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Dielectric environment mediated renormalization of many-body effects in one
dimensional electron gas
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Relaxing the assumption of an “ infinite and homogenous background”, the dielectric response

function of one-dimensional (1D) semiconducting nanowires embedded in a dielectric environment is
calculated. It is shown that a high-x (higher than semiconductor dielectric constant) dielectric envi-
ronment reduces the screening by the free carriers inside the nanostructure, whereas a low dielectric
constant environment increases the Coulombic interaction between free carriers and enhances the
strength of screening function. In the long wavelength limit, dielectric screening and collective ex-
citations of electron gas are found to be strongly influenced by the environment. Behavior of static
dielectric function is particularly addressed at a specific wavevector ¢ = 2kp; a wavevector that
ubiquitously appears in charge transport in nanostructures. It is shown that the exclusion of the
dielectric mismatch effect in free carrier screening results in erroneous charged impurity scattering
rate, particularly for nanowires embedded in low-x dielectrics.

Low-dimensional structures such as semiconducting s tion of IDEG assumes that the electron gas has a infinite
nanowires (1D) are being investigated intensively for « homogenous background having dielectric constant (eg)
their potential applications in high-speed electronic s same as the semiconductor. For a nanowire of few nm ra-
and optical devices'. These nanowires can either be 4 dius, “infinite background” approximation breaks down
freestanding, or can be coated with different dielectric s and at the nanowire/environment interface “homogenous
environments appropriate to device application. For s background” assumption fails. In this work, assumptions
example, in nanowire-based field effect transistors s are relaxed. By incorporating the dielectric mismatch
(FETSs), they are usually coated with high-x dielectrics ss factor at the nanowire/environment interface, a consis-
(HfOq, ZrO,, etc.)? for improved charge control and high s« tent theory of dielectric function is presented following
electron mobility®. On the other hand, for exciton-based ss the method of “self consistent field”*®'! (also known as
devices, use of low-x (lower than semiconductor dielec- s the random-phase approximation or RPA).

tric constant €,) dielectric is beneficial as it enhances ., Tt is worthwhile to mention that the dielectric mis-
the excitonic binding energy®. These advantages in s match effect on the static screening is incorporated
electronic and optical properties stem from the fact s in recent numerical approaches (see Ref.?) for Si/SiO,
that the Coulomb interaction between carriers and/or ¢ npanowires. The main concern of the work by Jin
impurities inside the nanowires can be altered by altering ¢ ef. al was to investigate the surface roughness and
the environment. This tunability of the carrier-carrier ¢, the diameter-dependent electron mobility in nanowires
interaction by dielectric environment is expected to ¢ mostly restricted to Si/SiOy nanowires. The effect of
modify many-body effects such as dielectric screening ¢, the dielectric environment on the free carrier screening
by one dimensional electron gas (IDEG) inside the ¢ was not analyzed and hence the idea remained dormant
nanowire. e so far. Here, following the general formalism developed

& in Ref.?, and including the dielectric mismatch effect,

Dielectric screening by free carriers plays a crucial role s an analytical expression of dynamic dielectric function

in the transport quantities (Conductivity7 mOblhty, etc) of is evaluated. Both the static dielectric function and the
a nanostructure. In a Scattering eventj the momentum- ™ collective excitations of 1DEGs in the lOng-Wa.Velength

relaxation time (7) strongly (7 ~ |e(q,0)| %) depends = limit are found to be solely determined by the dielectric
on the free electron screening inside the semiconductor. 7 environment. The importance of the modification of the
Hence an accurate knowledge of dielectric screening is 7 static electronic screening by the dielectric environment
necessary for a precise prediction of transport coefficients 7 1s illustrated by calculating the screened ionized impurity
of a nanowire. The dielectric function of a semiconductor s scattering rates for nanowires embedded in both high and
nanowire is composed of i) ionic (¢?°") and ii) electronic 7 low-r dielectrics.

(¢°!) contributions. €™ is a inherent property (crystal »  We consider an infinitely long semiconductor wire (di-
property) of semiconductors, while € (commonly known 7 electric constant ¢,) of a radius (R) of few nanome-
as the screening function) depends on the magnitude of + ters embedded in a dielectric (dielectric constant e.)
the electron-electron interaction inside a material. Asthe e environment. To investigate the dielectric response of
dielectric environment can alter the Coulomb potential s the electron gas inside the wire, we place an oscillat-
inside a nanowire, it is expected that dielectric environ- s ing test charge at (rg,z9)=(0,0) of density no(r,t) =
ment will have a pronounced effect of the free electron s ed(r)e™!. This test charge creates an oscillating poten-
screening®. Previous models” 10 for the dielectric func- e tial Vo(r, 2)e~ " in the nanowire and in response to this
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s perturbation, free electrons inside the nanowire rearrange 13
s themselves to screen the field. The resultant Hamiltonian 1
e of electrons confined in the wire is H = Hy + V(r,t),
s where V(r,t) is the self-consistent potential in response
s to the perturbation Vy(r,t). The unperturbed single-
o particle Hamiltonian Hy = p?/2m* + Vo, (r) satisfies
the Schroedinger equation Ho|n, k) = &, k|n, k). Here o
m* is the effective mass of electrons, k is the one di-

