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We study the thin torus limit of the Haldane-Rezayi state. Eight of the ten ground states are
found to assume a simple product form in this limit, as is known to be the case for many other
quantum Hall trial wave functions. The two remaining states have a somewhat unusual thin torus
limit, where a “broken” pair of defects forming a singlet is completely delocalized. We derive these
limits from the wave functions on the cylinder, and deduce the dominant matrix elements of the
thin torus hollow-core Hamiltonian. We find that there are gapless excitations in the thin torus
limit. This is in agreement with the expectation that local Hamiltonians stabilizing wave functions
associated with non-unitary conformal field theories are gapless. We also use the thin torus analysis
to obtain explicit counting formulas for the zero modes of the hollow-core Hamiltonian on the torus,
as well as for the parent Hamiltonians of several other paired and related quantum Hall states.

I. INTRODUCTION

The theoretical study of electronic phases in the frac-
tional quantum Hall regime owes much of its success to
the construction of analytic trial wave functions,1 and
their subsequent interpretation in a conformal field the-
ory (CFT) context.2,3 The use of CFT gives rise to pow-
erful predictions regarding, e.g., the edge physics of a
state or its statistics. The connection between trial wave
functions and CFT allows for elegant derivation of results
without further microscopic studies of the wave functions
themselves or their parent Hamiltonians. The use of CFT
in this way is, however, not free of conjecture. One excit-
ing development in the field is the gradual improvement
of the foundation underlying these conjectures, e.g., re-
garding statistics.4–7

Another important prediction based on the CFT cor-
respondence holds that wave functions related to non-
unitary CFTs cannot be stabilized through local Hamil-
tonians with an energy gap in their bulk excitation
spectrum.5,6,8,9 In this paper we will show that this state-
ment is consistent with a different scheme of attack re-
cently found in the literature. This is to take the thin
torus limit of a quantum Hall state, and assume adia-
batic continuity between this quasi one-dimensional (1D)
limit, and the limit of a two-dimensional (2D) torus
without a “thin” dimension. Thus far, this method
has been mainly used to study systems with a bulk en-
ergy gap.10–13 Since early on, however, the assumption
of adiabatic continuity has also been made for systems
with gapless bulk excitations.14 More recently we have
applied15 this method to a possible transition16 between
the Halperin (331)-state17 and the Moore-Read state2

triggered via interlayer tunneling. Here we apply the
same approach to the Haldane-Rezayi state,18 whose as-
sociated CFT is non-unitary.2,19–21

The thin torus approach is itself based on a conjecture,
namely that of adiabatic continuity described above. The
latter has led to some success in the past, but is so far
less established overall compared to the CFT based con-

jecture. Since the assumptions underlying the thin torus
method are, however, not field-theoretic in nature, they
may be viewed as quite independent of those used in the
CFT approach. It is thus reassuring that so far, the
results of both approaches have been in overall agree-
ment. This seems to include the issue of quasi-particles
statistics.22,23 The purpose of this paper is to demon-
strate this agreement with regard to the existence of gap-
less excitations in the HR state. Furthermore, we use
the insights gained from the thin torus limit to general-
ize various counting formulas,24,25 which have been given
for the zero energy modes of parent Hamiltonians in the
case of spherical topology, to the torus. This is possible
since in the thin torus limit, simple patterns generally
appear that lead to combinatorial principles which or-
ganize the subspace of zero modes (cf. also Ref. 26).
These patterns may also be viewed as dominance parti-
tions of Jack polynomials,27,28 and are related to “pat-
terns of zeros”.29–31

The paper is organized as follows. In Section II, we
take the formal thin cylinder limit of HR wave func-
tions on the cylinder. This allows us to infer all the
patterns associated with topological sectors in the thin
torus limit. In Section III we discuss the matrix elements
of the thin torus hollow-core Hamiltonian, and use this
to demonstrate the existence of gapless excitations in the
thin torus limit. In Section IV we use the combinatorial
principles imposed by the thin torus Hamiltonian to de-
rive torus zero mode counting formulas for the HR state
and various other paired and related quantum Hall states.
We discuss our results in Section V. Various technicali-
ties relating to the thin torus limit are presented in three
Appendices.
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II. THE THIN TORUS LIMIT

