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Zero Carrier Velocity Induced Quantum Criticality in NbFe2
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The transition metal intermetallic compound NbFe2 displays a magnetic quantum critical point
very near stoichiometry, unlike other Fe-based intermetallics, and no field or pressure tuning is
required. In this compound we obtain an obvious candidate for the origin of quantum criticality:
an accidental Fermi surface “hot stripe” centered on a point of vanishing quasiparticle velocity on
the Fermi surface at an unconventional band critical point (uBCP) of NbFe2. Around this uBCP
the dispersion is cubic (εk − εF ∝ k3

x) in one direction in the hexagonal basal plane and has a
saddle point character in the orthogonal ky, kz plane; both aspects have significant consequences.
At such a uBCP Moriya’s theory of weak magnetism breaks down due to divergent contributions
to the dynamic bare susceptibility from the uBCP, both at Q → 0 and at momenta spanning the
uBCPs. These results are reminiscent of an earlier suggestion that anomalously low Fermi velocities
are in essential aspect of the incipient or weak ferromagnetism of TiBe2, and strongly support
the viewpoint that, for some quantum critical points, the mechanism may be identifiable in the
underlying (mean field) electronic structure.

PACS numbers:

I. BACKGROUND

Quantum phase transitions, and the quantum critical (QC) behavior displayed near these transitions, arise from
quantum, rather than thermal, fluctuations, which involve the lowest energy excitations of the material. In metals,
these excitations lie at the Fermi surface, and require some peculiar feature: competing interactions, an unusual Fermi
surface feature, or anomalous near-zero-energy fluctuations of another origin, to drive the transition and to give rise to
the quantum critical behavior around the critical point. A number of quantum critical materials have been discovered
experimentally and in some cases have been studied in great detail. Competing (magnetic) interactions are often
suspected to be the source of criticality. Rarely has any Fermi surface feature been identified as clearly responsible
for quantum criticality, possibly because most QC metals are strongly correlated systems whose Fermi surfaces, hence
their low energy band structures, may not be given precisely enough by the available mean field band theories. An
exception to this is the high temperature superconducting cuprates, where an extended van Hove singularity has
received attention. Such singularities have been studied extensively, both in weak coupling1 and in the Hubbard
model at strong coupling.2–4

Nb1−xFe2+x is a rare example of an itinerant transition metal intermetallic compound displaying antiferromagnetic
quantum criticality. Its unusual magnetic behavior and its sensitivity to off-stoichiometry (Nb deficiency x) has
been known for over two decades,5,6 and its phase diagram and low temperature (T), small x behavior has recently
been clarified.7–9 At stoichiometry, its susceptibility is Curie-Weiss-like down to the SDW transition (probably long
wavelength) at Tsdw=10 K with vanishing Curie-Weiss temperature, reflecting antiferromagnetism (AF) in close
proximity to a FM QCP. Strongly negative magnetoresistance and a metamagnetic transition around 0.5 Tesla (at 2
K) reflect the removal of strong magnetic fluctuations by a relatively small field. The QCP occurs at the small Nb
excess of xcr = -0.015, for which resistivity scaling as T3/2 and linear specific heat coefficient γ ∝ ln T below 4 K
reflect non-Fermi liquid behavior characteristic of a QCP. Even off stoichiometry the samples are rather clean (residual
resistivity as low as8 5 µΩ cm) reflecting small disorder scattering. For x < xcr (Nb excess) and for x > 0.008 (Fe
excess), ferromagnetic (FM) (including possibly ferrimagnetic [FiM]) order is observed.8 This system has been featured
in recent overviews of quantum criticality in weak magnets10,11 suggesting that in searching for the mechanism of
quantum criticality more emphasis should be given to transition metal compounds12 (versus f -electron systems).
There is no viable explanation of why this particular itinerant system should display such unusual quantum criti-

