation is large,112

and the dielectric function becomes a scalar quantity.113

The self-consistent potential contains both the orig-114

inal perturbation as well as the screened potential by115

the mobile charges, i.e. V (r, t) = V0(r, t) + Vsc(r, t).116

For the evaluation of the dielectric response of a 1D117

electron gas, it is imperative to calculate the screening118

potential Vsc (see eq. 1)). The self-consistent poten-119

tial V (r, t), upon acting on state |n, k〉 mixes it with120

other states such that wave function becomes Ψ(r, t) =121

|n, k〉+
∑

n′,q bk+q(t)|n′, k + q〉. The coefficient bk,k+q(t)122

is given by time dependent perturbation theory13123

bk,k+q(t) =
Vnn′(q)e−iωt

En′(k + q)− En(k)− h̄ω
, (2)

where, Vnn′ = 〈n′, k + q|V |n, k〉 is the matrix el-124

ement between state |n, k〉 and |n′, k + q〉. The125

perturbation-induced charge density is nind(r, t, z) =126

−2e
∑

k,nn′ f0
n(k)

[

|Ψ(r, t)|2 − |Ψn,k(r, z)|2
]

, where, e is127

the charge of an electron and f0
n(k) denotes the equilib-128

rium Fermi-Dirac occupation probability of a state |n, k〉129

such that 2
∑

n,k f
0
n(k) = n1d, n1d being the equilibrium130

homogeneous unperturbed electron gas density. Assum-131

ing that the perturbation is weak enough such that the132

response is linear, and neglecting terms b2n,k+q and higher133

orders, the induced charge density can be written as134

nind(r, t) = −e
∑

nn′ φn(r)φn′ (r)Vnn′Fnn′(q, ω)eiqzeiωt+135

c.c., where c.c. denotes the complex conjugate and136

Fnn(q, ω) is the polarization function13 (Lindhard func-137

tion) obtained by summing the Feynman diagram of138

electron-electron interaction containing single fermion139

loop7,14,140

Fnn′(q, ω) =
2

L

∑

k

f0
n(k)− f0

n′(k + q)

En′(k + q)− En(k)− h̄ω
. (3)

Note that the induced charge density has the same har-141

monic dependence as the self consistent potential. The142

induced charge density is related to the screening po-143

tential by Poisson’s equation ∇2Vsc(r) = enind(r)/ǫ0ǫs,144

where ǫ0 is the free-space permittivity. Expressing145

screening potential in Fourier components Vsc(r, z) =146
∑

∞

−∞
vsc(r, q)e

iqz , where q = k′ − k, one obtains the147

differential equation for the screening potential148

1

r

d

dr

(

r
dvsc
dr

)

− q2vsc =

{

enind(r)/ǫ0ǫs, r ≤ R

0, r ≥ R.
(4)

The Green’s function appropriate to the above differen-149

tial equation with dielectric mismatch effect is3,4,15150

G(r, r′, q) =
1

π

[

I0(q.r<)K0(qr>)
︸ ︷︷ ︸

ginhom(r,r′)

+U(qR)I0(qr)K0(qr
′)

︸ ︷︷ ︸

ghom(r,r′)

]

U(x) = (ǫs − ǫe)K0(x)K1(x)

ǫeI0(x)K1(x) + ǫsI1(x)K0(x)
(5)

where, ghom(inhom)(r, r′) is the homogenous151

(inhomogenous) part of the Green’s function,152

r<(>) =min(max)[r, r′], and In(..) and Kn(...) are153

the nth order modified Bessel functions. For large x154

(x >
∣
∣n2 − 1

∣
∣), In(x) ≈ ex/

√
2πx, Kn(x) ≈ ex

√

2π/x155

and the function U(qR) → (πγ/2)e−2qR, where156

γ = (ǫs − ǫe)/(ǫs + ǫe) is the dielectric mismatch factor.157

The tunability of the strength of the Green’s function158

arises through its dependence on γ, which enhances159

(reduces) the strength for ǫs > ǫe(ǫs < ǫe). For an160

infinite homogeneous environment (ǫe = ǫs), γ = 0, and161

the Green’s function is independent of the dielectric162

environment. Using the above Green’s function, the163

induced potential inside the nanowire can be written164

as vsc(r, q) = e/4πǫ0ǫs
∫ R

0
G(r, r′, q)nind(r′)r′dr16. In165

the size quantum limit (SQL), the nanowire is thin,166

(R < λdB, λdB is de Broglie wavelength of an electron)167

and only the lowest subband is populated. Moreover, for168

a thin nanowire, inter-subband separation energy is large169

(∆En ∝ 1/R2) such that inter-subband transition can be170

neglected (n = n′ = 1). In such a scenario, the dielectric171

matrix becomes scalar, i.e. ǫnn′(q, ω) → ǫ11(q, ω).172

Assuming φn=1(r) ≈ 1/
√
πR2, the dynamic dielectric173

function of an 1DEG at temperature T = 0 is17174
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ǫ1d(q, ω, EF ) = 1− e

