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Using harmonic and anharmonic force constants extracted from density-functional calculations
within a supercell, we have developed a relatively simple but general method to compute thermo-
dynamic and thermal properties of any crystal. First, from the harmonic, cubic, and quartic force
constants we construct a force field for molecular dynamics (MD). It is exact in the limit of small
atomic displacements and thus does not suffer from inaccuracies inherent in semi-empirical poten-
tials such as Stillinger-Weber’s. By using the Green-Kubo (GK) formula and molecular dynamics
simulations, we extract the bulk thermal conductivity. This method is accurate at high tempera-
tures where three-phonon processes need to be included to higher orders, but may suffer from size
scaling issues. Next, we use perturbation theory (Fermi Golden rule) to extract the phonon lifetimes
and compute the thermal conductivity κ from the relaxation time approximation. This method is
valid at most temperatures, but will overestimate κ at very high temperatures, where higher order
processes neglected in our calculations, also contribute. As a test, these methods are applied to bulk
crystalline silicon, and the results are compared and differences discussed in more detail. The pre-
sented methodology paves the way for a systematic approach to model heat transport in solids using
multiscale modeling, in which the relaxation time due to anharmonic 3-phonon processes is calcu-
lated quantitatively, in addition to the usual harmonic properties such as phonon frequencies and
group velocities. It also allows the construction of accurate bulk interatomic potentials database.

PACS numbers: 63.20.-e,63.20.dk,63.20.kg,61.50.Ah

I. INTRODUCTION

Classical molecular dynamics (MD) simulations use ei-
ther semi-empirical potentials such as Stillinger-Weber
(SW)1, Abell-Tersoff-Brenner2 or other type of force
fields where the potential energy is an analytical function
of the atomic positions, or first-principles potentials cal-
culated typically using density-functional methods based
on either the Born-Oppenheimer3 or the Car-Parrinello4

dynamics. The former are fast to compute but suffer
from inaccuracies, while the latter are accurate but time-
consuming to compute. Due to recent interest in thermal
transport in semiconductor materials having good ther-
moelectric properties and the topic of microelectronics
thermal management in general, there have been many
calculations of the lattice thermal conductivity of ma-
terials using the Green-Kubo (GK) formula5,6. This for-
mula relates the thermal conductivity, through the use of
the fluctuation-dissipation theorem, to the time-integral
of the heat current autocorrelation function. The latter
is calculated from an MD simulation, and the ensemble
average is usually replaced by a time average. Semi em-
pirical potentials such as SW are usually used to perform
the MD simulation for a system such as Si. As the ther-
mal conductivity of a perfect crystal is mainly due to
anharmonic three-phonon processes, directly related to
the third-derivatives of the potential energy with respect

to atomic displacements, and the latter is generally not
fitted or considered in the design of the semi-empirical
potentials, there is really no good reason to expect an ac-
curate value for the thermal conductivity calculated from
a GK-MD simulation. In the case of Si, when using the
SW potential, however, for some reason7, relatively good
agreement is found between the experiment and the sim-
ulation results, even for a relatively small supercell8–11.
The latter fact is also cause for concern, because, as we
will show in the following, a small supercell limits the
number of long-wavelength phonons which carry a large
portion of the heat in a material. The lucky agreement
can be attributed to a cancellation due to two different
effects, which will be discussed in sectionIII B. Sellan et
al.11 have presented a discussion on convergence issues,
mostly with respect to non-equilibrium MD simulations,
and we will also discuss the scaling issue with respect to
GK-MD and lattice dynamics (LD) in this paper.

More accurate calculations of the thermal conduc-
tivity, based on the full solution of Boltzmann trans-
port equation have shown that the thermal conductiv-
ity of Si using the SW potential is about 4-times larger
than the experiment, while using the Tersoff or EIDP
potentials produce results that are about twice larger
than the experimental values12. In a similar work,
using the environment-dependent interaction potential
(EDIP), Pascual-Gutierrez et al.13 also find thermal con-
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ductivity of bulk Si from MD in good agreement with
experiments. In a subsequent work14, the same group
computed the thermal conductivity using the lattice dy-
namics (LD) theory based on the same EDIP potential,
similar to the work of Broido et al.12. They obtain good
agreement with experiments whereas Broido et al. do
not. The reason for this discrepancy, as they also men-
tion in their paper, is unclear. Opinions on the accu-
racy of semiempirical potentials seem to differ as there
have been other reports15 where SW is found to over-
estimate the thermal conductivity by 70%. As we will
show in this paper, some of these potentials might not
be completely reliable for the calculation of the thermal
transport properties for the simple reason that they were
not fitted or constructed to have the correct third deriva-
tives, which are responsible for the thermal resistivity of
a material. In fact even their harmonic force constants
produce phonon dispersions and elastic constants which
differ from experiments by 10 up to 40%. Furthermore
such potentials exist and have been thouroughly tested
for only a very small number of pure crystalline solids.

In a tour de force work, Broido et al., later, used the
density-functional perturbation theory (DFPT) formal-
ism in order to calculate the phonon scattering rates from
first-principles DFT calculations and were able to suc-
cessfully reproduce the thermal conductivity of bulk Si
and Ge16. Their approach, which was very accurate, in-
cluded the calculation of all the cubic force constants up
to 6 lattice parameters away, and the complete iterative
solution of the Boltzmann transport equation.

