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We systematically investigate the optical extinction spectra of planar gold split-ring-resonator
square arrays operating at around 200-THz frequency versus lattice constant and versus angle of
incidence. We find a strong dependence of the resonance damping on the in-plane wave vector,
namely, the resonance damping increases (decreases) versus in-plane wave vector for small lattice
constants (large lattice constants). By comparison with two simple one-dimensional models as well
as with more complete numerical calculations, this behavior is interpreted in terms of a long-range
retarded interaction among the split-ring resonators. In contrast, the assumptions of only nearest-
neighbor interaction and/or of an instantaneous interaction lead to striking disagreement with the
overall experimental facts.
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I. INTRODUCTION

Split-ring resonators1–5 are tiny sub-wavelength electromagnets into which an incident electromagnetic light field
can induce a circulating and oscillating electric current, leading to a local magnetic-dipole moment normal to the plane
of the ring. Split-ring resonators (SRRs) are the paradigm building block (or ”meta-atom”) of metallic metamaterials3

and can be viewed as the classical counterpart of quantum-mechanical magnetic moments due to spin or atomic-orbital
angular moments6.
For many applications, it is desirable to achieve small damping (or linewidth) of the SRR resonance. Thus, a

detailed understanding of the mechanisms determining this linewidth is highly desirable. It is well known by now
that both near-field as well as far-field coupling effects significantly modify the resonance position and lineshape of
the response of coupled metal nanoparticles7–10. Likewise, for SRR arrays the damping is not only determined by the
properties of the individual SRRs but also by the mutual interaction of SRRs in a two-dimensional array5,6,11 or in a
three-dimensional crystal12–15. This fact was already reported in our early SRR experiments3 at 100-THz frequency
in 2004, where we observed that the magnetic-resonance damping varies significantly with lattice constant. In 2009,
this behavior was interpreted in terms of super-radiance for usual SRR square arrays investigated for several lattice
constants but only under normal incidence of light11. We have rather interpreted our own angle-resolved experiments
on particular asymmetric SRR arrays in terms of far-field retardation effects6 which basically yields the analogue of
usual quantum-mechanical magnon waves in solids with the subtle and important difference that the back-action from
one classical SRR to its neighbors happens with a certain time delay due to the finite SRR spacing compared to the
wavelength of light – the quantum-mechanical spin-spin interaction on the other hand is an example of a practically
instantaneous process. As a result, the effective damping of a SRR array depends on both the lattice constant of the
SRR array and the relative phase with which the individual SRRs oscillate, hence, the excitation angle. The latter
point is equivalent to saying that the damping depends on the in-plane wave vector of the excitation as the parallel
(or in-plane) component of the incident wave vector of light with respect to the SRR-array plane is conserved. This
dependence of the SRR damping on in-plane wave vector is precisely what we observed in our experiments6. However,
these experiments were performed on highly unusual asymmetric SRR arrays with two non-equivalent SRRs in the
primitive unit cell. Hence it remained unclear whether our interpretation would also apply for usual SRR square
arrays that are much more relevant in the context of metamaterials.
In this work we present the corresponding experimental results for the usual square arrays of SRRs for different

lattice constants and excitation angles. The quality and completeness of these data go far beyond previous angle-
resolved work on SRR arrays by us at optical frequencies16 and by others at microwave frequencies17,18 that would
not have allowed for any of the conclusions of the present paper.