A. Preliminary considerations

We focus on the Haldane-Rezayi (HR) state at filling
factor ν = 1/2. This is the top state in the HR sequence,
and is its most elementary state in terms of torus degen-
eracy. Even so, for even particle number, its torus degen-
eracy of 10 of this state is already rather large. The cor-
responding torus wave functions have been constructed
in Refs. 24 and 32. The full set of patterns associated
with these states have been known for some time,33,34 and
naturally appear when the thin torus limit is taken. In
this limit, trial wave functions for ground states usually
approach simple product states,35 and patterns appear
as patterns of occupancy numbers of consecutive lowest
landau level (LLL) orbitals. For the 10 HR ground states,
eight of the associated patterns are easy to guess. The
particles in the associated product state carry a spin or
pseudo-spin label, and must form a singlet, since the HR
state is a two-component singlet state. A simple pat-
tern, that is, one with a simple unit cell, must therefore
contain at least two particles per unit cell that form a sin-
glet. Natural candidates are thus given by the following
patterns

000 000 000000 (1a)

00 00 00 00 (1b)

Here as usual, patterns denote consecutive occupancies of
LLL orbitals in the thin torus limit, and ovals denote sin-
glets formed by two electrons in different orbitals. Taking
into account translational symmetry on the torus, these
patterns together account for eight degenerate ground
state. They have also appeared in the literature more
recently from a “generalized Pauli principle” point of
view36,37 (cf. also Ref. 38). The above, however, leaves
the thin torus limits of two more ground states undeter-
mined, and the associated patterns have to our knowl-
edge not yet appeared in the printed literature.33,34 In-
terestingly, these patterns are not “simple”, in the sense
that they are not described by a small unit cell. Indeed,
since any such unit cell must harbor at least two particles
in a singlet state, and hence must at least consist of four
LLL orbitals at ν = 1/2, any such patter would imply the
existence of four more ground state. It is therefore not
possible that the thin torus limit of the remaining two
ground states yields a pattern with a simple unit cell. In
fact, as we will show below, it is the existence of these
two rather “special” ground state sectors which implies
the existence of gapless excitations in the state, at least
in the thin torus limit.

B. The A pattern

We proceed by first deriving the thin torus limits of
Eq. (1) in a systematic way, by following the general

method developed earlier by us.15 In this method, the
thin torus pattern is first obtained on a “squeezed lat-
tice”, and then unsqueezed by well defined rules. Here
we give a self-contained account of this method, including
some details not explicit in the original work.
Since torus wave functions are generally complicated

and lack a simple polynomial structure, we use the fact
that all torus patterns can also be obtained by work-
ing on the cylinder with appropriate “boundary condi-
tions”, corresponding to various edge state configurations
(vacua) (cf. Ref. 15). We will demonstrate this as we go
along. To begin, we take the polynomial structure asso-
ciated with the HR ground state in planar or spherical
geometry,18 and write down a corresponding LLL state
on the cylinder:

HA({ξα}) =
∑

σ∈SN/2

(−1)σ

(ξ1↓ − ξσ1↑)
2 . . . (ξN

2
↓ − ξσN

2

↑)2

×
∏

α<β

(ξα − ξβ)
2 .

(2)

Here, ξα = exp(κ(xα + iyα)), κ = 2π/Ly is the inverse
radius of the cylinder, greek letters are multi-indices of
the form α = (i, Sz), referring to the i− th particle with
spin projection Sz =↑ or Sz =↓, and α < β refers, for
definiteness, to the lexicographic order (1, ↓) < . . . <
(N/2, ↓) < (1, ↑) < . . . < (N/2, ↑). There are N/2 parti-
cles for each projection. The structure of Eq. (2) has the
familiar form of a Laughlin-Jastrow factor multiplied by
a determinant, which we have written out explicitly. We
suppress the standard Gaussian factor exp(− 1

2

∑

α x2
α)

here and in the following.
One can now imagine expanding Eq. (2) into polyno-

mials of the form
∏

α ξnα
α . Let C{nα} be the coefficient

of such a monomial. This coefficient is essentially the
amplitude A{nα} for the product state that has particles
occupying the LLL orbitals {nα}, except for a normal-
ization factor:35