cality, and this is the question we address here. The most detailed theories of quantum criticality suppose that the
physics is dominated by fluctuations around the critical point, and treat the effects of low energy fermionic excitations
without specifically addressing their origin.13–17 The shortcomings of current theories for itinerant quantum criticality
have been re-emphasized recently.18 A necessary assumption is an underlying well behaved systems of non-interacting
fermions. Imada et al.19 have suggested itinerant quantum criticality arises either from proximity to a first-order
transition (quantum tricriticality), a metal-insulator transition (not the case here), or a Lifshitz transition, which
accompanies a change in topology of the Fermi surface. Frustration of magnetic order on the Fe2 Kagome sublattice
has also been suggested as playing a part.20 The study of interacting systems near conventional band critical points
(BCPs) (van Hove singularities) indicates non-Fermi liquid behavior1 and a profusion of possible phases.21 Stronger



singularities may be expected to further complicate the phase diagram.

II. STRUCTURAL AND CALCULATIONAL DETAILS

NbFe2 ≡ NbFe10.5Fe21.5 forms in the hexagonal Laves phase C14 space group P63/mmc (#194), with Nb at 4f
(13 ,

2
3 , u) which can be considered to lie within Fe cages, Fe1 at 2a (0,0,0) which lies on a hexagonal sublattice, and

Fe2 at 6h (v,2v, 34 ) sites that form Kagome lattice sheets in the basal plane. We perform all calculations with the

experimental lattice constants a = 4.841 Å, c = 7.897 Å, and relaxed internal parameters u = 0.0652, v = 0.1705,
using the full potential local orbital code22 with k-point meshes up to 57 × 57 × 55 to map out the unusual part of
the band structure in detail. The full potential LAPW code Wien2k23 has been used to check consistency of the fine
details that we discuss.

FIG. 1: Crystal structure of NbFe2 = NbFe10.5Fe21.5, with hexagonal space group P63/mmc (#194). The Fe2 sites lie on a
Kagome lattice (e.g. the upper and lower atomic planes in this figure), the Fe1 sites lies on a simple triangular lattice midway
between Fe2 layers, and Nb atoms occupy “interstitial” sites.

III. ELECTRONIC ANOMALY

The electronic structure of NbFe2 was studied initially by Takayama and Shimizu,24 and more recently by Subedi
and Singh (SS).25 The complex band structure (due to 12 transition metal atoms in the unit cell) is shown in the
basal plane in a 2 eV region centered on the Fermi energy (EF ) in Fig. 2. The Fermi level lies on the upper (steeply
decreasing) density of states (DOS) peak, shown on a fine energy scale in Fig. 2(b), with several bands crossing EF .
The Fermi surfaces are correspondingly many and varied, and have been presented and discussed by Tompsett and

coworkers.26 The point we will emphasize here is the wiggle in the band just crossing EF along the Γ-M direction that
produces an unusually flat portion only 6 meV (equivalent to 70 K temperature) above EF . We argue that, when the
Fermi level is tuned to this critical point, the vanishing velocity in this critical region produces unusual low energy
electronic excitations that can account for anomalous behavior, viz. a quantum critical point at a low doping level,
as is observed in NbFe2 (xcr = -0.015).
This viewpoint has received strong support from alloy calculations (using the coherent potential approximation

[CPA]) by Alam and Johnson.27 They find that CPA results place the Fermi level at this uBCP at x = −0.0174,
extremely close to the experimental concentration at the critical point. The dispersion remains well represented by
cubic along the symmetry direction.
Referencing the energy and wavevector to the point of the anomaly, the uBCP dispersion is given to lowest order

along each axis by

εk =
k3x

3meK
+

k2y
2my

− k2z
2mz

, (1)

i.e. it is effective-mass-like along ky and kz with opposite signs of the masses my, mz, but it is infinitely massive
along the kx direction, with cubic rather than quadratic variation. (The calculated band is even flatter than this
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FIG. 2: (a) Band structure of NbFe2 within 1 eV of the Fermi level. The inset shows the band critical point 6 meV above EF

that lies one-third of the way along the Γ-M line. (b) The DOS of NbFe2 near EF on a fine scale, showing the steeply decreasing
DOS in the region of EF . The circle indicates the position in energy of the uBCP, 6 meV above EF , calculated without the
precision necessary to establish the shape of the anomaly (in spite of the fine k-mesh we have used). (c) A high resolution
calculation (in arbitrary units) in the uBCP region of the behavior of N(E) (upper black curve), and indicating the divergence
of the inverse velocity 〈v−1(E)〉 (lower red curve), which is a fundamental quantity in Moriya’s theory of weak magnetism.