II. EXPERIMENTAL RESULTS

The SRR arrays in our experiments have been fabricated by standard electron-beam lithography on glass substrates
coated with a 5-nm thin film of indium-tin oxide followed by standard high-vacuum electron-beam evaporation and a
lift-off procedure3. The gold-film thickness is 40 nm and the footprint of all arrays is 160µm× 160µm. The normal-
incidence fundamental SRR resonance is located at around 200-THz frequency (or 1500-nm free-space wavelength).
The square lattice constant a of the SRR arrays is systematically varied from 280 nm to 700 nm. Selected typical
electron micrographs are depicted in Fig. 1. Transferring these lattice constants to corresponding free-space phase
delays ϕ we obtain values ranging from 67◦ to 168◦ between two lattice sites. In bulk glass with refractive index
1.4 (hence around 1071-nm material wavelength), they would correspond to phase delays ranging from 94◦ to 235◦.
Since the SRR arrays are processed on a glass half-space in air the actual phase delays are expected to lie somewhere
in between these values. Notably, we expect that we pass a phase delay of ϕ = 180◦ at some lattice constant
between 280 nm and 700 nm. For measurement of the intensity transmittance of the SRR arrays we use a home-built
spectroscopy set-up and an optical spectrum analyzer. Under normal-incidence conditions, the opening angle of the
incident light is 5◦ and the imaged sample area is a square with 50µm× 50µm. The size increases to 100µm along
the y-direction at β = 60◦ (see geometry depicted in Fig. 2). This value is still sufficiently smaller than the sample
size of 160µm (see above), avoiding artifacts from insufficient sample-spot overlap. However, at yet larger angles, the
absence of artifacts can no longer be guaranteed. Thus, we limit the experiments to a maximum angle of β = 60◦.
The incident electric-field vector is chosen to be parallel to the SRR gap and the transmittance spectra are measured
as a function of the angle of incidence for s-polarization of light. The transmitted spectrum is normalized to the
transmission of the bare glass substrate right next to the SRR arrays at the same angle of incidence in order to
allow for reproducible and reliably calibrated results. We calculate the extinction spectrum defined as the negative
logarithm of the measured transmittance (−log10(T )).
All measured extinction spectra could very nicely be fitted by Lorentzian lineshapes as illustrated in Fig. 3. These
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FIG. 1. (a) Overview electron micrograph of the split-ring-resonator (SRR) square array with a = 280 nm lattice constant used
in this work. The total footprint of this array and all others is 160µm× 160µm. The SRR dimensions used for the numerical
calculations are indicated in the inset. (b) Electron micrographs of all other SRR arrays in this work with lattice constants a
as indicated. All arrays are shown on the same scale, the scale bar is 500 nm.
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FIG. 2. Illustration of the geometry used in our oblique-incidence optical transmittance experiments.

high-quality fits to high-quality raw data are the key to determining the dispersion of the SRR-resonance center
position as well as of its damping with an error as low as 0.1THz, which is only about 0.05% of the resonance center
frequency of 200THz. This error has been determined by repeating the experiment and the fitting procedure. We
do the experiment for SRR square arrays with lattice constants of 280 nm, 300 nm, 325 nm, 350 nm, 400 nm, 450 nm,
500 nm, 550 nm, 600 nm, and 700 nm. The angle of incidence β with respect to the surface normal is varied from 0◦

to 60◦ in steps of 5◦ (i.e., 10 × 13 = 130 spectra altogether). Finer steps do not make sense as the opening angle of
the incident light is about 5◦ as well. For each parameter combination we perform the Lorentzian fit and obtain the
resonance center frequency and its damping (half the linewidth of the SRR resonance). The angle of incidence β is
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FIG. 3. Selected extinction spectra (dots) together with Lorentzian fits (solid curves) (a) for different lattice constants at
normal incidence and (b) for a selected lattice constant of a = 500 nm but for different angles of incidence β as indicated. These
fits provide us with the center frequency and the damping versus lattice constant and versus angle of incidence. The latter can
be converted into an in-plane wave vector k|| using the experimental geometry shown in Fig. 2. For clarity, the curves in (b)
are vertically displaced by 0.1 starting with 20◦ angle.

converted into an in-plane wave vector via the formula

k|| = k0 sin(β) (1)

with the free-space wave number k0 = 2π/λ, where λ is the free-space resonance wavelength. Negative and positive
angles of incidence have delivered consistent results, as verified for selected examples. Thus, in what follows, we only
show results for positive angles. The corresponding experimental data are summarized in Fig. 4.

For the combination of large lattice constants with large angles of incidence caution has to be exerted because under
these conditions light can be diffracted into the glass substrate, corresponding to well-known Wood anomalies. In this
case the spectra deviate from Lorentzian lineshapes leading to inaccurate results from the fitting procedure for the
SRR resonance positions and linewidths. The crosses in Fig. 4 indicate the data points for which the Wood-anomaly
frequency is expected to be separated from the fundamental SRR resonance frequency by less than two SRR resonance
full linewidths – a very conservative estimate. In fact, only for these data points, the behavior of the damping changes
qualitatively, indicating a substantial influence of the Wood anomaly onto our results. For the remaining data points
in Fig. 4 we can safely conclude that the observed change in sign of the SRR resonance damping versus in-plane wave
vector is not an artifact of the Wood anomaly.