We recently developed a methodology to extract sec-
ond, third and fourth derivatives of the potential energy
from first-principles calculations17, and showed that the
phonon dispersion relation in Si can be well-reproduced.
In this paper, we pursue this work further and use these
derivatives to construct a force field in order to explore
the results from MD simulations and perturbation calcu-
lation to calculate the thermal conductivity of bulk Si.
We should mention that our approach, even though very
similar in essence to that of Broido et al., is simpler in the
sense that it limits the range of the force constants (FCs)
to a few neighbors (5 for harmonic and 1 for cubic in the
present case study of Si, in contrast to more than 20 for
harmonic and 10 for cubic in the work of Broido et al.16).
For the sake of physical correctness, however, we enforce
the translational, rotational and Huang invariances on
the extracted force constants. So the latter are not ex-
actly equal to the ones obtained from DFPT or any finite
difference calculation of the forces, but make the calcula-
tion load much lighter than if one had to include so many
neighbors. On the other hand a DFPT calculation, if re-
stricted to few neighbors, should enforce all these invari-
ances. Usually, only the translational ones, also known
as the “Acoustic Sum Rule” (ASR) are enforced in some
of the standard DFT codes such as Quantum Espresso18.

In what follows we briefly review the methodology
to extract force constants from first-principles density-
functional theory calculations (FP-DFT). The formalism

for the molecular dynamics and Green-Kubo calculations
of κ are explained in section (III). This will be followed
by the lattice dynamics approach detailed in section (IV).
Results for Si will be shown and discussed in section (V),
followed by conclusions.

II. EXTRACTION OF FORCE CONSTANTS
FROM FP-DFT CALCULATIONS

We construct the potential energy V for the MD sim-
ulation as a Taylor expansion up to fourth order in the
atomic displacement ui of atom i about its equilibrium
position:

V = V0 +
∑
i

Πiui +
1

2!

∑
ij

Φij uiuj (1)

+
1
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ijk

Ψijk uiujuk +
1

4!

∑
ijkl

χijkl uiujukul

=
∑
i

(ei −
1

2
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The last equation defines the on-site energy ei . If
the displacements ui are around the equilibrium position,
and this is usually the case, Πi = 0. The coefficients Φ,Ψ
and χ in the expansion are called the harmonic, cubic,
and quartic force constants respectively, and satisfy cer-
tain symmetry constraints. Namely they must be invari-
ant under interchange of the indices, uniform translations
and rotations of the atoms, in addition to invariance un-
der symmetry operations of the crystal. The details of
the needed constraints and how they are imposed can be
found in our previous work17.

To get these numbers, we consider one or several su-
percells in which atoms are in their equilibrium position.
One, two or three neighboring atoms are moved simulta-
neously by a small amount, typically about 0.01Å along
the cartesian directions. Consideration of crystal sym-
metry usually reduces the needed displacements. For in-
stance in a cubic-based crystal, like silicon, where the
two atoms in the primitive cell are equivalent, one only
needs to move one Si atom along the x direction. This
is sufficient to extract all harmonic force constants if the
supercell size is large enough. The latter size is chosen
depending on the available computational power and the
considered range of force constants. To get three- and
four-body interaction terms, one needs to move two and
three atoms at a time and record the forces on all atoms
in the supercell. It is advantageous to record forces for
atomic displacements in two opposite directions as there
would be cancellation of the cubic contributions and this
would make the calculation of the harmonic FCs much
more accurate (up to order u2). Thus one would obtain a
large set of force-displacement relations computed from a
FP-DFT code. Together with the invariance constraints,
an overcomplete linear set of equations on all the force
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constants will be formed. A singular-value decomposition
algorithm is then used to solve this linear overcomplete
set. We find that usually the violation of the invariance
relations is of the order of 10−6 times the FC itself. This
however requires very accurate evaluation of the forces,
meaning that they should have converged with respect
to the cutoff energy and number of k-points to within at
least 4 significant figures, if not more! Our experience on
graphene19 and silicon (present work and reference [17]
has shown that the harmonic force constants are usually
reproduced quite accurately. Higher order FCs have less
accuracy as their contribution shows up in the second
or third or fourth significant figures of the forces. The
main approximation is in cutting off the range of the in-
teractions, which will lead to inaccuracies in some of the
Gruneisen parameters as we will shortly see.

III. MOLECULAR DYNAMICS AND THE
GREEN-KUBO FORMALISM

Typically a supercell is constructed with periodic
boundary conditions, and an MD simulation is performed
over a long enough time steps in order to reach thermal
equilibrium, followed by a long (N,V,E) simulation in or-
der to collect data on J for later statistical processing,
i.e time and ensemble averaging of its autocorrelation.

Based on the potential displayed in Eq. (2), one can
extract the expression for the force, required in the MD
simulations:

Fi = −
∑
j

uj (Φij +
1
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The heat current is defined in the discrete (atomic)
case of a lattice, where there is no convection, as:

Jα =
∑
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where vi is the velocity of particle i and ei, as defined
in Eq. (2) is the local energy of atom i. Using our ex-
pansion, it can be expressed as a function of the force
constants as follows (as we expand around the equilib-
rium position, we assume Πi = 0) :
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This definition leads to the following form of the local
heat current:
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Finally the thermal conductivity tensor is given by the
well-known Green-Kubo relation5,6:

καβ =
1

V kBT 2

∫ ∞
0

< Jα(0)Jβ(t) > dt (6)

where α, β = x, y, z, and < A > denotes the equilib-
rium average of the observable A, which in the classical
case can be replaced by its time average provided the
time is long enough to satisfy ergodicity. The en-
semble averaging is necessary as long as different runs
starting with different initial conditions lead to differ-
ent integrated autocorrelation functions. The true cur-
rent autocorrelations decay quite fast. In a single MD
run, however, this decay is not observed. Instead one
observes a decay in the amplitude followed by random
oscillations about zero. As finite systems are usually not
ergodic, an ensemble average, over the random initial
conditions is also needed to correctly simulate the equi-
librium average required in the Green-Kubo formula. In
this case, the ensemble-averaged autocorrelation function
will decay smoothly to zero with time. One will then
see that the decay is indeed relatively short, because the
long-time tails get cancelled after ensemble averaging.
The advantage of the ensemble averaging, in addition of
course to the usual time averaging, is that one samples
the phase space more randomly, and generates uncorre-
lated sets of pairs Jα(0)Jβ(t) for a given time difference
t. In this case, the mean has the convergence properties
of gaussian-distributed variables and the error decays to
zero as the inverse square root of the number of initial
conditions.