approximation.) We characterize this dispersion through a quantity K with dimension of wavevector, corresponding
heuristically to a kx-dependent mass enhancement K/kx, diverging as kx → 0. The crossing bands have nearly pure
Fe2 dxz, dyz character (the Kagome sublattice), not involving either Fe1 or Nb orbitals.
This anomalous dispersion is an accidental occurrence (not related to symmetry or normal band edges), resulting

from the crossing of two bands having the same symmetry that occurs extremely near the Fermi level of stoichiometric
NbFe2. Its distinctive character is evident by noting that the change in the constant energy surfaces near E=0 does
not fit into the conventional categorization.30 Because it is accidental, it requires tuning to put EF exactly at the
critical point, and the value xcr of NbFe2 is of the right magnitude to provide this tuning [N(EF )× 6 meV = 0.02
electrons/f.u.]. For non-stoichiometry in a compound of two such different atoms as Nb and Fe, the direction of
change of the Fermi level is not obvious a priori. However, alloy calculations can determine the Fermi level change
with concentration, and new results by Alam and Johnson27 have determined that indeed the uBCP lies at the Fermi
level for x = xcr. We proceed to examine the consequences for low energy excitations.

The Fermi energy EF lies in a region of steeply decreasing density of states (DOS) (the full DOS has been presented
by Takayama and Shimizu24 and by Subedi and Singh (SS)25), corresponding to the gaps that open in much of the
zone (along K-H, along L-H-A). The DOS near EF is displayed in Fig. 2b and gives an idea of the magnitude of the
peak at the uBCP; the form for the dispersion in Eq. 1 is given more precisely in Fig. 2c.
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FIG. 3: Fermi surface (constant energy E=0) around the uBCP (see text), which lies at the center of the plot where the velocity

vanishes; the anomalous kx direction is plotted vertically. The color map indicates the relative velocity; the ~k, energy, and
velocity scales are arbitrary.

IV. EFFECT OF UNCONVENTIONAL BCP

The occurrence of BCPs (vanishing velocity) was first studied systematically by van Hove,28 who noted that, in
the absence of restrictions, BCPs in a band occur at most at isolated points. He studied the conventional (cBCP)
case where the determinant of the Hessian ∇k∇kεk evaluated at the BCP is non-vanishing, which corresponds to
vanishing velocity at (1) band edges, where the constant energy surface also vanishes, and (2) saddle points, with ~v
= 0 on a pinched-off surface. For our representation of the uBCP in NbFe2, this determinant vanishes due to the
cubic variation with kx, resulting in this unconventional type of BCP. This uBCP therefore does not correspond to
the usual possibilities, which are a (dis)appearing of a Fermi surface or to a pinching off of the Fermi surface.
Instead, it is an isolated vanishing of carrier velocity on an extended surface, which is shown in Fig. 3. A spectrum

of soft excitations (arbitrarily low velocities on the Fermi surface), vanishing more conventionally (linearly) in the ky
and kz directions, is joined by a line of quadratically vanishing velocities off the Fermi surface along the kx direction.
The anomaly in the DOS is shown in Fig. 2c and numerically appears to behave roughly as -|E|2/3 near the peak.

The behavior of 〈v−1(E)〉, whose importance is discussed below, is also shown, and is fit well with a E− 1

4 divergence.