4πǫ0ǫsV11

∫ R

0

φ2
1(r)r

∫ R

0

G(r, r′)nind(r′)r′dr′dr

= 1 +
1

πa⋆BR
2

F (x)

q3
ln

∣
∣
∣
∣
∣

(q + 2kF )
2 − (2m

⋆ω
h̄q

)2

(q − 2kF )2 − (2m
⋆ω

h̄q
)2

∣
∣
∣
∣
∣
, (6)
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FIG. 1. Dielectric function of a nanowire a) with nanowire
radius (R) and b) as a function of carrier density (n) for three
different dielectric environments of ǫe = 1 (upper branch),
ǫe = ǫs = 13 (middle) and ǫe = 100 (lower branch).

where x = qR a dimensionless quantity, F (x) =
[
1
2 +175

I1(x)[U(x)I1(x) − K1(x)]
]

, a⋆B = 4πǫ0ǫsh̄
2/m⋆e2 is the176

effective bulk Bohr radius, kF = πn1d/2 is the Fermi177

wavevector and EF = h̄2k2F /(2m
⋆) is the corresponding178

Fermi energy. The logarithmic term in Eq.6 is results179

from the Lindhard function F11(q, ω) which has been180

evaluated analytically in the SQL7. In the context of181182

charge transport inside the nanowire, the static part of183

the dielectric function ǫ1d(q, ω = 0) is relevant. In the184

long wavelength (q ≪ 2kF ) limit, the static dielectric185

function ǫ1d(q, 0) for a thin nanowire (qR → 0) becomes186

ǫ1d(q, 0) = 1− e2

2πǫ0ǫe
[ln (qR)]D1d(EF ), (7)

where, D1d(EF ) = (1/πh̄)
√

2m⋆/EF is the 1D density187

of states per unit length at Fermi energy EF . In sharp188

contrast to previous models12, the dielectric constant of189

the environment (ǫe) instead of the semiconductor itself190

(ǫs), determines the long-wavelength behavior of the191

static dielectric function.192

193

For large momentum (q >> 2kF ), ǫ1d(q, 0) → 1 as194

the second term of Eq. 6 falls off rapidly (q−5) with q.195

For a degenerate 1DEG in SQL , only backscattering is196

allowed, which leads to a momentum transfer q = 2kF in197

any intrasubband elastic scattering process. As a result,198

ǫ1d(q = 2kF , 0) plays an important role in momentum199

relaxation rate calculation. In the static limit (ω = 0),200

the dielectric function ǫ1d(q, 0) at T = 0 is singular for201

q = 2kF . This divergence is related to Peierl’s instability,202

which is a characteristic signature of a 1DEG. At finite203

temperature, smearing of the Fermi function removes this204

singularity. The static dielectric function at T 6= 0 is205

given by Maldague’s prescription19206

ǫT1d(q, 0) =

∫
∞

0

dEǫ1d(q, 0, E)
[

4kBT cosh2
[E − EF
2kBT

]]
−1

.

(8)
Fig.1a) shows the static dielectric function of a GaAs207

nanowire at q = 2kF with nanowire radiusR for three dif-208

ferent dielectric media. Note that even negligible smear-209

ing of Fermi distribution at T = 4.2 K is enough to re-210

move the divergence at q = 2kF . For coated nanowires211

with ǫe > ǫs, dielectric screening is strongly reduced as212

shown in Fig. 2 b). At large radius (R >> 1/4kF ),213

the nanowire tends to the bulk structure and the dielec-214

tric mismatch effect on the screening function vanishes.215

With increasing carrier density, dielectric screening in-216

side the nanowire increases (see Fig. 1b) maintaing the217

effect of dielectric environment intact. At higher car-218

rier densities, more than one subband is populated and219

inter-subband contribution to the total dielectric func-220

tion should be taken into account for a complete descrip-221

tion of free electron screening inside the nanowire. With222

increasing temperature, thermal fluctuation reduces the223

free electron screening inside the nanowire and the effect224

of environmental dielectric on the screening function is225

partially washed away (see Fig. 2a).226227

As the dynamic (ω 6= 0) dielectric function ǫ1d(q, ω)228
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FIG. 2. a) Dielectric function of a nanowire with temperature
(T ) and b) plasma frequency of an 1DEG with wavevector (q)
for three different dielectric environments.
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contains the dielectric mismatch factor, collective exci-229

