

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Dielectric-environment mediated renormalization of manybody effects in a one-dimensional electron gas

Aniruddha Konar, Tian Fang, and Debdeep Jena Phys. Rev. B **84**, 085422 — Published 24 August 2011 DOI: 10.1103/PhysRevB.84.085422 3 4

5

Dielectric environment mediated renormalization of many-body effects in one dimensional electron gas

Aniruddha Konar,* Tian Fang, and Debdeep Jena

Department of Physics and Department of Electrical Engineering,

University of Notre Dame, Indiana 46556, USA.

(Dated: August 1, 2011)

Relaxing the assumption of an "infinite and homogenous background", the dielectric response function of one-dimensional (1D) semiconducting nanowires embedded in a dielectric environment is calculated. It is shown that a high- κ (higher than semiconductor dielectric constant) dielectric environment reduces the screening by the free carriers inside the nanostructure, whereas a low dielectric constant environment increases the Coulombic interaction between free carriers and enhances the strength of screening function. In the long wavelength limit, dielectric screening and collective excitations of electron gas are found to be strongly influenced by the environment. Behavior of static dielectric function is particularly addressed at a specific wavevector $q = 2k_F$; a wavevector that ubiquitously appears in charge transport in nanostructures. It is shown that the exclusion of the dielectric mismatch effect in free carrier screening results in erroneous charged impurity scattering rate, particularly for nanowires embedded in low- κ dielectrics.

Low-dimensional structures such as semiconducting 46 tion of 1DEG assumes that the electron gas has a infinite $_{*}$ nanowires (1D) are being investigated intensively for $_{47}$ homogenous background having dielectric constant (ϵ_s) 9 their potential applications in high-speed electronic 48 same as the semiconductor. For a nanowire of few nm ra-¹⁰ and optical devices¹. These nanowires can either be ⁴⁹ dius, "infinite background" approximation breaks down ¹² environments appropriate to device application. For ⁵¹ background" assumption fails. In this work, assumptions ¹³ example, in nanowire-based field effect transistors ⁵² are relaxed. By incorporating the dielectric mismatch 14 (FETs), they are usually coated with high- κ dielectrics 53 factor at the nanowire/environment interface, a consis-¹⁵ (HfO₂, ZrO₂, etc.)² for improved charge control and high ⁵⁴ tent theory of dielectric function is presented following ¹⁶ electron mobility³. On the other hand, for exciton-based ⁵⁵ the method of "self consistent field"^{4,8,11} (also known as devices, use of low- κ (lower than semiconductor dielec-17 ¹⁸ tric constant ϵ_s) dielectric is beneficial as it enhances ¹⁹ the excitonic binding energy⁵. These advantages in 20 electronic and optical properties stem from the fact 21 that the Coulomb interaction between carriers and/or ²² impurities inside the nanowires can be altered by altering the environment. This tunability of the carrier-carrier 24 interaction by dielectric environment is expected to ²⁵ modify many-body effects such as dielectric screening ²⁶ by one dimensional electron gas (1DEG) inside the 27 nanowire.

28

Dielectric screening by free carriers plays a crucial role 29 in the transport quantities (conductivity, mobility, etc) of 30 ³¹ a nanostructure. In a scattering event, the momentum-³² relaxation time (τ) strongly ($\tau \sim |\epsilon(q,0)|^{-2}$) depends ³³ on the free electron screening inside the semiconductor. ³⁴ Hence an accurate knowledge of dielectric screening is ³⁵ necessary for a precise prediction of transport coefficients ³⁶ of a nanowire. The dielectric function of a semiconductor ³⁷ nanowire is composed of i) ionic (ϵ^{ion}) and ii) electronic $_{38}$ (ϵ^{el}) contributions. ϵ^{ion} is a inherent property (crystal ³⁹ property) of semiconductors, while ϵ^{el} (commonly known 78 electric constant ϵ_s) of a radius (R) of few nanome-40 as the screening function) depends on the magnitude of 79 ters embedded in a dielectric (dielectric constant ϵ_e) 41 the electron-electron interaction inside a material. As the 80 environment. To investigate the dielectric response of ⁴² dielectric environment can alter the Coulomb potential ⁸¹ the electron gas inside the wire, we place an oscillat- $_{43}$ inside a nanowire, it is expected that dielectric environ- $_{82}$ ing test charge at $(\mathbf{r}_0, z_0) = (0, 0)$ of density $n_0(r, t) =$ ⁴⁴ ment will have a pronounced effect of the free electron ⁸³ $e\delta(\mathbf{r})e^{-i\omega t}$. This test charge creates an oscillating poten-45 screening⁶. Previous models⁷⁻¹⁰ for the dielectric func- $_{84}$ tial $V_0(r,z)e^{-i\omega t}$ in the nanowire and in response to this

freestanding, or can be coated with different dielectric 50 and at the nanowire/environment interface "homogenous ⁵⁶ the random-phase approximation or RPA).