A{nα} = e
1
2
κ2S C{nα} , (3)

where

S =
∑

α

n2
α . (4)

For this reason, those product states will dominate the
thin cylinder limit κ → ∞ for which the quantity S takes
on the maximum value, subject to the constraint that the
associated polynomial coefficients C{nα} are non-zero.
The nα in any monomial with non-zero coefficient are
of the following form:

nα =
∑

β 6=α

(mαβ + pαβ) (5)

where mαβ and pαβ are symmetric and anti-symmetric
matrices, respectively, that correspond to the selection

of the term ξ
mαβ+pαβ
α ξ

mαβ−pαβ

β in a factor depending on
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ξα and ξβ in Eq. (2). In the present case, all factors
surviving cancellation are of the form (ξα − ξβ)

2. For
these terms, mαβ = 1 and pαβ ∈ {−1, 0, 1}. For a fixed
permutation σ, however, factors corresponding to certain
pairs (αβ) in the Laughlin-Jastrow factor are canceled,
and this imposes additional constraints on mαβ and pαβ.
More precisely,

mαβ = 0 for α = β

mαβ = 0 for (α, β) ∈ {(i ↓, σi ↑) : i = 1 . . .N/2}

mαβ = 1 otherwise.

(6)

where (·, ·) denotes an unordered pair, and

pαβ ∈ {−mαβ,−mαβ + 1 . . .mαβ} . (7)

A given permutation σ thus induces a pairing between
up-spins and down-spins, which determines the possible
monomials

∏

α ξnα
α through the rules (5)-(7). In addition,

pαβ is constrained by its anti-symmetry. Making all pos-
sible choices for pαβ generates all possible monomials for
given a given pairing σ. In Appendix A, we show that in
order to maximize Eq. (4), pαβ must be of the following
form,

pαβ = mαβ sign(ρα − ρβ), (8)

where ρ ∈ SN is a permutation of N objects. This means
that |pαβ | must always be chosen to have its maximum
possible value, mαβ , and the sign structure is determined
by an ordering of the particle indices. Eq. (8) implies that
in each factor (ξα − ξβ)

2, we pick either the term ξ2α or
the term ξ2β , as determined by ρ, but never the mixed
term. ρ may be thought of as determining the order of
the N -particles on a “squeezed” lattice of N sites. The
term “squeezed” implies that the arrangement of the par-
ticles on the squeezed lattices is a precursor of the thin
cylinder pattern we seek, but with all inter-particle dis-
tances set equal to 1 (hence, with vacant sites “squeezed
out”). The corresponding un-squeezed pattern, the thin
cylinder limit of the state, is then obtained by evaluating
Eq. (5) for given pαβ and mαβ , as determined by σ, ρ via
Eqs. (6), (8). The resulting nα determine the exponents
in a dominant monomial

∏

α ξnα
α , which corresponds to

a product state where the particle with index α occupies
the LLL orbital with index nα.
In the above, the choice of the pairing σ is arbi-

trary, since varying σ only anti-symmetrizes the resulting
monomials. We may thus choose σ = id without loss of
generality. However, for given σ, the proper choice of ρ
that maximizes Eq. (4) is not arbitrary. Rather, to deter-
mine the proper arrangement of particles on the squeezed
lattice, we must minimize an effective energy, as done in
Appendix B. This yields that for σ = id, a proper choice
of ρ is

ρ = 1 ↓, 1 ↑, 2 ↓, 2 ↑, . . . ,
N

2
↓,

N

2
↑ . (9)

I.e., the particles paired according to σ must be neighbors
on the squeezed lattice. Permuting neighboring up- and

downspin particles with the same particle index results in
the same p-matrix, since pαβ = 0 for the corresponding
multi-indices α, β. We may of course permute the overall
order of pairs, where different orders leads to different
monomials contributing to the single Slater determinant
that dominates the thin cylinder limit. Using Eq. (9) in
Eq. (5), the resulting values nα then are, listed in the
order given by the right hand side of Eq. (9):

nα = 0, 0, 4, 4, 8, 8, . . . (10)

When the corresponding spins are distributed over LLL
orbitals accordingly, this yields the pattern Eq. (1a). It
follows from the above that each monomial that is present
in the associated Slater determinant is obtained from one
and only one choice for the p-matrix.39 The correspond-
ing monomial is hence generated in only one way, and is
thus guaranteed to have a non-zero coefficient.