In the experiments we observe a dispersion of the resonance center frequency versus in-plane wave vector as expected
for any type of interaction effect. Specifically, the resonance center frequency decreases with increasing in-plane wave
vector and with increasing lattice constant. This dispersion corresponds to negative group velocites of light, i.e., to
backward waves. More importantly, we find that the SRR resonance linewidth or damping increases with increasing
in-plane wave vector k|| for small lattice constants. This increase becomes less pronounced for larger lattice constants
and may in itself be partly due to decreased magnitude of the SRR interaction strength. However, if the lattice
constant exceeds a value of about a = 600 nm, the measured resonance damping starts decreasing (!) with increasing
in-plane wave vector k||.

This finding cannot be explained by reduced coupling strength alone and is a fingerprint for retarded interaction
among the SRRs as investigated previously in the context of asymmetric SRR arrays6. However, in the case inves-
tigated here the overall qualitative behavior of the dispersion of both the resonance frequency and the damping can
only be described if we account for long-range interaction effects, as we shall argue in what follows.
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FIG. 4. Center frequency (top) and damping (bottom) versus in-plane wave vector k|| for different lattice constants a as
indicated (in units of nm). These data are derived from Lorentzian fits to the experimental data as illustrated in Fig. 3. The
crosses illustrate the data points for which the influence of diffraction into the glass substrate (Wood anomaly) may become
important. These data points should be taken with some caution. All curves end at a maximum angle of incidence with respect
to the surface normal of 60 degrees (see Fig. 2).

III. HEURISTIC COUPLED-OSCILLATOR MODEL

Let us start by comparing the experimental findings to a very simple but intuitive one-dimensional toy model that
we have previously introduced for the case of nearest-neighbor interactions only6. The model considers an infinite
one-dimensional chain of harmonic oscillators with individual center frequency Ω and individual damping γ that are
coupled to their nearest neighbors by the interaction frequency W . The latter clearly depends on the lattice constant
a. The finite lattice constant a between the oscillators also leads to a time delay in their interaction, which can be
translated into a phase delay ϕ, which is expected to be proportional to the lattice constant a. The resulting model
dispersion relation for the system’s complex-valued eigenfrequency ω versus real-valued in-plane wave vector k|| is

given by6

Re (ω) = +Ω−W cos
(

k||a
)

cos (ϕ) , (2)

Im (ω) = −γ −W cos
(

k||a
)

sin (ϕ) . (3)

The real part of the eigenfrequency exhibits the usual tight-binding type dispersion, albeit modified by the cosine of
the phase delay ϕ. More importantly, the imaginary part of the eigenfrequency, i.e., the negative resonance damping,
also depends on the in-plane wave vector for non-zero values of ϕ. For example, for W > 0, the damping decreases

with increasing in-plane wave vector k|| for phase delays 0◦ < ϕ < 180◦ because sin(ϕ) > 0, whereas the damping
increases with increasing in-plane wave vector k|| for phase delays 180◦ < ϕ < 360◦, where sin(ϕ) < 0. As discussed
above, the phase delay is expected to be proportional to the lattice constant a. To account for the glass half-space
geometry, we assume an effective refractive index of n = 1.2 that is intermediate to that of air and glass, in which
case we obtain

ϕ (a) =
a

λ/n
× 360◦ (4)

with the free-space resonance wavelength λ obtained from the normal incidence spectra for each lattice constant.