tations of the 1DEG is also expected to depend on the230

dielectric environment. Collective excitation of a elec-231

tron gas is defined as the pole of the full dynamic di-232

electric function, i.e. by ǫ1d(q, ωp) = 0, where ωp is the233

plasma frequency of the electron gas. Fig.2b) shows the234

plasma dispersion of intra-subband collective excitation235

of a thin nanowire (R = 2nm) for different dielectric envi-236

ronments. For q < 1/2R, the dielectric environment has237

a finite effect on the collective excitation frequency of238

1DEG. The softening of plasma frequency with high-ǫe239

dielectric environment is the consequence of the reduc-240

tion of Coulomb interaction between electrons and the241

positive background, which acts as a restoration force of242

the collective oscillation of the electron gas. For small243

q, the frequency of collective excitations goes to zero for244

all dielectric environment following the relation ωp(q) ≈245

ω0q
√

− ln(qR), where ω0 =
√

n1de2/(4πǫoǫem⋆). Note246

the explicit appearance of ǫe in ω0 highlights the role of247

environment in collective excitation of 1DEG inside the248

wire.249
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FIG. 3. Screened Coulomb scattering rate with (solid) and
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static screening at a) low temperature, and at b) room tem-
perature as a function of dielectric constant of the envi-
ronment. Here we assumed an impurity density nimp =
2.5× 105/cm

250

251

A typical example where the static dielectric function252

plays a crucial role is the determination of charged im-253

purity scattering rate in semiconductor nanostructures.254

Fig.3(a) shows the screened Coulomb scattering rates at255

low temperature with (solid lines) and without (dashed256

lines) accounting the dielectric mismatch effect in free257

carrier screening for an impurity point charge e located258

on the axis of the nanowire. Here, we use the Coulomb259

potential derived in Ref.3. Note that the exclusion of the260

dielectric mismatch effect in the screening underestimates261

(overestimates) the scattering rate (see Fig.3(a)) for low-262

κ (high-κ) dielectric medium surrounding thin (R ≤ 5263

nm) nanowires. At room temperature, weak free carrier264

screening results in higher scattering rate (see Fig.3(b)265

compared to Fig.3(a)). At room temperature, the the266

dielectric mismatch effect on the free carrier screening267

can be neglected for high-κ dielectric environments, al-268

though for low-κ environments, inclusion of the dielectric269

mismatch effect in screening is necessary for an accurate270

evaluation (see Fig.3(b)) of scattering rates.271

The length scale at which dielectric environment plays272

an important role can be determined by investigating273

the behavior of U(qR). For large qR, U(qR) ∼ e−4kFR.274

Hence for R >> 1/(4kF ), U(qR) becomes negligible and275

the dielectric effect vanishes. For numerical estimates, at276

carrier density n1d = 106 /cm dielectric effect vanishes277

for R >> 2 nm, whereas at lower density (n1d = 105278

/cm) environmental effect on quantum screening func-279

tion persists for wire radius up to R ≈ 20 nm.280

281

We have assumed an infinite confining potential for282

electron inside the wire. Relaxing this assumption will283

result in electron mass enhancement due to leaking of284

wavefunction into the barrier. For high-κ oxides the285

typical barrier height is ∼ 1 eV, for which nominal286

increase in electron mass can be neglected18. The287

assumption of constant radial part of the wavefunction288

is justified for thin nanowires. Choosing a different289

form for the radial part will change the absolute value290

of screening function for thick (for large R dielectric291

environment effect reduces anyway) wires keeping the292

relative effect of environments unchanged.293

In conclusion, we have shown that the free electron294

screening inside a nanowire depends on the environment295

surrounding it. For a nanowire coated with a high-κ296

dielectric, Coulomb perturbation inside the nanowire is297

poorly screened compared to a freestanding nanowire.298

It is shown that both the static dielectric function, and299

the plasma dispersion in the long-wavelength limit gets300

modified by the environment . The length-scale at which301

the environment has substantial effect on the electron302

gas inside the nanowire was identified. The results are303

analytical and will be useful for accurate prediction304

of transport coefficients in nanowire-based electronic305

devices.306
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