C. The B patterns

The N -particle ground state on an infinite cylinder is
infinitely degenerate by translational symmetry. How-
ever, valid incompressible ground state wave functions
come in a finite number of different classes, correspond-
ing to the different patterns obtained when taking the
thin cylinder limit. To obtain a different class of ground
state, we may use the following procedure. The state
(2) describes a “ribbon” of incompressible fluid with two
opposing edges.35 Inside this ribbon, we can make two
quasi-hole type excitations Fig. (1). One member of
the pair is then formally taken across the left edge to
x = −∞, whereas the other is taken across the right
edge to x = +∞. With the holes removed, the state
has healed into an incompressible fluid, but in a different
ground state sector not (necessarily) related to the orig-
inal one by translation. On the sphere, the same process
corresponds to placing the two members of the quasi-
hole pair at the north and south pole, respectively. We
may thus take the polynomials associated with quasi-hole
wave functions from work done in spherical geometry.24

Recall that the polynomial (2) corresponds to the unique
ground state on the sphere. As observed in Ref. 24,
there is only one class of two-quasi-hole states that can be
generated inside this ground state, whereas for 2n-holes
with n > 1, various classes (sectors) can be distinguished
due to additional degrees of freedom corresponding to
pair breaking. We will find a natural interpretation for
this behavior in the quasi 1D. We take the unique class
of polynomial wave functions describing two quasi-holes
generated in the ground state (2), parameterized by the
two quasi-hole coordinates h1 and h2, and take the limits
described above. The resulting ground state polynomial
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FIG. 1. Transitions between different ground state sectors
of the HR state by quasi-hole insertion. We start with the
polynomial Eq. (2), which corresponds to the unique ground
state on the sphere, and consider the associated state on the
cylinder (a). The thin cylinder limit of this state is given by
the A pattern, Eq. (1a). Insertion of two quasi-holes (b) leads
to a state whose thin cylinder limit is shown in Fig. 4a), with
a B pattern appearing inside the A pattern, and separated
from it by two domain walls. When the quasi-hole positions
are taken to ±∞, the state approaches Eq. (11), whose thin
cylinder limit is described by the B pattern (1b). We may
iterate the process by inserting a second quasi-hole pair (c).
For this one has the choice of breaking a pair in the pairing
wave function of the state, or not.24 In the latter case, another
A-pattern will appear in the thin cylinder limit, surrounded
by B-patterns. If, on the other hand, the pair is broken, one
obtains an “A′-string” instead. With the quasi-holes taken
to ±∞, the state approached the wave function Eq. (16). Its
thin cylinder limit is the superposition of states represented
in Fig. 2, which features a delocalized broken pair, and which
we will loosely refer to as an A′-string. (See also Fig. 4e) for
the appearance of an A′-string terminating in domain walls
before quasi-holes are taken to ±∞.)

is then

HB({ξα}) =
∑

σ∈SN/2

(−1)σ(ξ1↓ + ξσ1↑) . . . (ξN
2
↓ + ξσN

2

↑)

(ξ1↓ − ξσ1↑)
2 . . . (ξN

2
↓ − ξσN

2

↑)2

×
∏

α<β

(ξα − ξβ)
2 .

(11)

It is not difficult to see that, like HA, HB has the analytic
properties that render it a zero-energy eigenstate of the
hollow-core Hamiltonian.18,24 The fact thatHB describes
an incompressible state at the same filling factor as HA

will be apparent in the thin cylinder limit.
It remains to see how the rules of the game described

above to find the dominant thin cylinder monomials of
HA change for the polynomial HB . This is easy to see
that only the central line of Eq. (6) needs modification:

mαβ = 1/2, for (α, β) ∈ {(i ↓, σi ↑) : i = 1 . . .N/2} .
(12)

The change just describes the following fact: Now terms
in the Laughlin-Jastrow factor that belong to the pairing
associated with σ are not just canceled, but are replaced
by (ξα + ξβ). For the reasons described above, we can
look at σ = id without loss of generality. Eq. (9) is then
still a solution for ρ that maximizes S, Eq. (4) (Appendix
B). The resulting monomial corresponds to the product
state