A. Comments on zero Fermi velocity

The occurrence of a zero Fermi velocity has not attracted much attention to date. The constant energy E surface
SE is given by εk = E, i.e. one condition on a function of three variables. For constant velocity surfaces, we consider
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the surfaces of constant v2k, which (unlike |~vk|) is an analytic function of k except at degeneracies (including band
crossings) which is not our interest here. The constant velocity surface SV given by v2k = V 2 is another surface in
k-space that may intersect the E surface, so constant velocities form lines (contours) on SE . This picture suggests
that zero velocities might arise as lines on the Fermi surface.
However, vanishing velocity v2k = 0 is special. The constant velocity surface SV arises from a single condition:

v2k,x = V − v2k,y − v2k,z , (2)

implicitly giving the surface kx(ky, kz ;V ) in k-space. The case V=0 is special because it requires requires separately
vk,x = vk.y = vk,z = 0, i.e. three conditions. One condition leads to a surface, two conditions leads to a line, so three
conditions reduce to a point. For a point to lie on a separate surface is an accidental, albeit tunable, occurrence.
The conditions for SE and SV described above do not take into account any connection between the two surfaces,

whereas ~vk being the derivative of εk is the case of interest. Is this relevant? On an SE surface, the velocity is always

normal to the surface, so at a given point ~k on SE , the velocity is given not by a general vector but by a signed scalar:
positive if outward, negative if inward. Vanishing velocity however still requires three conditions: the orientation of
the surface normal (two angles) and the vanishing of the magnitude. Thus from this viewpoint as well as the former
one, it follows that zero velocities occur at most as isolated points on the Fermi surface.

B. Velocity distribution around the uBCP

Going beyond averages over the FS and the bare susceptibility, the spectrum of carrier velocities (hence, single-
particle and pair excitation energies) is of fundamental concern for spin fluctuations and quantum criticality. We have
evaluated the distribution of velocities V at given energy E , as done earlier for TiBe2,

29 for the uBCP

D(E , V ) =
∑

k

δ(εk − E)δ(|~vk| − V ), (3)

and display the results in Fig. 4. For isotropic free electrons this distribution vanishes except for a highly singular
value along the line V =

√
2mE , where it becomes the product of two δ-functions. For the uBCP, the small V region

of D(E , V ) is sharply peaked in the vicinity of Vm(E) ∝ E2/3, arising from the quadratically small velocity along the
x-axis with relatively large phase space. The spectrum vanishes at smaller velocities V < Vm, but has a tail at higher
velocities where the other two axes contribute.
The Fermi surface topology near the uBCP is given (for simplicity, scaling out the masses and the coefficient K to

get εk = k3x + k2y − k2y) from εk = 0 by

kx = sgn(k2y − k2z)|k2y − k2z |1/3. (4)

This warped FS (Fig. 3) is centered on the peculiar singular uBCP. As the uBCP is approached, the FS tangent
plane becomes sensitively dependent on the angle of approach, and the curvature becomes singular. Such a zero
velocity point leads to arbitrarily low energy single-particle excitations around the uBCP, including a “hot stripe”
of low velocities just off the Fermi surface along the ±kx axes (where vk ∼ k2x is quadratic, not linear, in k) whose
impact on magnetic fluctuations requires investigation.

C. Coefficient in Moriya theory

In Moriya’s widely applied theory15 of nearly FM (and AF) metals, the small-Q inverse susceptibility has an
imaginary part at low energy given by N(EF )〈v−1〉ω/Q. It is straightforward to show that when there is a BCP on
a (non-vanishing) FS, 〈v−1〉 diverges. The expression is

〈v−1〉 =
∑

k

1

vk
δ(εk) ∝

∫

S

dSk

v2k
. (5)

Since v2k is smooth and assuming a minimum (vanishing) at k0 (vk0
=0), the Taylor expansion is

vk =
1

2
~κ ·G · ~κ+ ... (6)

5



where ~κ ≡ ~k − ~k0. The second derivative matrix G can, without loss of generality, be taken to be diagonal and with
wavevector rescaling, G → gI. Then in a small region κ < k1 where the Taylor expansion holds, the contribution to
〈v−1〉 when vk0