However, we will see below that the assumption of only nearest-neighbor interaction is unable to reproduce the
experimental data (Fig. 4). Following along the lines of our Ref. [6], i.e., approximating the resulting expressions in
the limit of small relative frequency variations (which is well justified here, see Fig. 4), we obtain the generalized
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FIG. 5. Dispersion of eigenfrequency and damping as derived from a simple model of coupled harmonic oscillators subject to
retarded only nearest-neighbor interaction represented as the experimental data in Fig. 4. Parameters are: Ω/(2π) = 200THz,
γ/(2π) = 10THz, and W0 ·

√
a0 = 66.5 THz ·

√
280 nm. Note the disagreement with experiment in Fig. 4. If one artificially

neglects retardation (not depicted), the damping becomes strictly independent on lattice constant and strictly independent on
the in-plane wave vector, i.e., the disagreement with experiment becomes even worse. Also, upon neglecting retardation, the
curvature of the dispersion of the resonance frequency reverses sign, further increasing the disagreement with experiment.

dispersion relation for interaction with all neighbors in the chain

Re (ω) = +Ω−

∞
∑

N=1

WN cos
(

Nk||a
)

cos (Nϕ) , (5)

Im (ω) = −γ −

∞
∑

N=1

WN cos
(

Nk||a
)

sin (Nϕ) . (6)

Here we have used the phase delay over a distance of N lattice sites Nϕ. WN is the interaction frequency with the
N -th neighbor. Generally, the interaction among the SRRs is fairly complex and includes the possibility of magneto-
inductive coupling5 and magneto-electric cross coupling effects. The former is analogous to the coupling between the
two coils of a transformer and can formally be described by magnetic dipole-dipole interaction. However, under the
conditions of the above experiments, the coefficients WN are rather expected to be dominated by electric dipole-dipole
interaction11. This means that the interaction is governed by the decay of the electric field of an oscillating electric
dipole along a direction normal to its oscillation axis. It is well known that this decay has components falling off
inversely with the distance, the square of the distance, and the cube of the distance (also see following section). In a
two-dimensional array, the situation is more complex because the number of neighbors in a certain distance increases
proportional to distance. For a hypothetical isotropic interaction and an asymptotic decay of the field of one dipole
with the inverse of the distance, this would lead to an effectively constant interaction, i.e., to no dependence on Na
at all. However, the radiation field of an electric dipole is far from being isotropic. Hence, we expect a decay of
the interaction WN versus distance Na intermediate to a constant ∝ (Na)0 and ∝ (Na)−1. For simplicity, we here
heuristically assume

WN (a) = W0

√

a0
Na

, (7)

which has a rapid initial decay, followed by a long tail.
Let us start the discussion by presenting results for nearest-neighbor interaction only, i.e., we only account for

the N = 1 contribution. Furthermore, we use the parameter W0 ·
√
a0 = 66.5THz ·

√
280 nm. The remaining

individual-oscillator parameters are Ω/(2π) = 200THz and γ/(2π) = 10THz. This immediately allows for calculating
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FIG. 6. As Fig. 5, but for long-range interaction between the oscillators. Parameters are chosen to be the same as for nearest-
neighbor interactions only. The behavior is very much different from that of the corresponding case of nearest neighbors only
in Fig. 5 and approaches that of the experiment in Fig. 4. Especially the damping is reproduced very well.

the resonance center frequency, Re(ω)/(2π), and the damping, −Im(ω)/(2π), versus in-plane wave vector k|| for the
various lattice constants a just like in the experiment (Fig. 4). Results are shown in Fig. 5. Comparing the qualitative
behavior of the dispersion curves, we observe that, while the behavior of the damping can be reproduced, the center-
frequency dispersion is just opposite to that of the experiment. For other parameter choices, the center-frequency
dispersion can be matched, however, at the price of obtaining the opposite behavior for the damping dispersion
between experiment and model. What remains is a striking (!) overall disagreement. We will see below that this
disagreement also exists for more sophisticated descriptions involving only the interaction between nearest neighbors.
Next, we go beyond nearest-neighbor interaction. Results for 10 000 neighbors in each direction are depicted in

Fig. 6 in the same format as the experiments in Fig. 4. Using the same set of parameters as above, we observe an
improved agreement with experiment combined with a strong difference compared to the same model accounting
for nearest neighbors only (Fig. 5). This leads us to conclude that a retarded long-range interaction is crucial to
qualitatively understand the behavior of the simple split-ring-resonator square arrays under investigation.
We note in passing that for the purely mathematical (but unphysical) case of no retardation at all (i.e., ϕ = 0) and

zero in-plane momentum (i.e., k|| = 0), the real part of the eigenfrequency Re (ω) according to (5) diverges. With
retardation, no such divergence occurs, as the retardation leads to an oscillating sign of the addends in the sum via

the cos (Nϕ) term.
The simple one-dimensional model of coupled harmonic oscillators applied here qualitatively explains the experi-

mentally observed behavior. However, the model is purely heuristic. In order to back up our conclusion, we will now
consider a simple but microscopic one-dimensional chain of interacting electric point-dipoles (Section 4) in a first step.
In a second step, we perform complete numerical calculations for actual two-dimensional split-ring-resonator arrays
on a glass substrate (Section 5).