0 0 0 0 0 0 0 0 (13)

However, permuting the order of a pair i ↑, i ↓ in ρ,
Eq. (9), now leads to a different pαβ that also maximizes
S, with the members of the i-th pair in Eq. (13) trad-
ing places. It follows that the dominant state in the thin
cylinder limit is an equal amplitude superposition of all
states generated from Eq. (13) by exchanging the oppo-
site spins of neighboring pairs in a possible ways. It is
worth checking that the signs work out for this state to
describe a product of singlets, as shown in Eq. (1b). For
this it is enough to consider a state with N = 2 particles.
According to the above, the dominant term in the thin
cylinder limit is:

ξ0αξ
1
β + ξ1αξ

0
β = ξα + ξβ . (14)

Here, α and β refer to the down-spin particle and
the up-spin particle, respectively. In writing down the
wave functions (2), (11), we have distinguished two sub-
species of opposite spin, and have not imposed any anti-
symmetry condition between these distinguishable sub-
species. Rather, in Eq. (14) α is always associated with
a down-spin particle, and β is always associated with an
up-spin particle. Viewed as a function of position and

spin coordinates, Eq. (14) should be multiplied with the
spinor δsα,↓δsβ ,↑. The fully anti-symmetrized wave func-
tion is then

(ξαδsα,↓δsβ ,↑−ξβδsα,↑δsβ ,↓)−(ξαδsα,↑δsβ ,↓−ξβδsα,↓δsβ ,↑)
(15)

This is easily seen to be the difference between two Slater
determinants, describing a singlet. Hence, despite the
seeming lack of anti-symmetry, Eq. (14) describes a sin-
glet, and we recover the pattern Eq. (1b) in the thin
cylinder limit of Eq. (11). The fact that the common
coefficient of the dominant monomials obtained here is
non-zero follows from observations similar to those made
at the end of the preceding section.
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FIG. 2. The thin cylinder limit of the A′ ground state,
Eq. (16). (a) One of many squeezed lattice configurations,
corresponding to a choice of the permutation ρ that maxi-
mizes the quantity S, Eq. (4). A particular choice of ρ cor-
responds to a squeezed lattice configuration where each spin
carries a particle number index. This is not shown, since
permutation of like-spin indices does not change the value of
S, as it must be by the anti-symmetry of the wave function.
The short underscores represent squeezed lattice sites, and
the long underscores indicate the pairing P , Eq. (23). Pairs
must be nearest neighbors on the squeezed lattice, whereas
the positions of the members of the broken pair are arbitrary.
Together, ρ and P completely define the p-matrix, Eq. (22).
(b) The thin cylinder limit of the A′-state, obtained as equal
amplitude superposition of all product states derived by un-
squeezing all squeezed lattice configurations with given pair-
ings of the form described under (a). This is done by using
the associated p-matrix described in (a) to form monomials
according to Eqs. (18), (5). The unsqueezed version of (a) is
shown in the last line. As a result, the state is one where a
completely delocalized pair of charge neutral defects forming
a singlet separates two mutually out-of-phase A-patterns.

D. The A′ pattern

The missing ground state sectors can be obtained by
iterating the above procedure. We thus create two more
quasi-holes in the state (11). The number of inequivalent
choices for this is the number of inequivalent choices to
make four quasi-holes in the original ground state (2),
which is in one-to-one correspondence with the ground
state on the sphere. For this it was found in Ref. 24 that
there are two such possibilities, One may be described
as having a “broken pair”, while the other does not. In
the latter case, after sending both quasi-hole pairs off to
±∞, we obtain a state whose thin cylinder limit is again
of the A-type, Eq. (1a). Hence we focus on the former
case, where the state has a broken pair. The analytic
form of these states is more complicated, especially so on
the torus.24,32 On the cylinder, again after sending the
members of each pair to ±∞, we obtain the following

wave function:

HC({ξα}) =
∑

σ∈SN/2

∑

λ∈SN/2

(−1)σ(−1)λ
N/2
∏

i=2

(ξσi↓ + ξλi↑)
2

(ξσi↓ − ξλi↑)
2

×
∏

α<β

(ξα − ξβ)
2 .