= 0 is

〈v−1〉 ∝ g−1

∫ k1

0

2κdκ

κ2
∼ 2

g
log(κ) (7)

giving an infrared divergence at the lower limit of integration. From Fig. 2c, numerical scaling gives 〈v−1(E)〉 ∼ E−1/4

for this form of uBCP. This divergence means that Moriya’s theory as currently formulated breaks down as this
uBCP approaches the Fermi surface, and requires generalization: a higher order expansion of the non-interacting
susceptibility is required.
If the dispersion expansion Eq. 1 holds up to km (perhaps a few percent of the Brillouin zone dimension) we obtain

(in the limit ω/Q2 → 0 followed by Q → 0)

χ◦(Q,ω) =
∑

k

f(εk)− f(εk+Q)

εk+Q − εk − ω + iη

→ χ̄◦(Q) +
∑

k<km

∑

j

Q2

j

2m(k)j
∑

j

Q2

j

2m(k)j
− ω + iη

δ(εk), (8)

where the first term χ̄◦(Q) arises from |~k| > km and is essentially that presented by SS, and the second term arises

from the uBCP region where the quadratic term replaces the usual ~Q · ~vk term. Here η is an infinitesimal and the
masses m(k)j along the three axes are (meK/kx, my, -mz).

Neglecting the kx dependence, which due to its smallness is unimportant for most directions of ~Q, in the integrand
for k < km for the real part leads to a contribution to the bare fluctuation spectrum from the uBCP given by

∆χ◦(Q,ω) ≈ ∆N(EF )
Q2

y/2my −Q2
z/2mz

Q2
y/2my −Q2

z/2mz − ω

− iπω
∑

k<km

δ(εk)δ

(

3kxQ
2
x

meK
−
[

Q2
y

2my
− Q2

z

2mz

])

, (9)

where ∆N(EF ) is the DOS from within k < km. Due to the saddle point character in the ky − kz plane, the real part
has strong anisotropy including sign changes for |Q2

y/2my −Q2
z/2mz| ≤ ω that do not occur for conventional bands.

The imaginary part acquires a low energy form

Im∆χ◦(Q,ω) =
ω

Q2
x

C̄Q, (10)

where C̄Q is a somewhat ~Q-dependent amplitude arising from an integral over the line of constant kx on the Fermi
surface where the argument of the δ-function in Eq. (9) vanishes. This lowest order result for small ω,Q suggests
that the temporal fluctuation ω/Q term in Moriya theory

χ◦(Q,ω)−1 = χ̄◦,−1 +AQ2 − iCω/Q+ ... (11)

must be replaced by

χ◦(Q,ω)−1 = χ◦(0, 0)−1 +AQ2 − iC̄Q
ω

Q2
x

+ ... (12)

when there is an uBCP at or near the Fermi surface.
Thus the (bare) low energy magnetic fluctuation spectrum is no longer a simple function of | ~Q| and ω, rather it is

highly and essentially anisotropic around the |Qy| = |Qz| directions, no longer being a simple function of | ~Q| and ω,
and the low energy dynamics are scaled by Q2

x rather than Q.. It will be important to learn how treatment of the
fluctuations will renormalize this bare low energy behavior.
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FIG. 4: Color plot representation of the velocity spectrum D(E , V ), which provides the decomposition of velocities (vertical
axis) for each energy (horizontal axis). All scales are arbitrary. The spectrum is sharply and narrowly peaked very near the
onset, with a long tail at higher velocities.

D. Implications of Multiple uBCPs

So far we have only discussed the isolated uBCP, which would be most relevant to ferromagnetic, rather than
antiferromagnetic, quantum criticality. In the hexagonal lattice there are six symmetry related such hot spots

Kc(±1, 0),Kc(± 1
2 ,±

√
3
2 ), with Kc ≈ 0.30 kzb in terms of the zone boundary distance. There are therefore five

non-zero spanning Q-vectors (and symmetry partners) spanning these hot spots, for which the large-Q susceptibility
at zero or small energy will be correspondingly large, thus providing a driving force for spin-density waves (SDW) or
AFM order at the corresponding wavevectors. Note that, quite generally, the ω ≡ 0, Q → 0 susceptibility approaches
N(EF ), which also possesses a sharp, but modest in magnitude, peak at the BCP.
Thus both FM and AF (SDW) susceptibilities will be strongly enhanced, and thus will be competing for their own

separate magnetic order. This competition introduces another type of frustrating fluctuations, the effects of which
only a renormalized theory can resolve. For transitions between inversion related hot-spots the SDW susceptibility
will be particularly large, since the hot stripe axes will then be aligned. These AFM wavevectors may require special
attention.
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V. FIXED SPIN MOMENT STUDY