> 57 It is worthwhile to mention that the dielectric mis-⁵⁸ match effect on the static screening is incorporated ⁵⁹ in recent numerical approaches (see Ref.⁴) for Si/SiO₂ The main concern of the work by Jin 60 nanowires. 61 et. al was to investigate the surface roughness and 62 the diameter-dependent electron mobility in nanowires ⁶³ mostly restricted to Si/SiO₂ nanowires. The effect of ⁶⁴ the dielectric environment on the free carrier screening 65 was not analyzed and hence the idea remained dormant ⁶⁶ so far. Here, following the general formalism developed ⁶⁷ in Ref.⁴, and including the dielectric mismatch effect. 68 an analytical expression of dynamic dielectric function ⁶⁹ is evaluated. Both the static dielectric function and the ⁷⁰ collective excitations of 1DEGs in the long-wavelength 71 limit are found to be solely determined by the dielectric ⁷² environment. The importance of the modification of the ⁷³ static electronic screening by the dielectric environment 74 is illustrated by calculating the screened ionized impurity 75 scattering rates for nanowires embedded in both high and 76 low- κ dielectrics.

> 77 We consider an infinitely long semiconductor wire (di-

 $_{92}$ m^{\star} is the effective mass of electrons, k is the one di- $_{140}$ loop^{7,14}, ⁹³ mensional wave vector, $|n,k\rangle$ and $\mathcal{E}_{n,k}$ are the eigen-⁹⁴ vectors and eigen-energy of the unperturbed Hamilto-⁹⁵ nian, and $V_{con}(r)$ is the confinement potential for elec-⁹⁶ trons inside the nanowire. Assuming electrons are con-97 fined in a infinite-barrier potential, the eigen-energies 141 Note that the induced charge density has the same har- $_{104}$ is defined by the relation¹²

$$V_{nn'} = \sum_{mm'} \epsilon_{nn',mm'}^{-1}(q,\omega) V_{mm'}^{0},$$
(1)

¹⁰⁶ matrix and $V_{ij}(V_{ij}^0) = \langle j, k+q | V(V_0) | i, k \rangle$ are the tran-¹⁵⁰ tial equation with dielectric mismatch effect is^{3,4,15} 107 sition matrix element between states $|i, k\rangle$ and $|j, k+q\rangle$. ¹⁰⁸ Diagonal elements of the dielectric matrix represent the ¹⁰⁹ intrasubband polarization of the 1DEG whereas, the off-¹¹⁰ diagonal terms result from inter-subband transitions. In the size quantum limit (SQL) carriers are confined in the 111 ¹¹² lowest ground state and intersubband separation is large, ¹¹³ and the dielectric function becomes a scalar quantity.

The self-consistent potential contains both the orig-114 ¹¹⁵ inal perturbation as well as the screened potential by ¹¹⁶ the mobile charges, i.e. $V(\mathbf{r},t) = V_0(\mathbf{r},t) + V_{sc}(\mathbf{r},t)$. ¹¹⁷ For the evaluation of the dielectric response of a 1D ¹¹⁸ electron gas, it is imperative to calculate the screening ¹¹⁹ potential V_{sc} (see eq. 1)). The self-consistent poten-¹²⁰ tial $V(\mathbf{r},t)$, upon acting on state $|n,k\rangle$ mixes it with 121 other states such that wave function becomes $\Psi(r,t) =$ 122 $|n,k\rangle + \sum_{n',q} b_{k+q}(t) |n',k+q\rangle$. The coefficient $b_{k,k+q}(t)$ $_{123}$ is given by time dependent perturbation theory¹³

$$b_{k,k+q}(t) = \frac{V_{nn'}(q)e^{-i\omega t}}{\mathcal{E}_{n'}(k+q) - \mathcal{E}_n(k) - \hbar\omega},$$
(2)