(16)

In the above expression, the pairing between up-spin and
down-spin particles is now facilitated two permutations λ
and σ. The pairs thus formed are of the form (σi ↓, λi ↑),
where the pair with index i = 1 does not appear in the
pairing factor of the state, and can hence be thought
of as “broken”. The thin cylinder analysis is seemingly
simple. In Eq. (16), the summand corresponding to a
fixed pairing σ, λ is of the form

∏

α<β

(ξα ± ξβ)
2 , (17)

where in each factor, the sign depends on α, β and the
pairing. The dominant monomials in such a term are the
same as those in a pure Laughlin-Jastrow factor. Namely,
the problem of finding the dominant monomial in the
above product again reduces to Eq. (5), this time with

mαβ = 1− δαβ (18)

(all factors in the product are homogeneous and of the
same order). The analysis given above again implies that
the dominant monomials of Eq. (17) never make use of
the mixed term in (ξα ± ξβ)

2. These monomials would
give rise to states where every second LLL-orbital is oc-
cupied, in all possible ways. However, the monomials
thus generated do not depend on the permutations λ, σ
at all, since only the mixed term in (ξα ± ξβ)

2 depends
on the latter. It is thus clear that in the sum over λ, σ in
Eq. (16), all these naively dominant monomials cancel.
We thus have to look for those monomials in Eq. (17)

with the largest value of S, Eq. (4), whose coefficient
remains non-zero after the sum over λ, σ is taken in
Eq. (16). Note that, since λ, σ only affect the signs
in Eq. (17), the possible range of values for pαβ is al-
ways {−1, 0, 1}, independent of α, β. Each choice for
pαβ corresponds to the choice of the term proportional

to ξ
1+pαβ
α ξ

1−pαβ

β in the factor (ξα±ξβ)
2. It is thus useful

to think of Eq. (16) in terms of two independent sums:

HC({ξα}) =
∑

{pαβ}

∏

α<β

ξ
1+pαβ
α ξ

1−pαβ

β

×
∑

σ,λ∈SN/2

(−1)σ(−1)λcoeff(λ, σ, {pαβ})
(19)

The problem is thus to choose pαβ such that Eq. (4) is
maximized, subject to the constraint that the second row
in the above equation does not vanish.40 Suppose, now,



6

that pαβ is such that for the i-th down-spin particle, we
have

pi↓,β = −pβ,i↓ = ±1 for all β . (20)

We will now show that there can be only one such i in or-
der for the sum over coefficients in Eq. (19) not to vanish.
If there were two indices i1 and i2 that satisfy Eq. (20),
then exchanging the positions σ−1(i1,2) of these two in-
dices in the permutation σ changes the sign (−1)σ, but
leave the coefficient coeff(σ, λ, {pαβ}) unchanged. This
is so because this coefficient can depend on σ−1(i), only
through the mixed term in (ξi↓ ± ξβ)

2 (whose sign de-
pends on whether β = (λσ−1(i), ↑) or not), but for i1,
i2 satisfying (20), these mixed terms do not enter the
monomial associated with pαβ . Therefore, we can have
at most one down-spin index i satisfying (20). For the
same reasons there can be at most one up-spin index j
with

pj↑,β = −pβ,j↑ = ±1 for all β . (21)

When pαβ is subject to the additional constraint that at
most one i and one j satisfy (20) and (21), respectively,
we can still use the arguments of Appendix A to show
that the pαβ maximizing Eq. (4) is of the form

pαβ = sαβ sign(ρα − ρβ), (22)

for some permutation ρ, only we cannot always choose
the maximum value mαβ = 1 for |pαβ | = sαβ any more.
We will, however, still want to choose sαβ = 1 as often
as possible, in order to approach the unconstrained max-
imum value of S as closely as possible. To do this, we
choose one index (i ↓) and one index (j ↑) for which (20)
and (21) will be satisfied. The remaining N − 2 particle
indices are organized into a pairing P = {(α, β)} (dif-
ferent from the pairing induced by σ and λ), each pair
consisting of an up-spin and a down-spin index. We then
define

sαβ = 0 if α = β or (α, β) ∈ P

sαβ = 1 otherwise
(23)