IV. INTERACTING ELECTRIC POINT-DIPOLES

From the geometry in Fig. 2 and from Ref. [11] and [19] it is clear that – for the in-plane wave propagation direction
under consideration – the interaction among the magnetic split-ring resonators is mainly mediated via their electric-
dipole moments (rather than via their magnetic-dipole moments). Thus, we will first describe this problem by a
microscopic one-dimensional chain of interacting electric point-dipoles – the interaction of a set of electric dipoles has
been treated many times in the literature20,21. For the polarizability of each isolated electric dipole αs, we assume
a Lorentzian response with center frequency Ω/(2π) = 200THz and damping γ/(2π) = 10THz. Each dipole sees a
total electric field composed of the monochromatic external driving field E0 and the sum of the fields from all of the
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other electric dipoles Ed. Hence the effective dipole moment for this linear chain of interacting point-dipoles is

p = αs

(

E0 +
∞
∑

d=−∞

Ed

)

. (8)

Due to symmetry considerations, the sum over all dipoles
∑∞

d=−∞Ed can be reduced to a sum over the number

of neighbors (one in each direction)
∑∞

N=1 ẼN . Using the expression for the radiation field of transversely coupled
electric dipoles for the N ’s (two) neighbors, we obtain

ẼN =
k30
4πǫ0

eik0Na

(

1

k0Na
+ i

(

1

k0Na

)2

−

(

1

k0Na

)3
)

×2 cos
(

k||Na
)

· p

=: GN · p. (9)

The cosine term in equation (9) accounts for oblique incidence of the incident light. Finally, the effective polarizability
is given by

αeff =
αs

1− αs

∑∞
N=1 GN

. (10)

The extinction is then calculated by evaluating the imaginary part of the effective polarizability αeff of the linear
chain of interacting dipoles. Such treatment automatically includes retardation effects, i.e., retardation does not have
to be added by hand as in the above toy model. To investigate the aspect of long-range interaction, we proceed
as follows. We start with one dipole and two neighbors separated by distance a in a one-dimensional setting. The
resulting spectra of the imaginary part of the total system’s polarizability are fitted by Lorentzians for various values
of a and for various angles β just like we have proceeded with the processing of the experimental data in Section 2.
Next, we successively increase the number of dipoles by adding more and more neighbors to the chain. Fig. 7

shows the limiting case of just one neighbor in each direction and Fig. 8 that of an infinite periodic chain (actually
2001 dipoles). All other parameters have been fixed between Fig. 7 and Fig. 8. The results presented in Fig. 8 very
closely qualitatively reproduce those of the simple oscillator model for long-range interaction shown in Fig. 6. This
agreement provides us with further confidence that our conclusion of having observed long-range interaction effects
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FIG. 7. Dispersion of center frequency and damping as derived from a chain of 3 electromagnetically interacting electric point-
dipoles in vacuum evenly separated by distance a represented as the experimental data in Fig. 5. This treatment automatically
accounts for retardation. The chain of three dipoles mimics short-range interaction only. Parameters are: Ω/(2π) = 200THz
and γ/(2π) = 10THz. Note the disagreement with experiment in Fig. 4.



9

190

195

200

205

210

215

220

225

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

In-plane Wave Number k || (p/a)

D
a
m

p
in

g
 (

T
H

z
)

R
e
s
o
n
a
n
c
e
 F

re
q
u
e
n
c
y
 (

T
H

z
)

280 300 325 350

400 450 500

550 600

700

FIG. 8. As Fig. 7, but for 2001 rather than for 3 electric point-dipoles. All other parameters are as in Fig. 7. Note the much
better qualitative agreement with the experiment in Fig. 4 and the striking difference to the corresponding case of nearest
neighbors only in Fig. 7.

in the experiments (Fig. 4) is valid indeed. Undoubtedly, retardation is evident by the mere fact that the damping
reveals a dependence on the in-plane wave vector k||.