124 where, $V_{nn'} = \langle n', k + q | V | n, k \rangle$ is the matrix el-125 ement between state $|n,k\rangle$ and $|n',k+q\rangle$. The ¹²⁶ perturbation-induced charge density is $n^{ind}(r,t,z) = \frac{167}{168} (R < \lambda_{dB}, \lambda_{dB})$ is de Broglie wavelength of an electron) ¹²⁷ $-2e \sum_{k,nn'} f_n^0(k) \left[|\Psi(r,t)|^2 - |\Psi_{n,k}(r,z)|^2 \right]$, where, e is ¹⁶⁹ a thin nanowire, inter-subband separation energy is large ¹²⁸ the charge of an electron and $f_n^0(k)$ denotes the equilib-¹⁷⁰ ($\Delta \mathcal{E}_n \propto 1/R^2$) such that inter-subband transition can be ¹²⁹ rium Fermi-Dirac occupation probability of a state $|n, k\rangle$ ¹⁷¹ neglected (n = n' = 1). In such a scenario, the dielectric ¹³⁰ such that $2\sum_{n,k} f_n^0(k) = n_{1d}$, n_{1d} being the equilibrium ¹⁷² matrix becomes scalar, i.e. $\epsilon_{nn'}(q,\omega) \rightarrow \epsilon_{11}(q,\omega)$. ¹³¹ homogeneous unperturbed electron gas density. Assum- ¹⁷³ Assuming $\phi_{n=1}(r) \approx 1/\sqrt{\pi R^2}$, the dynamic dielectric ¹³² ing that the perturbation is weak enough such that the ¹⁷⁴ function of an 1DEG at temperature T = 0 is¹⁷

 $_{25}$ perturbation, free electrons inside the nanowire rearrange $_{133}$ response is linear, and neglecting terms $b_{n,k+q}^2$ and higher ⁵⁶ themselves to screen the field. The resultant Hamiltonian ¹³⁴ orders, the induced charge density can be written as ⁸⁷ of electrons confined in the wire is $H = H_0 + V(\mathbf{r}, t)$, ¹³⁵ $n^{ind}(r, t) = -e \sum_{nn'} \phi_n(r) \phi_{n'}(r) V_{nn'} \mathcal{F}_{nn'}(q, \omega) e^{iqz} e^{i\omega t} +$ ⁸⁸ where $V(\mathbf{r}, t)$ is the self-consistent potential in response ¹³⁶ c.c., where c.c. denotes the complex conjugate and ⁸⁹ to the perturbation $V_0(\mathbf{r},t)$. The unperturbed single- ¹³⁷ $\mathcal{F}_{nn}(q,\omega)$ is the polarization function¹³ (Lindhard func-⁹⁰ particle Hamiltonian $H_0 = \mathbf{p}^2/2m^* + V_{con}(r)$ satisfies ¹³⁸ tion) obtained by summing the Feynman diagram of ⁹¹ the Schroedinger equation $H_0|n,k\rangle = \mathcal{E}_{n,k}|n,k\rangle$. Here ¹³⁹ electron-electron interaction containing single fermion

$$\mathcal{F}_{nn'}(q,\omega) = \frac{2}{L} \sum_{k} \frac{f_n^0(k) - f_{n'}^0(k+q)}{\mathcal{E}_{n'}(k+q) - \mathcal{E}_n(k) - \hbar\omega}.$$
 (3)

⁹⁸ are $\mathcal{E}_{n,k} = \mathcal{E}_n + \hbar^2 k^2 / 2m^*$, where \mathcal{E}_n is the ground ¹⁴² monic dependence as the self consistent potential. The ⁹⁹ state energy of the nth 1D subband and \hbar is the re- 143 induced charge density is related to the screening po-¹⁰⁰ duced Planck constant. The corresponding wavefunc-¹⁴⁴ tential by Poisson's equation $\nabla^2 V_{sc}(\mathbf{r}) = en^{ind}(\mathbf{r})/\epsilon_0\epsilon_s$, ¹⁰¹ tion is $\Psi_{n,k}(r,z) = \langle r|n,k \rangle = \phi_n(r) \cdot [\exp(ikz)/\sqrt{L}]$, ¹⁴⁵ where ϵ_0 is the free-space permittivity. Expressing where $\phi_n(r)$ is the radial part and L is the length of 146 screening potential in Fourier components $V_{sc}(r,z)$ = ¹⁰³ the nanowire. The dielectric function of an electron gas $_{147} \sum_{-\infty}^{\infty} v_{sc}(r,q) e^{iqz}$, where q = k' - k, one obtains the ¹⁴⁸ differential equation for the screening potential