In a numerical simulation, the GK formula should be
replaced by:

καβ =
1

Vcell kBT 2

1

Nens

Nens∑
i=1

∆t

T

[

T∑
t=0

T −t+1∑
p=1

Jαi (p)Jβi (p+ t)] (7)

where T is the total simulation time of each run, ∆t is
the time difference between two successive data points,
t and p are integers labeling time, and Nens is the
number of generated initial conditions, each labeled by
i. One important comment is in order here, and that
is the use of 1/T in the denominator instead of the
more intuitive 1/(T − t + 1) which is the actual num-
ber of terms in the last sum. One can show that the
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choice in Eq. (7) provides an unbiased estimator of
the autocorrelation20. Some previous works in the GK
method such as reference9 have used the “biased” for-
mula, which would be fine as long as the total simulation
time is much larger than the largest time t used for the
integration. One simple way to become convinced that
Eq. (7) is the correct way, is to consider large times
t near the maximum simulation time T . As J(p) and
J(p+ t) are both fluctuating random numbers, and there
are not enough terms in the sum to make the average
go to zero, the time average will become large again and
tend to σJ =< J(0)J(0) > instead of decaying to zero as
t approaches T . A division by the small number T − t
would not solve the problem, whereas the division by T
would make this very small as it should.

The simulation time T being usually quite long, the
statistical error in the time averging is usually small,
and we estimate the error bars in our data from the en-
semble averaging: If C̄(t) is the ensemble-averaged au-
tocorrelation function, its error bar ∆C is evaluated as:

∆C(t) = [
∑Nens

i=1 (Ci(t)− C̄(t))2]1/2/Nens

The magnitude of this error bar and the required ac-
curacy in the results determine how many ensembles are
needed for a proper estimation of thermal conductivity.

A. How many MD steps are necessary?

For a given supercell size, there is a discrete num-
ber of phonon modes which can propagate and get scat-
tered in the system. The largest wavelength consistent
with the periodic boundary conditions would be the su-
percell length. To this, one can correspond a smallest
phonon wavenumber or frequency allowed in the simula-
tion: ωcut = 2πc/L. The total simulation time should be
large enough so that all phonon modes can get scattered
a few times within the simulation period. Largest relax-
ation times belong to acoustic modes, and usually decay
as the inverse square of the phonon frequency. Know-
ing the smallest allowed frequency ωcut due to the fi-
nite size of the system, one can estimate the correspond-
ing phonon lifetime (using Klemens’ formula displayed
in Eq. (8) for instance). The total MD simulation time
should therefore be a few times larger than the largest
phonon lifetime so that scattering events of long wave-
length phonon modes can properly be sampled during
the MD run. As an example, we can consider Si system
in a cubic 10x10x10 supercell of 8000 atoms. In this case
L = 10 × 5.4Å = 5.4 nm corresponding to kc = 2π/10a
which is a fifth of the Γ→ X line. The lowest frequency
mode is therefore about ωcut = 1 THz. As can be seen in
Fig. (5) below, the normal and umklapp lifetimes at this
frequency are 3000 ps and 10000 ps respectively, lead-
ing to a total lifetime of 2300 ps. So in order to sample
such rare events, one needs to calculate the autocorre-
lation over at least 20 ns, which means the MD sim-
ulation should be run for at least the same amount of
time if not longer. This could be computationally pro-

hibitive. If the runs are made with fewer MD steps long
wavelength phonons will not be relaxed and the autocor-
relation would not tend to zero. Another consequence
of this remark is that for large supercells, as relaxation
times scale as 1/ω2

cut ∝ L2, longer simulation times pro-
portional to the square of the the supercell size would
be required.

B. Size scaling

As mentioned, the choice of a finite supercell comes
with the cost of discretizing the phonon modes and su-
pressing the phonons of wavelengths longer than the su-
percell length. The neglected contribution maybe esti-
mated as follows: the anharmonic lifetime of acoustic
modes maybe approximated by the Klemens’ formula30

1

τKlemenskλ

= γ2
kλ

2kBT

M v2
kλ

ω2
kλ

ωmaxλ

(8)

where ωmaxλ is the largest frequency of the branch λ,
γkλ the mode Gruneisen parameter, ωkλ the frequency,
and vkλ the group velocity associated with the mode
kλ. Therefore long wavelength phonons will have a large
relaxation time and can considerably contribute to the
thermal conductivity. Assuming this form in the relax-
ation time approximation to the thermal conductivity,
and using Eq. (16), we can write the thermal conduc-
tivity as a sum over contributions of phonons of different
frequencies:

κ =

∫ ∞
0

1

3
τ(ω)v2(ω)Cv(ω)DOS(ω) dω

In 3D, since the density of states (DOS) is quadratic in
frequency, the contribution of long wavelength acoustic
phonons would be linear in the cutoff frequency ωcut =
2πc/L:

κ(L) = κ(∞)−
∫ ωcut

0

1

3
τ(ω)v2(ω)Cv(ω)DOS(ω) dω

For low frequencies Cv(ω) = kB [β~ω/2sinh(β~ω/2)]2 '
kB and v(ω) ' c so that

κ(L) = κ(∞)−A
∫ ωcut

0

1

ω2
DOS(ω) dω = κ(∞)−Dωcut

= κ(∞)− E 1

L
= κ(∞)− F/

√
Λc (9)

where A,D,E and F are constants which do not depend
on the size, Λc is the mean free path (MFP) associated
with the cutoff frequency ωcut = 2πc/L. This gives us a
way to deduce how the thermal conductivity of a finite
size sample scales with the supercell length or the cut-
off frequency ωcut or MFP, Λc. We should note that a
different scaling law (1/κ(L) = 1/κ(∞) + C/L) was also
proposed and used by Sellan et al.11, and also Turney et
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al.21 when they want to extrapolate their thermal con-
ductivity data to infinite size. The argument they used
to deduce it however was based on the Matthiesen’s rule,
stating that the bulk resistivity is obtained by adding the
finite size resistivity to the one obtained from L/v taken
as relaxation time.