The small Q, small ω susceptibility we have just examined reveals the delicate low energy tendencies of a non-
magnetic system with an uBCP. We next explore magnetic tendencies and the distribution of moments in NbFe2 by
performing fixed spin moment34 (FSM) calculations. Magnetic states have been studied previously at stoichiometry
by SS and for doped materials by Tompsett et al. Like the earlier studies, we do not pursue noncollinear magnetism
here.
Our calculated energies E(M) and atomic moments versus imposed moment M are presented in Fig. 5, using the

experimental crystal structure parameters and the GGA exchange-correlation functional. Because in the absence of
constraints the nonmagnetic state is calculated to be unstable to magnetic order (as observed), the curves are not
symmetric around zero moment; however, there is always a symmetry related solution at negative M where all spin
directions are reversed from the corresponding state at positive M.
Two magnetic states are evident in our series of calculations, a low net moment ferrimagnetic (FiM) arrangement

and a (forced) ferromagnetic (FM) state. The more stable state is the FiM one with total moment of 0.4 µB (all
moments are quoted per formula unit), comprised of moments of about 1 µB on Fe2 and -1.8 µB on Fe1. This state
is the same configuration as the lowest energy configuration found by SS25 (of five that they found). Their moments
(-1.18 µB, 0.75 µB for Fe1, Fe2, respectively) differ from ours (-2 µB, 0.8 µB) indicating sensitivity to structure (they
use theoretically relaxed internal positions) and exchange-correlation functional, as already noted by Tompsett et al.
For the range of moments we have studied there is always a small negative moment (of the order of 0.1 µB or less)
on the Nb atom. In the subsequent discussion, recall the atomic ratios are NbFe10.5Fe21.5.
As the imposed total moment is increased “adiabatically” (we use the spin densities from the previous fixed moment

to begin self-consistency for the next in our FSM calculations), the moments on both Fe atoms initially change by
comparable amounts along the direction of change in the imposed moment. In the vicinity of M=1.4 µB the decreased
downward moment of Fe1 (∼ 1µB) becomes unstable, and it flips direction in a first-order fashion to the FM state,
where it rapidly approaches the same moment as Fe2. This first order “spin flop” transition is evident in the small
discontinuities of the Fe2 and Nb moments. The energy curve reflects nearly quadratic increases relative to the
minimum of each of the two states (FiM and FM), with switchover from one to the other again reflecting first order
behavior.
The minimum energy of the FM state (total moment of 2.4 µB) occurs with moments of about 1.1 µB and 1.5

µB on the Fe1 and Fe2 atoms respectively. The energy of this state, which is also one of those discussed by SS, is
12 meV/f.u. higher than the FiM state in our calculations. The strong variation in moments with applied field (i.e.
imposed moment) indicates itinerant character of the magnetism, in agreement with the conclusion of SS, based on
the different values of atomic moments occurring in the five configurations that they studied. All of the calculated
states (FM, AFM, or FiM), by SS, by Tompsett et al., and by us, have much larger moments than seen experimentally,
which is the common finding in weak (and incipient) ferromagnets and points to the dominant influence of magnetic
fluctuations.
The FSM calculations, and the results of SS, establish there are many ordered collinear states at stoichiometry differing
in energy by only ∼ 10-20 meV/f.u. Unlike in fluctuating systems, magnetism in mean field approximation (as from
DFT calculations with static moments) is not very sensitive to small anomalies in the band structure, and FSM results
at xcr show little difference from those at nearby band fillings. The near degeneracy of several magnetic states, as well
as the possibility of magnetic frustration on the Kagome Fe2 sublattice, raises the further possibility of non-collinear
magnetism (including spiral and longitudinal SDW) as well. Such behavior can depend on the (complicated) FSs.
SS found weak variation of the generalized non-interacting susceptibility (no matrix elements) in the Qz = 0.38π/c
plane in NbFe2. For the same function, Tompsett et al. found along both [1,0,0] and [0.1.0] directions a very sharp
minimum as Q → 0. Neither provides support for the importance of ferromagnetic fluctuations (Q → 0), but some of
the bands at the Fermi level are strongly differentiated in amounts of Nb, Fe1, and Fe2 character, so matrix elements
will be important.