response is linear, and neglecting terms b%y k+q and higher
orders, the induced charge density can be written as
nmd(rt) = —e X", On(r)Pn (1) Vons Frne (¢, w) e et +
c.c., where c.c. denotes the complex conjugate and
Fan(q,w) is the polarization function'? (Lindhard func-
tion) obtained by summing the Feynman diagram of
electron-electron interaction containing single fermion
loop™ 14,
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mensional wave vector, |n,k) and &, are the eigen-
vectors and eigen-energy of the unperturbed Hamilto-
nian, and V., (r) is the confinement potential for elec-
trons inside the nanowire. Assuming electrons are con-
fined in a infinite-barrier potential, the eigen-energies
are E, = En + h%k?/2m*, where &, is the ground
state energy of the mth 1D subband and % is the re-
duced Planck constant. The corresponding wavefunc-
tion is W, x(r,2) = (r|n,k) = én(r) - [exp(ikz)/VL],
where ¢, (r) is the radial part and L is the length of
the nanowire. The dielectric function of an electron gas
is defined by the relation'?

_ § : -1
Vn"' - € n’ . mm’

mm/’

(¢, @)V,

mm/»

(1)

where e;$,7mm,(q,w) is the four dimensional dielectric

matrix and Vi;(Vi}) = (j,k + q|V(Vo)li, k) are the tran-
sition matrix element between states |7, k) and |4, k + ¢).
Diagonal elements of the dielectric matrix represent the
intrasubband polarization of the 1IDEG whereas, the off-
diagonal terms result from inter-subband transitions. In
the size quantum limit (SQL) carriers are confined in the
lowest ground state and intersubband separation is large,
and the dielectric function becomes a scalar quantity.

The self-consistent potential contains both the orig-
inal perturbation as well as the screened potential by
the mobile charges, i.e. V(r,t) = Vo(r,t) + Vic(r,1).
For the evaluation of the dielectric response of a 1D
electron gas, it is imperative to calculate the screening
potential Vi, (see eq. 1)). The self-consistent poten-
tial V(r,t), upon acting on state |n,k) mixes it with
other states such that wave function becomes W(r,t) =
In, k) + >0 4 birg(B)I' k + q). The coefficient by, j1.4(t)
is given by time dependent perturbation theory!'?

Vine (Q)e_th
En(k+q) — En(k) — hw’

(2)

bk ktq(t) =

where, Vi, (n',k 4+ q|V|n,k) is the matrix el-
ement between state [n,k) and [n',k + ¢).  The
perturbation-induced charge density is n'"(r,t,z) =
—2e Zkﬂm, 12(k) [|\If(r, B> — |\Ifn,k(r,z)|2}, where, e is

the charge of an electron and f2(k) denotes the equilib-
rium Fermi-Dirac occupation probability of a state |n, k)
such that 23", f%(k) = nig4, n1q being the equilibrium
homogeneous uhperturbed electron gas density. Assum-
ing that the perturbation is weak enough such that the
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2 fa(k) — foi(k +q)
Fon (q,w) = 57 ; En(k+q) — En(k) — hw’

(3)

Note that the induced charge density has the same har-
monic dependence as the self consistent potential. The
induced charge density is related to the screening po-
tential by Poisson’s equation V2V.(r) = en™d(r)/eges,
where €y is the free-space permittivity. Expressing
screening potential in Fourier components Vi.(r, z)
> vse(r,q)e*, where ¢ = k' — k, one obtains the
differential equation for the screening potential

d sc ind s <
(r v ) v = en™(r)/epes, T <R
dr 0, r > R.

1d
rdr

(4)

The Green’s function appropriate to the above differen-
tial equation with dielectric mismatch effect is®%15

Glrr'.0) = * [ Iolgr) Kolars) + UlaR) Io(ar) Ko (ar')

™

ginh,om (T,’r")
(€5 — €c) Ko(2) Ky (2)
eelo(x) K1 (x) + €511 () Ko(x)

gh,om (T,’r")