There is another additional problem with finite size
MD simulations. Even though momentum is still con-
served in a 3-phonon process, because the modes are
discrete in a finite supercell, energy conservation will
not always be possible, unless the energy difference
ω − ω1 − ω2 ≤ Γ where Γ is on the order of the sum of
inverse lifetimes of the three considered phonons. If this
relation is not satisfied, the considered 3-phonon scatter-
ing will not take place in a finite supercell, and this will
lead to an overestimation of the lifetime of the phonons,
and thus, of the thermal conductivity.

These competing effects, namely an overestimation of
κ due to limited phase space for energy conservation and
an underestimation due to cutoff of low frequency acous-
tic modes, may lead to a magical cancellation, resulting
in thermal conductivities in good agreement with experi-
ments even for moderate supercell size. This error cancel-
lation will likely affect the temperature-dependence of κ:
at higher temperatures the discreteness error is reduced
as Γ increases linearly with T . The frequency cutoff er-
ror, however, will not be affected by high temperatures.
Consequently, as T is increased the thermal conductiv-
ity of a finite sample will decrease faster than 1/T with
temperature. This has been observed in the work of Volz
and Chen8. It can also be verified by introducing other
scattering events such as isotope or defect scattering lead-
ing to larger Γ values. In such cases, the discreteness of
modes will have little effect, and the simulated κ will be
less than the exact one, due to the cutoff of long MFP
phonons effect. As a result, in a system where due to
disorder or high temperatures scattering rates are high,
GK-MD simulations will typically require larger super-
cells to converge.

The correct way of estimating κ(T ) is to do a proper
size scaling at each temperature by plotting κ(T, L) ver-
sus 1/L and linearly extrapolating to 1/L→ 0.

IV. THE LATTICE DYNAMICS APPROACH

Using the extracted for constants, one can form the
dynamical matrix of the crystal using its primitive cell
data:

Dαβ
ττ ′(k) =

∑
R

1√
MτMτ ′

Φαβ0τ,Rτ ′ e
ik·R (10)

where R is a translation vector of the crystal, τ refers
to an atom in the primitive cell, and α, β are cartesian
components x, y, z. Such sums of the force constants over
the translation vectors of the primitive lattice are usually
short-ranged and fast to compute, except if Coulomb in-

teractions are involved, in which case the sum is evalu-
ated using the Ewald method.

Diagonalizing this matrix, one can find the phonon
spectrum and the normal modes as its eigenvectors:∑

τ ′β

Dαβ
ττ ′(k) eτ

′β
λ (k) = ω2

kλ e
τα
λ (k) (11)

where λ labels a phonon band (or branch), and k refers
to a point in the first Brillouin zone (FBZ). Using these
eigenvectors and eigenvalues, and from perturbation the-
ory, one can calculate the phonon lineshifts and lifetimes
as the real and imaginary parts of the 3-phonon self-
energy defined as24–27:

Σ(qλ, ω) = − 1

2Nk

∑
1,2,ε=±1

|V (qλ, 1, 2)|2 ×[
(1 + n1 + n2)

ω1 + ω2 + εωc
+

(n2 − n1)

ω1 − ω2 + εωc

]
(12)

where ωc = ω−iη , (η ' 0+) is a small infinitesimal num-
ber, which in practice is taken to be finite for a given k-
mesh size, n is the equilibrium Bose-Einstein distribution
function, and 1 and 2 refer to modes (q1λ1) and (q2λ2).
The 3-phonon matrix element V , expressed as a function
of the cubic force constants Ψ, is given by:

V (qλ, 1, 2) = (
~
2

)3/2
∑
Riτiαi

Ψαβγ
0τ,R1τ1,R2τ2

×

ei(q1·R1+q2·R2) eταλ (q) eτ1α1

λ1
(q1) eτ2α2

λ2
(q2)

[MτMτ1Mτ2 ωqλ ω1 ω2 ]1/2
(13)

The calculation of the self-energy would require a dou-
ble sum over the q-points (labeled above by 1 and 2) in
the FBZ . Due to the conservation of momentum, how-
ever, only terms with q + q1 + q2 = G, with G being a
reciprocal lattice vector, should be included in the above
sum. In practice, therefore, this involves only a single
summation. To get the phonon dispersion and lifetimes
due to 3-phonon scattering terms, one needs to solve
E = ωkλ + Σ′(kλ,E) where Σ′ is the real part of the
self-energy (Σ = Σ′ + iΣ”) . This equation needs to
be solved iteratively. Since the shift is usually small, to
leading order, one can use E = ωkλ+Σ′(kλ, ωkλ) i.e. one
uses the on-shell frequency as argument of the self-energy.
The same approximation will be used for the imagi-
nary part giving the inverse lifetimes. The corresponding
phonon lifetime will be given by τkλ = 1/2Σ”(kλ, ωkλ).
In the evaluation of the imaginary part Σ”, one encoun-
ters Dirac delta functions reflecting the conservation of
energy in the three-phonon process: ωkλ = ω1 ± ω2. In
effect, from Eq. (12), it can be noticed that the delta
function is substituted by a Lorentzian function of width
η. The latter depends on the choice of the k-point mesh
in the FBZ. A small value for η can be used for a fine
mesh, while a coarse mesh requires larger values of η.
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Typically η is chosen to be of the order of energy spacing
in the joint density of states (JDOS) so that the latter is
a smooth function of the frequency and does not display
any oscillations with sharp peaks which would appear if
the width is too small.