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{dv_{sc}}{dr}\right) - q^2 v_{sc} = \begin{cases} en^{ind}(r)/\epsilon_0 \epsilon_s, & r \le R\\ 0, & r \ge R. \end{cases}$$
(4)

¹⁰⁵ where $\epsilon_{nn',mm'}^{-1}(q,\omega)$ is the four dimensional dielectric ¹⁴⁹ The Green's function appropriate to the above differen-

$$G(r, r', q) = \frac{1}{\pi} \left[\underbrace{I_0(q, r_<) K_0(qr_>)}_{g^{inhom}(r, r')} + \underbrace{\mathcal{U}(qR) I_0(qr) K_0(qr')}_{g^{hom}(r, r')} \right]$$
$$\mathcal{U}(x) = \frac{(\epsilon_s - \epsilon_e) K_0(x) K_1(x)}{\epsilon_e I_0(x) K_1(x) + \epsilon_s I_1(x) K_0(x)}$$
(5)

 $g^{hom(inhom)}(r,r')$ 151 where, is the homogenous 152 (inhomogenous) part of the Green's function, $r_{<(>)} = \min(\max)[r, r'], \text{ and } I_n(..) \text{ and } K_n(...) \text{ are }$ $_{154}$ the nth order modified Bessel functions. For large x155 $(x > |n^2 - 1|), I_n(x) \approx e^x / \sqrt{2\pi x}, K_n(x) \approx e^x \sqrt{2\pi / x}$ 156 and the function $\mathcal{U}(qR) \rightarrow (\pi\gamma/2)e^{-2qR}$, where 157 $\gamma = (\epsilon_s - \epsilon_e)/(\epsilon_s + \epsilon_e)$ is the dielectric mismatch factor. ¹⁵⁸ The tunability of the strength of the Green's function 159 arises through its dependence on γ , which enhances 160 (reduces) the strength for $\epsilon_s > \epsilon_e(\epsilon_s < \epsilon_e)$. For an ¹⁶¹ infinite homogeneous environment ($\epsilon_e = \epsilon_s$), $\gamma = 0$, and ¹⁶² the Green's function is independent of the dielectric ¹⁶³ environment. Using the above Green's function, the 164 induced potential inside the nanowire can be written ¹⁶⁴ induced potential inside the halowite call be written ¹⁶⁵ as $v_{sc}(r,q) = e/4\pi\epsilon_0\epsilon_s \int_0^R G(r,r',q)n^{ind}(r')r'dr^{16}$. In ¹⁶⁶ the size quantum limit (SQL), the nanowire is thin, $_{167}$ $(R < \lambda_{dB}, \lambda_{dB}$ is de Broglie wavelength of an electron)

$$_{1d}(q,\omega,\mathcal{E}_F) = 1 - \frac{e}{4\pi\epsilon_0\epsilon_s V_{11}} \int_0^R \phi_1^2(r)r \int_0^R G(r,r')n^{ind}(r')r'dr'dr = 1 + \frac{1}{\pi a_B^* R^2} \frac{F(x)}{q^3} ln \left| \frac{(q+2k_F)^2 - (\frac{2m^*\omega}{\hbar q})^2}{(q-2k_F)^2 - (\frac{2m^*\omega}{\hbar q})^2} \right|,$$
(6)

FIG. 1. Dielectric function of a nanowire a) with nanowire radius (R) and b) as a function of carrier density (n) for three different dielectric environments of $\epsilon_e = 1$ (upper branch), $\epsilon_e = \epsilon_s = 13$ (middle) and $\epsilon_e = 100$ (lower branch).