U(x) = ()

where, ghomtinhom) (. 'y 4s the  homogenous
(inhomogenous) part of the Green’s function,
r<(>) =min(max)[r,7’], and I,(.) and K,(...) are
the nth order modified Bessel functions. For large z
(x > [n? =1|), Ln(z) = e"/V27rz, Ky(z) ~ e"\/2n/x
and the function U(qR) — (my/2)e 24 where
v = (es — €c)/(€s + €.) is the dielectric mismatch factor.
The tunability of the strength of the Green’s function
arises through its dependence on 7, which enhances
(reduces) the strength for €5 > €.(es < €). For an
infinite homogeneous environment (e, = €5), v = 0, and
the Green’s function is independent of the dielectric
environment. Using the above Green’s function, the
induced potential inside the nanowire can be written
as vse(r,q) = e/4dmepes fOR G(r,r',q)n™(r")r'dri®. In
the size quantum limit (SQL), the nanowire is thin,
(R < A\ip, Aap is de Broglie wavelength of an electron)
and only the lowest subband is populated. Moreover, for
a thin nanowire, inter-subband separation energy is large
(A&, o< 1/R?) such that inter-subband transition can be
neglected (n = n’ = 1). In such a scenario, the dielectric
matrix becomes scalar, i.e. e (q,w) — €11(q,w).
Assuming ¢p—1(r) 1/v7R2, the dynamic dielectric
function of an 1DEG at temperature 7' = 0 is'”
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€1a(q,w, Er) =1 - #/ (bf(r)r/ G(r,r"yn™ ("Y' dr’ dr
dmepesVin Jo 0

L1 F@), |a+2ke) - (2e)? ;
Ry R ] Py e (Eay | (6)
[
o Re2nm 20 the dielectric function €14(q,0) at T = 0 is singular for
6 ?;4,2 ;m 55| T=300K 22 ¢ = 2kp. This divergence is related to Peierl’s instability,
_ q=2k, 1 a=2x10%m 203 which is a characteristic signature of a 1DEG. At finite
25 Gahs 200 temperature, smearing of the Fermi function removes this
o 205 singularity. The static dielectric function at T # 0 is
é ap % (@ 206 given by Maldague’s prescription'®
s R \R ~ £—er1]"
£ 3 %i % e11(q,0) :/ d€e1a(q,0,€) {4kBTcosh2 [ F” .
5 2 /?9 0 2I€BT
®)
o S 27 Fig.1a) shows the static dielectric function of a GaAs
208 nanowire at ¢ = 2kp with nanowire radius R for three dif-
11 &SE coated nanowire 200 ferent dielectric media. Note that even negligible smear-
o2 35 7 10 T 152 3 > 0 ing of Fermi distribution at 7' = 4.2 K is enough to re-
radius R (nm) 1DEG density n (10%/cm)

FIG. 1. Dielectric function of a nanowire a) with nanowire
radius (R) and b) as a function of carrier density (n) for three
different dielectric environments of ¢. = 1 (upper branch),
€e = €5 = 13 (middle) and e. = 100 (lower branch).

where z = ¢R a dimensionless quantity, F(x) = % +

L) U(2) L (z) — Kl(x)]}, a%, = dmegehi?/m*e? is the
effective bulk Bohr radius, kp = 7ni4/2 is the Fermi
wavevector and Ep = h*k%/(2m*) is the corresponding
Fermi energy. The logarithmic term in Eq.6 is results
from the Lindhard function Fii(g,w) which has been
evaluated analytically in the SQL7. In the context of
charge transport inside the nanowire, the static part of
the dielectric function €14(q,w = 0) is relevant. In the
long wavelength (¢ < 2kp) limit, the static dielectric
function €14(g,0) for a thin nanowire (¢R — 0) becomes

62

€1a(q,0) =1 - [In (¢R)] D1a(Er), (7)

2mep€e
where, D14(Ep) = (1/7h)\/2m*/EF is the 1D density
of states per unit length at Fermi energy £r. In sharp
contrast to previous models'2, the dielectric constant of
the environment (e.) instead of the semiconductor itself
(es), determines the long-wavelength behavior of the
static dielectric function.

For large momentum (¢ >> 2kp), €14(q,0) — 1 as
the second term of Eq. 6 falls off rapidly (¢—°) with q.
For a degenerate 1IDEG in SQL , only backscattering is
allowed, which leads to a momentum transfer ¢ = 2kp in
any intrasubband elastic scattering process. As a result,
€14(¢ = 2kp,0) plays an important role in momentum
relaxation rate calculation. In the static limit (w = 0),
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move the divergence at ¢ = 2kp. For coated nanowires
with €. > €5, dielectric screening is strongly reduced as
shown in Fig. 2 b). At large radius (R >> 1/4kp),
the nanowire tends to the bulk structure and the dielec-
tric mismatch effect on the screening function vanishes.
With increasing carrier density, dielectric screening in-
side the nanowire increases (see Fig. 1b) maintaing the
effect of dielectric environment intact. At higher car-
rier densities, more than one subband is populated and
inter-subband contribution to the total dielectric func-
tion should be taken into account for a complete descrip-
tion of free electron screening inside the nanowire. With
increasing temperature, thermal fluctuation reduces the
free electron screening inside the nanowire and the effect
of environmental dielectric on the screening function is
partially washed away (see Fig. 2a).