JDOS(ω) =
1

Nk

∑
1,2

δ(ω−ω1−ω2)+δ(ω−ω1 +ω2) (14)

The anharmonicity can be characterized by the
Gruneisen parameters (GP). The force constant GP is
defined as γφ = -d ln φ/2 d ln V where V is the vol-
ume. The mode GP is defined as: γkλ = -d ln ωkλ/ d ln
V where ωkλ is the phonon frequency evaluated at the

point ~k and band index λ. It gives the relative decrease in
the phonon frequency as the volume is increased by 1%.
From the Taylor expansion of the harmonic force con-
stants in terms of the volume or the lattice parameter,
one can calculate such change.

γkλ = − 1

6ω2
kλ

∑
1,2

Ψαα1α2

0τ,R1τ1,R2τ2

eik·(R2−R1)

[Mτ1Mτ2 ]1/2

× Xα
0τ e

τ1α1

λ (−k) eτ2α2

λ (k) (15)

where XRτ is the equilibrium atomic position of atom
type τ in the primitive cell labeled by the translation
vector R.

Finally, the thermal conductivity is calculated within
the relaxation time approximation (RTA), which leads
to the following well-known expression for the thermal
conductivity:

κ =
1

3ΩNk

∑
kλ

v2
kλτkλ ~ωkλ ∂nkλ/∂T (16)

where Ω is the volume of the unit cell. The relaxation
time τkλ in this expression represents the time after which
a phonon in mode kλ reaches equilibrium on the aver-
age, and depends on the scattering processes involved. In
a pure bulk sample, the only source of phonon scatter-
ing is anharmonicity dominated usually by three-phonon
processes. Using perturbation theory or the well-known
Fermi Golden rule (FGR), one can derive the expression
of the relaxation time as a function of the cubic force
constants24–27. It can be shown that to a good approxi-
mation, it is given by

τqλ ≈
1

2=[Σ(qλ, ωqλ)]
(17)

In what follows, we have disregarded the boundary scat-
tering term, which is responsible for the low-temperature
behavior of κ. In such case, κ is expected to saturate to
a finite value at low enough temperatures. The reason
for this saturation can be understood if one assumes the
low-frequency limit of the DOS and the relaxation times
similar to Eq. 9. Considering that in ω → 0 limit we

have: DOSλ(ω) → ω2/2π2c3λ and Cv(ω) = kB(x/shx)2

(with x = β~ω/2), and the relaxation time can be written
as τ(ω)→ ~ω2

o/ω
2kBT , the integral defining the thermal

conductivity can be transformed, in the low temperature
limit, to:

κ(T ) =
kBω

2
o

π2cλ

∫ ∞
0

(
x

shx
)2 dx =

kBω
2
o

6cλ

The constant ωo that appears in the low energy limit of
the relaxation time as well as the speeds of sound cλ de-
termine the saturated value of the thermal conductivity.
So when only 3-phonon scattering processes are included,
the thermal conductivity would tend to kBω

2
o/6cλ as T

goes to 0.
Finally, in our numerical calculations where the inte-

gral in the FBZ has been approximated by a sum over a
discrete set of k-points, the low-frequency region is not
properly sampled and we observe a decay to zero at low
T , and therefore have not reported the unreliable low-
temperature data in this work.

V. RESULTS AND DISCUSSIONS

A. Validation of force constants

First-principles calculations were done using the
PWSCF code of the Quantum Espresso package18 A set
of force-displacement data were calculated using 2×2×2
supercell of 64 Si atoms. The set of force-displacements
data, along with the symmetry constraints, form an over-
complete linear set of equations needed to determine the
potential derivatives. We use the local density approx-
imation (LDA) of Perdew and Zunger22 with a cutoff
energy of 40 Ryd and 10 k-points in the irreducible Bril-
louin zone of the cubic supercell. The range of different
ranks of force constants can be chosen by the user. We
have set the range of harmonic forces constants (FCs) to
5 nearest neighbor shells, and that of the cubic and quar-
tic force constants to the first neighbor shell only. This
results in 17, 5 and 14 independent harmonic, cubic and
quartic FCs respectively. The corresponding number of
terms in the Taylor expansion of the potential energy are,
however, equal to 1500, 1146 and 7980 respectively. This
is why the ranges were restricted to 5, 1 and 1 nearest
neighbor shells in order to limit the computational time
to a reasonable amount. Note that despite the large num-
ber of terms to be computed, arithmetic operations are
only limited to additions and multiplications.

In Fig. (1), we show the change in the total energy
as an atom in the supercell is moved along the [100],
[110] and [111] directions respectively. Resutls from DFT
calculations are compared against our developed force
field including the harmonic, harmonic+cubic, and har-
monic+cubic+quartic terms of the Taylor expansion. For
the sake of comparison, we have also plotted the same
energy change ontained from the Stillinger-Weber (SW)
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potential1, which is widely used in MD simulations of Si
systems.
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FIG. 1: (Color online) Total energy as an atom is moved in the
[100] (left), [110] (middle) and [111] (right) directions. DFT
results are compared with the force field and the Stillinger-
Weber potential. MD234 refers to the force field in which all
harmonic, cubic and quartic terms are included, while MD2
refers only to the harmonic force field, etc.

To further assess the accuracy of the force field, we
have also moved all the atoms in the supercell in different
random directions by a small amount of magnitudes 0.1
and 0.2 Å respectively, and compared the average force
of our model and the SW potential to the FP-DFT one.

TABLE I: Typical deviations in the SW and Taylor expansion
(present model) force fields compared to true FP-DFT forces.
They are obtained by moving all 64 atoms in the supercell in
a random direction by 0.1 and 0.2 Å respectively.

Amplitude(Å) σ(SW) σ(Present)

0.1 0.35 0.05
0.2 0.28 0.08

The deviation is charaterized by:

σ(model) =

∑
iα (Fmodel

iα − FDFT
iα )

2∑
iα F

DFT
iα

2 (18)

The results for the parameter σ are summarized in table
(I).