 $_{176} I_1(x)[\mathcal{U}(x)I_1(x) - K_1(x)]], a_B^{\star} = 4\pi\epsilon_0\epsilon_s\hbar^2/m^{\star}e^2$ is the 177 effective bulk Bohr radius, $k_F = \pi n_{1d}/2$ is the Fermi 221 tion should be taken into account for a complete descrip-¹⁷⁸ wavevector and $\mathcal{E}_F = \hbar^2 k_F^2 / (2m^{\star})$ is the corresponding ¹⁷⁹ Fermi energy. The logarithmic term in Eq.6 is results 180 from the Lindhard function $\mathcal{F}_{11}(q,\omega)$ which has been 182 evaluated analytically in the SQL⁷. In the context of

183 charge transport inside the nanowire, the static part of 184 the dielectric function $\epsilon_{1d}(q,\omega=0)$ is relevant. In the 185 long wavelength ($q \ll 2k_F$) limit, the static dielectric 186 function $\epsilon_{1d}(q,0)$ for a thin nanowire $(qR \to 0)$ becomes

$$\epsilon_{1d}(q,0) = 1 - \frac{e^2}{2\pi\epsilon_0\epsilon_{\mathbf{e}}} \left[\ln\left(qR\right)\right] \mathcal{D}_{1d}(\mathcal{E}_F), \qquad (7)$$

228

¹⁸⁷ where, $\mathcal{D}_{1d}(\mathcal{E}_F) = (1/\pi\hbar)\sqrt{2m^*/\mathcal{E}_F}$ is the 1D density 188 of states per unit length at Fermi energy \mathcal{E}_F . In sharp 189 contrast to previous models¹², the dielectric constant of ¹⁹⁰ the environment (ϵ_e) instead of the semiconductor itself (ϵ_s) , determines the long-wavelength behavior of the 191 static dielectric function. 192

193

For large momentum $(q >> 2k_F)$, $\epsilon_{1d}(q,0) \rightarrow 1$ as 194 the second term of Eq. 6 falls off rapidly (q^{-5}) with q. 195 ¹⁹⁶ For a degenerate 1DEG in SQL, only backscattering is ¹⁹⁷ allowed, which leads to a momentum transfer $q = 2k_F$ in ¹⁹⁸ any intrasubband elastic scattering process. As a result, ¹⁹⁹ $\epsilon_{1d}(q = 2k_F, 0)$ plays an important role in momentum ²⁰⁰ relaxation rate calculation. In the static limit ($\omega = 0$),

²⁰¹ the dielectric function $\epsilon_{1d}(q,0)$ at T=0 is singular for $_{202} q = 2k_F$. This divergence is related to Peierl's instability, ²⁰³ which is a characteristic signature of a 1DEG. At finite temperature, smearing of the Fermi function removes this 204 205 singularity. The static dielectric function at $T \neq 0$ is ²⁰⁶ given by Maldague's prescription¹⁹

$$\epsilon_{1d}^{T}(q,0) = \int_{0}^{\infty} d\mathcal{E}\epsilon_{1d}(q,0,\mathcal{E}) \left[4k_{B}T \cosh^{2} \left[\frac{\mathcal{E} - \mathcal{E}_{F}}{2k_{B}T} \right] \right]_{(8)}^{-1}$$

Fig.1a) shows the static dielectric function of a GaAs 207 nanowire at $q = 2k_F$ with nanowire radius R for three dif-209 ferent dielectric media. Note that even negligible smear- $_{210}$ ing of Fermi distribution at T = 4.2 K is enough to re-211 move the divergence at $q = 2k_F$. For coated nanowires ²¹² with $\epsilon_e > \epsilon_s$, dielectric screening is strongly reduced as ²¹³ shown in Fig. 2 b). At large radius $(R >> 1/4k_F)$, the nanowire tends to the bulk structure and the dielec-²¹⁵ tric mismatch effect on the screening function vanishes. ²¹⁶ With increasing carrier density, dielectric screening in-²¹⁷ side the nanowire increases (see Fig. 1b) maintaing the 175 where x = qR a dimensionless quantity, $F(x) = \left[\frac{1}{2} + \frac{218}{2}\right]$ effect of dielectric environment intact. At higher carrier densities, more than one subband is populated and 219 inter-subband contribution to the total dielectric func-220 ²²² tion of free electron screening inside the nanowire. With ²²³ increasing temperature, thermal fluctuation reduces the 224 free electron screening inside the nanowire and the effect ²²⁵ of environmental dielectric on the screening function is 226 partially washed away (see Fig. 2a).

As the dynamic ($\omega \neq 0$) dielectric function $\epsilon_{1d}(q,\omega)$

FIG. 2. a) Dielectric function of a nanowire with temperature (T) and b) plasma frequency of an 1DEG with wavevector (q)for three different dielectric environments.