As the dynamic (w # 0) dielectric function €14(q, w)

35 n=10%cm 35 he105/cm
R=2nm _

5 © Gahs = R=1nm
~ 3.0 ey, g GaAs
X —
< G
25 @ < 3
2 S &
] o 8
S f=
»E 2.0 %15 g
£ o g
0 6:‘§€ g /
o © ©
5 15 X

k 5 00

&=
10 =100
0
2 5 20 100 300 0 01 02 03 04 05
temperature T (K) a/2k,

FIG. 2. a) Dielectric function of a nanowire with temperature
(T') and b) plasma frequency of an 1IDEG with wavevector (q)
for three different dielectric environments.



20 contains the dielectric mismatch factor, collective exci-
20 tations of the 1DEG is also expected to depend on the
2n dielectric environment. Collective excitation of a elec-
22 tron gas is defined as the pole of the full dynamic di-
23 electric function, i.e. by €14(¢,wp) = 0, where w, is the
2 plasma frequency of the electron gas. Fig.2b) shows the
plasma dispersion of intra-subband collective excitation
of a thin nanowire (R = 2nm) for different dielectric envi-
ronments. For ¢ < 1/2R, the dielectric environment has
a finite effect on the collective excitation frequency of
1DEG. The softening of plasma frequency with high-e,
dielectric environment is the consequence of the reduc-
tion of Coulomb interaction between electrons and the
positive background, which acts as a restoration force of
the collective oscillation of the electron gas. For small
q, the frequency of collective excitations goes to zero for
all dielectric environment following the relation wy,(q)
woqy/—In(qR), where wy = \/niqe?/(dme,cem*). Note
the explicit appearance of €. in wq highlights the role of
environment in collective excitation of 1IDEG inside the
wire.
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FIG. 3. Screened Coulomb scattering rate with (solid) and
without (dashed) incorporating the dielectric mismatch in
static screening at a) low temperature, and at b) room tem-
perature as a function of dielectric constant of the envi-
ronment. Here we assumed an impurity density nimp =
2.5 x 10° Jem

250
251

A typical example where the static dielectric function
plays a crucial role is the determination of charged im-
254 puUrity scattering rate in semiconductor nanostructures.
25 Fig.3(a) shows the screened Coulomb scattering rates at
25 low temperature with (solid lines) and without (dashed
27 lines) accounting the dielectric mismatch effect in free
28 carrier screening for an impurity point charge e located
0 on the axis of the nanowire. Here, we use the Coulomb
200 potential derived in Ref.2. Note that the exclusion of the
261 dielectric mismatch effect in the screening underestimates
22 (overestimates) the scattering rate (see Fig.3(a)) for low-
263 k (high-x) dielectric medium surrounding thin (R < 5
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nm) nanowires. At room temperature, weak free carrier
screening results in higher scattering rate (see Fig.3(b)
compared to Fig.3(a)). At room temperature, the the
dielectric mismatch effect on the free carrier screening
can be neglected for high-x dielectric environments, al-
though for low-x environments, inclusion of the dielectric
mismatch effect in screening is necessary for an accurate
evaluation (see Fig.3(b)) of scattering rates.

The length scale at which dielectric environment plays
an important role can be determined by investigating
the behavior of U(qR). For large qR, U(qR) ~ e 4krE,
Hence for R >> 1/(4kr), U(qR) becomes negligible and
the dielectric effect vanishes. For numerical estimates, at
carrier density nig = 106 /cm dielectric effect vanishes
for R >> 2 nm, whereas at lower density (niq = 10°
/cm) environmental effect on quantum screening func-
tion persists for wire radius up to R &~ 20 nm.

We have assumed an infinite confining potential for

electron inside the wire. Relaxing this assumption will
result in electron mass enhancement due to leaking of
wavefunction into the barrier. For high-x oxides the
typical barrier height is ~ 1 eV, for which nominal
increase in electron mass can be neglected'®. The
assumption of constant radial part of the wavefunction
is justified for thin nanowires. Choosing a different
form for the radial part will change the absolute value
of screening function for thick (for large R dielectric
environment effect reduces anyway) wires keeping the
relative effect of environments unchanged.
In conclusion, we have shown that the free electron
screening inside a nanowire depends on the environment
surrounding it. For a nanowire coated with a high-x
dielectric, Coulomb perturbation inside the nanowire is
poorly screened compared to a freestanding nanowire.
It is shown that both the static dielectric function, and
the plasma dispersion in the long-wavelength limit gets
modified by the environment . The length-scale at which
the environment has substantial effect on the electron
gas inside the nanowire was identified. The results are
analytical and will be useful for accurate prediction
of transport coefficients in nanowire-based electronic
devices.
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for this work.
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