We can notice that this type of error estimate would
also include contributions from many-body forces, and is
a more stringent test on the force field. The errors from
the present model are consistently about 4 to 5 times
smaller that the SW potential.

In the following we follow two paths to compute the
thermal conductivity. The first is to use the Green-Kubo
formula, by using the results from an MD simulation:

B. Thermal conductivity from MD-GK

As previously mentioned, there will be large fluctua-
tions in the current autocorrelation function versus time
from one run to the next, and therefore an averaging over
several initial conditions is necessary to produce a reli-
able plot. In Fig. (2), we have plotted such ensemble
average for a 10x10x10 supercell containing 8000 atoms.
The error bars are mainly due to the ensemble averaging,
and those related to the time averaging are small as the
number of MD time steps are quite large.

We can also see in this figure the cumulative integral
of the ensemble-averaged autocorrelation function. The
same calculation was performed in a 7x7x7 supercell of
2744 atoms, where the averaging was over 99 runs with
different initial conditions. Due to its larger size, there
are smaller fluctuations in the average current per atom
in the 10x10x10 supercell, and we only used 27 initial
conditions for this supercell. Since from each MD run one
can really extract three autocorrelation functions κxx,
κyy and κzz, which are equal by cubic symmetry, we also
averaged over the 3 directions. In this sense, the above
mentioned numbers should be multiplied by 3.

The error bars are determined by the large fluctuations
in the integrated autocorrelations divided by the square
root of the number of ensembles. The error bar due to the
time average is usually much smaller if MD simulations
are run for a long enough time.

The results for two different supercell sizes are sum-
marized in table (II) as compared with the experimental
data of Slack et al.28. One can notice an underestima-
tion of the experimental data, which is reduced as the
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FIG. 2: (Color online) Plot of the ensemble-averaged (over 27
initial conditions) heat current autocorrelation as a function
of time, and its integral for the 10X10X10 supercell. Vertical
units for the integrated autocorrelation are in W/mK, and the
autocorrelation (blue dots) has been multiplied by a constant
to be on scale.

supercell size is increased. To get the correct value in
the thermodynamic limit, one needs to extrapolate these
results to infinite size.

TABLE II: Thermal conductivity at T=600 K, from GK-MD
compared to lattice dynamics in the classical limit (n(ω) →
kBT/~ω) with an equivalent number of k-mesh, and experi-
ment for two different supercell sizes.

Supercell size MD-GK LD experiment

7x7x7 37 ± 10 32.67 64 ± 3
10x10x10 43 ± 12 47.2 64 ± 3

There are a few competing effects which can explain
this discrepancy: the most important one is size effect,
which as was just explained, underestimates κ. Similarly,
the larger value of the Gruneisen parameter for the acous-
tic modes in our model will produce a smaller relaxation
time (see the Klemens formula in Eq.(8)).

The following effects will, however, lead to an over-
estimation of the thermal conductivity: in the clas-
sical MD simulations, the number of modes is the
high-temperature limit of the Bose-Einstein distribution,
kBT/~ωkλ which is larger than the quantum distribution.
This leads to a heat capacity per mode of kB and there-
fore an overestimate of the true heat capacity (see also
Fig. (8)). In a finite size cell, the allowed frequencies
are quantized and energy conservation after a 3-phonon
process can never be exactly satisfied, this will lead to
an effectively longer lifetime for phonons, and thus also
overestimate κ. It is not easy to quantify these errors
except for those due to the phonon occupation numbers.
It is therefore possible that there is a cancellation. In our
case, since only two supercell sizes were considered, we
can not do a systematic size scaling study, but overall,

due to these cancellations the MD-GK results seem to
be weakly dependent on size, in agreement with previ-
ous MD simulations (see for example Table I in reference
[11]).

Here, we must point out some discrepancy between
published results on Si using the SW potential. Using
the MD-GK method, Philpot et al. and Volz et al.8,9

find a thermal conductivity in reasonable agreement (to
within 30%) with experiments. Broido et al.12, on the
other hand, have shown by solving Boltzmann equation
beyond the RTA, that κSW ≥ ≈ 4κexperiment. Recently
Sellan et al.11 investigated size effects in GK-MD simu-
lations, direct method, and also used lattice dynamics to
compute the thermal conductivity of Si from the SW po-
tential. They found that κLD(T = 500K) = 132W/mK,
which is only 70% larger than the experimental value
of 80 W/mK, in contrast to Broido et al’s12 prediction.
Their direct method followed by scaling predicts 93± 18
W/mK, and their unscaled GK value for a 8x8x8 super-
cell is (231± 57 W/mK).

All these results point to the subtleties involved in ex-
tracting a reliable value for the thermal conductivity of
bulk materials, no matter what method is used.

To investigate this discrepancy, we used our approach
to extract cubic force constants from the SW potential
and used LD theory to compute the corresponding ther-
mal conductivity. Using the same k-point mesh, in order
to avoid systematic errors, in comparison to FP-derived
force constants, we found that at 150K the thermal con-
ductivity derived from SW is 80% larger than the one
derived from FP-DFT calculations.