229 contains the dielectric mismatch factor, collective exci- 264 nm) nanowires. At room temperature, weak free carrier 231 232 tron gas is defined as the pole of the full dynamic di- 267 dielectric mismatch effect on the free carrier screening ²³³ electric function, i.e. by $\epsilon_{1d}(q,\omega_p) = 0$, where ω_p is the ²⁶⁸ can be neglected for high- κ dielectric environments, al- $_{234}$ plasma frequency of the electron gas. Fig.2b) shows the $_{269}$ though for low- κ environments, inclusion of the dielectric 235 plasma dispersion of intra-subband collective excitation 270 mismatch effect in screening is necessary for an accurate $_{236}$ of a thin nanowire (R = 2nm) for different dielectric envi- $_{271}$ evaluation (see Fig.3(b)) of scattering rates. ²³⁷ ronments. For q < 1/2R, the dielectric environment has ²⁷² 238 a finite effect on the collective excitation frequency of 273 an important role can be determined by investigating ²³⁹ 1DEG. The softening of plasma frequency with high- ϵ_{e} ²⁷⁴ the behavior of $\mathcal{U}(qR)$. For large qR, $\mathcal{U}(qR) \sim e^{-4k_FR}$. $_{240}$ dielectric environment is the consequence of the reduc- $_{275}$ Hence for $R >> 1/(4k_F)$, $\mathcal{U}(qR)$ becomes negligible and 241 tion of Coulomb interaction between electrons and the 276 the dielectric effect vanishes. For numerical estimates, at 242 243 244 q, the frequency of collective excitations goes to zero for 279 /cm) environmental effect on quantum screening func- $_{245}$ all dielectric environment following the relation $\omega_p(q) \approx _{230}$ tion persists for wire radius up to $R \approx 20$ nm. $_{246} \omega_0 q \sqrt{-\ln(qR)}$, where $\omega_0 = \sqrt{n_{1d} e^2/(4\pi\epsilon_o \epsilon_{\mathbf{e}} m^{\star})}$. Note $_{281}$ 247 the explicit appearance of ϵ_e in ω_0 highlights the role of 282 248 environment in collective excitation of 1DEG inside the 283 electron inside the wire. Relaxing this assumption will 249 wire.

FIG. 3. Screened Coulomb scattering rate with (solid) and without (dashed) incorporating the dielectric mismatch in static screening at a) low temperature, and at b) room temperature as a function of dielectric constant of the envi- 306 devices. ronment. Here we assumed an impurity density $n_{imp} =$ $2.5 \times 10^5/cm$

250 251

A typical example where the static dielectric function 252 ²⁵³ plays a crucial role is the determination of charged im-²⁵⁴ purity scattering rate in semiconductor nanostructures. Fig.3(a) shows the screened Coulomb scattering rates at 255 low temperature with (solid lines) and without (dashed 256 lines) accounting the dielectric mismatch effect in free 257 carrier screening for an impurity point charge e located 258 on the axis of the nanowire. Here, we use the Coulomb 259 $_{260}$ potential derived in Ref.³. Note that the exclusion of the 261 dielectric mismatch effect in the screening underestimates 262 (overestimates) the scattering rate (see Fig.3(a)) for low- $_{263} \kappa$ (high- κ) dielectric medium surrounding thin (R < 5

tations of the 1DEG is also expected to depend on the 265 screening results in higher scattering rate (see Fig.3(b) dielectric environment. Collective excitation of a elec- $_{266}$ compared to Fig.3(a)). At room temperature, the the

The length scale at which dielectric environment plays positive background, which acts as a restoration force of 277 carrier density $n_{1d} = 10^6$ /cm dielectric effect vanishes the collective oscillation of the electron gas. For small $_{278}$ for R >> 2 nm, whereas at lower density $(n_{1d} = 10^5)$

> We have assumed an infinite confining potential for ²⁸⁴ result in electron mass enhancement due to leaking of wavefunction into the barrier. For high- κ oxides the 285 typical barrier height is $\sim 1 \text{ eV}$, for which nominal $_{287}$ increase in electron mass can be neglected¹⁸. The 288 assumption of constant radial part of the wavefunction is justified for thin nanowires. Choosing a different 290 form for the radial part will change the absolute value ²⁹¹ of screening function for thick (for large R dielectric ²⁹² environment effect reduces anyway) wires keeping the ²⁹³ relative effect of environments unchanged.