V. COMPLETE NUMERICAL CALCULATIONS

This more advanced dipole-dipole modeling has emphasized the general nature of the physics under discussion.
Yet, it has still not treated the particular situation of metallic split-ring resonators on a glass substrate. To this end,
we have performed numerical calculations of the transmittance spectra of gold SRR arrays under oblique incidence
using the commercially available program package COMSOL Multiphysics with a frequency-domain finite-elements
solver and periodic boundary conditions in the SRR plane. The gold is described by a free-electron Drude dielectric
function with plasma frequency ωpl = 2π × 2155THz and collision frequency ωcoll = 2π × 28.3THz. The SRR array
is located on a glass substrate with refractive index 1.41, the lattice constants are as in the experiments, the SRR
thickness is 40 nm, and the lateral SRR dimensions are illustrated in Fig. 1(a). The calculated transmittance spectra
are then processed just like in the experiment (Section 2).
The results shown in Fig. 9 qualitatively agree with the experiment (Fig. 4) as well as with the simple oscillator

model with long-range interaction (Fig. 6) and with the microscopic dipole-dipole description (Fig. 8). In particular,
the slopes of both the eigenfrequency dispersion and the damping dispersion and their dependence on the lattice
constant a are reproduced.
Caution has to be exerted when comparing the behavior of the dispersion branches of the resonance frequency

for different lattice constants a. In the experiment, even variations of the SRR size of just a few percent (almost
unavoidable due to the proximity effect in electron-beam lithography) can strongly disturb the ordering of the different
branches. After all, for example, a 5% SRR size variation translates into an absolute frequency variation of 10THz at
200THz center frequency. Hence a systematic increase of the lattice constant a leads to a systematic red-shift of the
center frequency Ω due to a decrease of the proximity effect. In contrast, the dispersion for a given branch and the
entire behavior of the damping are not expected to sensitively depend on this aspect. In order to specifically identify
the influence of long-range retarded interaction in SRR arrays we performed the numerical calculations using fixed
SRR dimensions for all lattice constants (see inset in Fig. 1(a)).
Finally, it is interesting to ask why our6 and other groups11,22 previous results on split-ring-resonator arrays could

be described reasonably well by accounting for nearest-neighbor6,11 or short-range22 interactions only, whereas we
conclude in the present paper that accounting for long-range interaction is mandatory. Broadly speaking, one simply
must not conclude from the mere agreement between whatever model and experiment that the model is correct. One
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FIG. 9. As the experiment in Fig. 4, but derived from complete numerical calculations for actual infinite gold split-ring-resonator
square arrays with lattice constants a as indicated. Note the good qualitative agreement with the experiment in Fig. 4. The
lateral geometry of the split-ring resonators is indicated in Fig. 1. The gold film thickness is 40 nm, the glass substrate is
accounted for.

can only conclude consistency. Agreement is a necessary but not a sufficient condition. More specifically, if we had
not investigated the angle dependence (as, e.g., Ref. [7, 8, 10, and 11]), i.e., if we would have had only data points
at k|| = 0 for our discussion, our data were also compatible with the assumption of nearest-neighbor interaction only.
In other words, the fact that we have measured simultaneously the dependence of the resonance frequency and of the
damping on lattice constant as well as the dependence on angle of incidence (equivalent to in-plane wave vector) has
provided a much more stringent test ground for a detailed understanding of split-ring-resonator arrays.

VI. CONCLUSION

In conclusion, we have provided a detailed experimental study of the resonance damping of split-ring-resonator
square arrays. We find a characteristic dependence of the damping on lattice constant and on in-plane wave vector that
is interpreted in terms of a retarded and long-range interaction among the split-ring resonators. This interpretation
is backed up by three different levels of theoretical modeling.

These overall results imply that the damping in optical metamaterials can be fine-tuned by suitably arranging the
individual meta-atoms with respect to each other. The long-range interaction is also quite relevant in the context
of the lasing spaser23–25. Without interaction, a large array of split-ring resonators would very likely break up into
incoherent domains, whereas sufficiently strong long-range interaction could force the entire array into a collective
coherent lasing-spasing mode.
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