VI. SUMMARY

We have identified an unconventional band critical point in the band structure of NbFe2 and have pursued the
consequences when the Fermi energy is tuned to the critical point. We have demonstrated that fluctuations around
an uBCP are essentially different – highly anisotropic, and differing in the Q,ω dependence – from what is assumed
in the more conventional treatments of magnetic quantum critical points. The dynamic fluctuation spectrum changes
qualitatively from that of a conventional band structure, and Moriya’s formulation for weak ferromagnets requires
adjustment. From our calculations and earlier ones, NbFe2 displays several low-lying magnetically ordered states (as
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FIG. 5: Atomic moments (symbols) and energies (solid lines) from fixed spin moment studies, showing two distinct phases,
ferrimagnetic (FiM) with minimum of energy around 0.3 µB/f.u., and ferromagnetic (FM) with minimum at 2.3 muB/f.u.
The minima differ by 13 meV/f.u. Here M=0 corresponds to a zero net moment ferrimagnetic state, hence the curve is not
symmetric around total moment M=0. The ferrimagnetic state could not be followed beyond M < -0.5 µB .

well as possibly non-collinear ones that have not yet been addressed), so the spectrum of low energy dynamic spin
fluctuations may be unusually complex in this quantum critical material.
Two other intermetallics, both with the cubic (C15) Laves structure rather than the hexagonal (C14) Laves structure

of NbFe2, have attracted much attention due to their weak magnetism. TiBe2 at stoichiometry is a highly enhanced
paramagnetic that was long believed to have weak order because magnetic order appears in impure samples. van
Hove singularities occur very near EF in TiBe2; if non-stoichiometry moves EF upward by as little at 3 meV, the
velocity spectrum29 D(EF , V ) extends nearly to V=0 and 〈v−1〉 is enhanced by a factor of two. There is no uBCP
as in NbFe2, but the enhancement in low energy excitations (the occurrence of low velocities) bears similarity to
NbFe2. Weak magnetism and metamagnetic transitions in ZrZn2 have been attributed30 to a saddle point van Hove
singularity (a cBCP) very near EF . Ni3Al (FM with small moment < 0.1µB/Ni below 40 K) and isovalent Ni3Ga (
highly enhanced but not ordered) have also attracted attention. The distinction was attributed by Aguayo et al.31

to stronger spin fluctuations in Ni3Ga, using analysis based on LDA results applied within Moriya theory. The band
structure themselves are very similar except for one Al- (resp. Ga-)derived band, though there is no obvious anomaly
in the band structure near EF .
The NbFe2 system, providing a rare example of itinerant, low temperature antiferromagnetism and non-Fermi

liquid quasiparticle behavior at low temperature, seems to require a specific microscopic mechanism compared to
the few other known weak itinerant magnets. We have proposed that an unconventional band critical point, in
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which an isolated point of vanishing carrier velocity on an extended Fermi surface, provides the explanation. The
self-consistent CPA calculations of Alam and Johnson27 support this position of the Fermi level at the quantum
critical point, implying further that the position of the critical point is not significantly renormalized by the critical
fluctuations. Moriya’s theory of weak magnetism requires generalization when the Fermi level lies near or at a uBCP,
and the phenomenological renormalized Landau theory32 that has been applied33 to ZrZn2 also must be generalized
in this case. Generalizing the theory of itinerant quantum criticality to encompass such a uBCP should help to
illuminate the mechanisms and the behavior around such itinerant QCPs.
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