> ²⁹⁴ In conclusion, we have shown that the free electron ²⁹⁵ screening inside a nanowire depends on the environment ²⁹⁶ surrounding it. For a nanowire coated with a high- κ ²⁹⁷ dielectric, Coulomb perturbation inside the nanowire is poorly screened compared to a freestanding nanowire. It is shown that both the static dielectric function, and the plasma dispersion in the long-wavelength limit gets ³⁰¹ modified by the environment. The length-scale at which $_{302}$ the environment has substantial effect on the electron $_{\rm 303}$ gas inside the nanowire was identified. The results are 304 analytical and will be useful for accurate prediction 305 of transport coefficients in nanowire-based electronic

> The authors would like to acknowledge National Sci-308 ³⁰⁹ ence Foundation (NSF) NSF Grant Nos. DMR-0907583 ³¹⁰ and NSF DMR-0645698), Midwest Institute for Nanoelectronics Discovery (MIND) for the financial support 311 312 for this work.

307

- 313 * akonar@nd.edu
- ¹ Y. Li, F. Qian, J. Xiang and C. M. Lieber, Materials Today
 9, 18 (2006).
- ² S. Roddaro, K. Nilsson, G. Astromskas, L. Samuelson, L. ³³⁶
 ³¹⁷ Wernersson, O. Karlström and A. Wacker, Appl. Phys. ³³⁷
 ³¹⁸ Lett. **92**, 253509 (2008). ³³⁸
- ³¹⁹ ³ A. Konar and D. Jena, J. Appl. Phys. **102**, 123705 (2007).
- ³²⁰ ⁴ S. Jin, M. V. Fischetti and T. Tang, J. Appl. Phys. **102**, ³⁴⁰ ³²¹ 083715 (2007). ³⁴¹
- ⁵ L. V. Keldysh, JETP **92**, 658 (1979).
- ⁶ One such example is dielectric environment mediated free ³⁴³ electron screening in graphene, where an average dielec- ³⁴⁴
- tric constant of graphene $\epsilon_{gr}^{avg} = (\epsilon_e^t + \epsilon_e^b)/2$ is used in the 345
- Thomas-Fermi screening function. Here $\epsilon_e^t(\epsilon_e^b)$ is the di- ³⁴⁶
- 327 electric constant of top (bottom) environment of graphene 347
- $_{328}$ and the crystal property of atomically thin (monolayer 0.3 $_{348}$
- 329 nm) graphene is neglected. For a nanowire of radius few 349
- $_{330}$ nm, crystal property of the semiconductor can not be ne- $_{350}$
- glected and a rigorous model containing both ϵ_e and ϵ_s is ³⁵¹
- 332 necessary.

- ³³³ ⁷ P. F. Williams and A. N. Bloch, Phys. Rev. B. 10,
 ³³⁴ 1097(1974).
- ⁸ J. Lee and H. N. Spector, J. Appl. Phys, **57**, 366(1985).
 - ⁹ Q. Li and S. Das Sarma, Phys. Rev. B, **40**, 5860(1989).
- ³³⁷ ¹⁰ Q. P. Li and S. Das Sarma, Phys. Rev. B, **43**, 11768(1991).
- ³³⁸ ¹¹ H. Ehrenreich and M. H. Cohen, Phys. Rev. **115**, ³³⁹ 786(1959).
- ³⁴⁰ ¹² D. K. Ferry and S. M. Goodnick, *Transport in Nanostruc-*³⁴¹ *tures* (Cambridge University Press), NY, USA.
- ³⁴² ¹³ J. M. Ziman, *Principles of the Theory of Solids* (Cam-³⁴³ bridge University Press),NY, USA.
 - ¹⁴ G. D. Mahan, *Many-Particle Physics* (Plenum Press), NY, USA.
 - ⁵ E. A. Muljarov, E. A. Zhukov, V. S. Dneprovskii and Y. Masumoto, Phys. Rev. B, **62**, 7420(2000).
 - ¹⁶ J. D. Jackson, *Classical Electrodynamics* (John Wiley and Sons, Inc), NY, USA.
 - ¹⁷ For evaluation of the integral the identity $I_n(x)K_{n+1}(x) + I_{n+1}(x)K_n(x) = 1/x$ is used.
- ³⁵² ¹⁸ D. Jena and A. Konar, Phys. Rev. Lett. **98**, 136805 (2007).
- ¹⁹ F. Maldague, Surf. Sci. **73**, 296(1978).