C. Phonons, DOS and Gruneisen parameters

In extracting the force constants, we have limited the
range of the harmonic FCs to 5 neighbor shells, and that
of the cubic and quartic terms to one neighbor shell, so
that MD simulations can be done within a reasonable
time. Using the harmonic FCs, we can obtain the phonon
spectrum. As can be seen in Fig. (3) the speeds of sound
and most of the features are reproduced with very good
accuracy. It is well-known that in order to reproduce
the flat feature in the TA modes near the X point, one
must go well beyond the fifth neighbor. For the band
structure and the density of states (DOS), the overall
agreement is good, except for the Gruneisen parameters
of the TA branch, where our calculations, which only in-
clude cubic force constants up to the first neighbor shell,
overestimate γ(X,TA). Based on Klemens’ formula (Eq.
(8)), one might anticipate that our model will slightly
underestimate the lifetime of TA modes and thus their
contribution in the thermal conductivity.
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D. Phonon lifetimes and mean-free paths

To get an idea about the relative contributions of
the matrix elements, representing the strength of the 3-
phonon interactions, versus the phase space available for
these transitions, characterized by the two-phonon DOS,
we show in Fig. (4) the plots of these quantities. We
define the contribution of the matrix elements as:

F (ω) =
∑
kλ

δ(ω − ωkλ)
∑
1,2

|V (kλ, 1, 2)|2 (19)

From Fig. (4) we can note that optical phonons have
a much larger weight coming from the matrix element
|V (kλ, 1, 2)|2. This explains why they have such a larger
relaxation rate compared to acoustic modes for which
the matrix elements contribution is very small. The two-
phonon DOS is representative of the phase space avail-
able for the transitions, and is defined as:

DOS±2 (ω) =
∑
1,2

δ(ω − ω1 ± ω2) (20)

From Fig. (4) it can be inferred that one phonon ab-
sorption or emission (DOS+

2 ) dominates for low fre-
quency phonons (acoustic), while two-phonon absorption
or emission (DOS−2 ) dominates at high frequencies (LA
and optical).

Next, we show in Fig. (5) the calculated lifetimes of the
3 acoustic and optical modes versus frequency for a reg-
ular mesh of kpoints in the first Brillouin zone, at T=70
and 277K. The results depend slightly on the number of
k-mesh points used for the integration within the FBZ.
Here, we are showing results obtained with 18x18x18
mesh, which is close to convergence. The normal and
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FIG. 4: (Color online) Top in blue is the DOS associated with
two-phonon creation or annihilation (DOS−

2 ), and bottom in
green is the DOS associated with one phonon emission or
absorption (DOS+

2 ). In red, the contribution of the matrix
elements defined in Eq. (19) are displayed. The peak at 500
cm−1 is the main reason for smaller lifetimes of optical modes.

umklapp components of the lifetimes are separated as
1/τ = 1/τU + 1/τN . We can note that although the life-
times associated with normal processes are in 1/ω2, those
of umklapp processes seem to scale at low frequencies like
1/ω3 so that the former dominates at low frequencies.
This is in contrast to the first-principles results provided
by Ward and Broido31 where they report that the umk-
lapp rate is in ω4. Even though not explicitly mentioned
in their paper32, fits to their data with ω3 was almost
as good as the fit with ω4. In the appendix, we provide
a proof why in the case of Si the umklapp rate would
behave as ω3.

From Fig. (5), we can notice that at low frequencies
(typically below 3 THz or 100 cm−1 where dispersions are
linear), normal rates dominate while at higher frequen-
cies and typically for optical modes, umklapp processes
dominate transport.

E. Thermal conductivity from lattice dynamics

To see what is the contribution of each MFP to the
total thermal conductivity, following the approach of
Dames and Chen33, we have decomposed the thermal
conductivity based on each mode and sorted each com-
ponent according to their mean free paths. One can then
define a differential thermal conductivity and the accu-
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mulated one, which is its integral:

dκ(Λkλ) =
1

3
vkλ Λkλ Cvkλ

κ(Λ) =
1

Nk

Λkλ<Λ∑
kλ

dκ(Λkλ) (21)

The above can be plotted versus the MFP, Λ, seen as an
independent variable. Fig. (6) shows such contribution
at 277 K. Considering the extrapolated value to be 166
W/mK, one can notice that MFPs extend well beyond 10
microns even at room temperature. MFPs longer than
1 micron contribute almost to half of the total thermal
conductivity! One should also note that the range of
MFPs in Si at least, span over 5 orders of magnitude
from a nanometer to 100 microns at room temperature.
This would be larger as we go to lower temperatures.

To get an acurate estimate of the thermal conductivity,
one needs to extrapolate the data obtained from a finite
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FIG. 6: (Color online) Cumulative contributions of phonons
to the thermal conductivity at 277 K from the 18x18x18 k-
mesh data. Left is according to the wavelengths, and right
is according to the MFPs. Both differential and cumulative
thermal conductivities are shown in blue and red respectively.
For comparison, the extrapolated (to infinite k-mesh) and ex-
perimental κ are also shown with horizontal lines at 166 and
174 W/mK respectively.

number of k-mesh points, according to Eq. (9). The
extrapolated thermal conductivity versus temperature is
plotted in Fig. (7) and compared to the experimental re-
sults of Glassbrenner and Slack28 and Inyushkin et al.29.
We can notice that at low temperatures, boundary scat-
tering limits the experimental thermal conductivity. The
agreement is very good in the temperature range of 100 to
500K, after which experimental results decay faster due
to higher order phonon scatterings which are like 1/T 2

or higher. Our resutls are within the relaxation time
approximation, but one could also go beyond and iter-
atively solve Boltzmann equation as Broido et al. have
done16. They have shown that for Si and Ge, there would
be about a further 10% increase in κ.

To assess the effect of the classical approximation,
which is made in classical MD simulations, we have also
compared in Fig. (8) for a given k-point density, the
classical and the quantum thermal conductivities within
the RTA. They are displayed with symbols on the lines.
The quantum one is given by Eq.(16), and the classical
one uses the same expression in which the Bose-Einstein
distribution is substituted by kBT/~ω both in the heat
capacity and in the relaxation time. We can notice that
the difference is small above the Debye temperature, as
expected, but the classical value overestimates the quan-
tum one by 10 to 20% as the temperature is lowered
further. This is a combination of the larger heat capac-
ity and a smaller lifetime in the classical case. We have
also plotted the contribution of each mode to the ther-
mal conductivity. We can note that at low temperatures
maily the two TA modes equally contribute to κ, whereas
at temperatures above 200 K, LA and TA modes equally
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contribute about almost 1/3 of the thermal conductivity,
while LO’s contribution is about 5%.

The computation of the thermal conductivity using the
RTA is to some extent more straightforward than the use
of GK-MD. The former involves a double summation in
the FBZ and has very little systematic error in it, whereas
the MD simulations require an ensemble averaging pro-
cess with a relatively large error bar, not to mention the
much longer CPU time needed to run the MD simula-
tions.

For a mesh of kpoints equal to the number of primi-
tive cells included in the MD supercell, we have obtained

agreement between MD results and the classical version
of Eq.(16), as also shown in table (II).

VI. CONCLUSIONS

Using first-principles calculations, we developed a clas-
sical force field which was used both in a molecular dy-
namics simulation and in the calculation of anharmonic
phonon lifetimes. Both methods provided an estimate for
the thermal conductivity of pure crystalline silicon. The
results of these two methods agreed for the same system
size in the case where κLD was evaluated in the classical
limit. GK-MD is however much more time-consuming
and includes large statistical errors. Furthermore it does
not provide much information besides the way the inte-
grated autocorrelation converges with simulation time.
Size effects were discussed and arguments were provided
why equilibrium MD simulations converged relatively
fast with respect to the supercell size. Lattice dynam-
ics, on the other hand, proved to be faster, more accu-
rate, and contain more useful information. The use of a
linear extrapolation versus the inverse of the size led to
a surprizingly good agreement with experiments. Such
extrapolation is justified for relaxation rates which are
quadratic in frequency at low frequencies. The decom-
position of κ into the contribution of different mean free
paths showed that in Si MFPs span over 5 orders of mag-
nitude from 1 nm to 100 microns at room temperature,
where about half of the thermal conductivity comes from
MFPs larger than 1 micron.

The developed potential has the advantage of being
amenable to systematic improvement by including more
neighbor shells at the cost of heavier calculations. The
approach of using the FGR for the estimation of re-
laxation rates and the RTA or an improved approxi-
mation to κ by solving the linearized Boltzmann equa-
tion, allows one to obtain a relatively accurate estimate
of the thermal conductivity of an arbitrary bulk crys-
talline structure from a few force-displacement relations
obtained using first-principles calculations, without any
fitting parameters. This method paves the way for an ac-
curate prediction of thermal properties of nanostructured
or composite materials in a multiscale approach, which
takes as input the relaxation times due to anharmonicity
and defect scatterings.
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VIII. APPENDIX

In this appendix, we show the frequency-dependence
of the umklapp rates. According to Eq. 12, the re-
laxation rate is a product of the 3-phonon matrix ele-
ment |V (qλ, 1, 2)|2, a combination of occupation factors,
and delta functions reflecting the constraints of energy
conservation. We will separately discuss the frequency
dependence of the matrix element and the phase space
term.

First, the sum over the second momentum 2 is can-
celled by the constraint of momentum conservation, so
that the relaxation rate is just the 3D integral over q1 in
the FBZ. One of the dimensions can be integrated over
by using the identity∫

d3q1 δ(ω + ωq1λ1 − ωq2λ2)f(q1λ1) =∫
d3q1 δ(q1 − qo)/|vq1λ1

− vq+q1λ2
|f(q1λ1) =∫

d2Sqo1/|vqoλ1
− vq+qoλ2

|f(qoλ1) (22)

where qo is the solution of ωqλ + ωqoλ1
− ω−q−qoλ2

= 0.
Note that the denominator containing the group veloci-
ties is not small as λ1 as long as λ2 refer to two different
branches; but in case λ1 = λ2, the denominator becomes
linear in q.

Second, for umklapp processes, in the small ω limit, we
must have both q1 and q2 = −q − q1 near the Brillouin
zone boundary such that q1 is inside the zone and q2

outside; so that the corresponding frequencies are not
infinitesimally small, but their difference would be. In
general, this forces the q1 surface integral to be limited to
a pocket of dimensions q located at the FBZ boundary, so
that the surface integral is of the order of q2. But in case
where there is a degenerate band at the zone boundary,
the surface would be of order q instead. Different cases
based on the symmetry of the crystal and the type of
degeneracy have been discussed in detail by Herring34.
In our case of interest, namely Si, it is possible to have a
3-phonon process involving a small momentum q acoustic
mode connecting the LA branch to the LO one, with
which it is degenerate, near the Brillouin zone boundary
all along X → W , with a surface area Sqo , therefore, of
order q.

Third, among the two types of terms: phonon ω decay-
ing to ω1 + ω2 and one phonon absorption ω + ω1 = ω2,
the former cannot contribute because ω ' 0 and ω1 and
ω2 are finite. Therefore only the terms (n2−n1)×[δ(ω1−
ω2 +ω)− δ(ω1−ω2−ω)] contribute to the umklapp life-
times at small frequencies. In the latter, one can substi-
tute n1−n2 by ±ω ∂n/∂ω1 ' O(q). We must remember
to substitute the argument ω in the relaxation rate by its

on-shell value ωq = v × q → 0. So that, in the limit of
low frequencies, the inverse lifetime can be written as:∫

d2S(qo)
1

|vqoλ1 − vq+qoλ2 |
ωqλ

∂n

∂ωo
|V (q, qo,−q − qo)|2

(23)
Finally, due to the odd parity of the cubic force

constants, one can show that for small q we have
|V (q, qo,−q − qo)| ∝ Sin qR/

√
ωq ∝

√
q.

Putting everything together, we find that the umklapp
rates at low frequencies are, to leading order, of the form:

1

τU (ω)
∝ q3 ∝ ω3 (24)

This is in agreement with our numerical findings.
For normal processes, there is no restriction for modes

1 and 2 to be near the BZ boundary. For instance, in
the (LA → LA + TA) process the term (1 + n1 + n2)
contributes and will not be linear in q. In such cases
the rate would be in q2 and would dominate terms with
higher powers of q.
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