It is clear that this assigns a minimum number of off-
diagonal zeros to the s-matrix, subject to the constraints
described above. In any monomial obtained from Eqs.
(22), (23), the indices (i ↓) and (j ↑) indeed play the role
of a “broken pair”, since no term coming from a factor
(ξi↓ ± ξβ)

2 or (ξj↑ ± ξβ)
2 is ever affected by the relative

sign that comes from the pairing wave function.
The permutation ρ that leads to a maximum value of

S is not arbitrary, but its proper choice depends some-
what on the pairing P . Again, we consider ρ to define a
squeezed lattice configuration as described above. Then,
as we show in Appendix B, we must arrange the pairs
in P as nearest neighbors on the squeezed lattice. The
location of the members of the broken pair is, however,
arbitrary. This leads to the possible squeezed lattice con-
figurations of the kind shown shown in Fig. 2a). The cor-
responding unsqueezed configurations, obtained by plug-
ging the result into Eq. (5), is shown in Fig. 2b) (last

line). As shown in the figure, there are still many other
different degenerate configurations, corresponding to all
possible positions of the members of the broken pairs.
The term dominating the thin cylinder limit of Eq. (16) is
an equal amplitude superposition of all the corresponding
monomials. In Appendix C, we evaluate the coefficient
of these monomials to be 2N−2(N/2 − 1)!, up to a sign,
showing in particular that it is non-zero. Moreover, the
superposition is symmetric in the positions of the mem-
bers of the broken pair. By the same argument given at
the end of the preceding section, this implies that this
broken pair forms a singlet, as it should. The members
of the remaining, unbroken pairs each occupy the same
orbital, and thus form singlets automatically.
As is clear from the graphical representation in Fig.

2b), the thin cylinder limit of Eq. (16) is a equal am-
plitude superposition of all states where a delocalized
singlet separates two mutually out-of-phase A-patterns.
More precisely, the A-patterns thus separated differ by
a shift of two orbitals. On the torus, there are exactly
two such states, related by a single translation. Indeed,
one will easily see that translating the state displayed
in Fig. 2b) by two orbitals leaves the state invariant,
whereas a single translation leads to the appearance of
the other pair out of the four possible A-patterns, sepa-
rated by defects. We will henceforth refer to these thin
torus/cylinder states as A′-states or -patterns. It is natu-
ral to think of these states not as defining new topological
sectors, but as A-type states in the presence of a single
“zero-energy excitation.” We further elaborate on this
notion in the following section.

III. PROPERTIES OF THE THIN TORUS

HOLLOW-CORE HAMILTONIAN: MATRIX

ELEMENTS AND GAPLESS EXCITATIONS

This section presents the case for gapless excitations
in the thin torus limit. It details the logic behind re-
sults first given in Refs. 33 and 34. The central step is
the correct extraction of the dominant matrix elements
of the hollow-core Hamiltonian in the thin torus limit.
The diagonal parts of these matrix elements give rise to
what has more recently been proposed as a “generalized
Pauli principle” applying to the HR state.37 We find it
crucial, however, to also pay attention to off-diagonal ma-
trix elements that survive in this limit. This then implies
existence of of gapless modes in the thin torus limit. Our
results will also allow us to derive a detailed formula for
the number of zero energy eigenstates, or “zero modes”,
of the hollow-core Hamiltonian on the torus in the pres-
ence of quasi-holes.
It is well known that the analytic properties of the HR-

states render them unique zero-energy ground states of
the hollow-core Hamiltonian.18 At filling factor ν = 1/2,
there are ten such ground states on the torus,24,32 ir-
respective of the aspect ratio of the torus. In the thin
torus limit, these ten ground states evolve into product
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FIG. 3. The off-diagonal matrix element present in the thin
torus hollow-core Hamiltonian. This, together with the “de-
tailed balance” condition Eq. (24), ensures that states con-
taining A′-type string with one or two delocalized defects are
zero energy states in the thin torus limit.

states corresponding to the patterns that we have seen
to emerge in the thin cylinder limit. Indeed, when ex-
pressed as a second-quantized Hamiltonian in the LLL-
basis, the hollow-core Hamiltonian will be dominated by
highly local terms, with sub-dominant terms exponen-
tially suppressed (cf., e.g., Ref. 10). These dominant
terms are identical in the case of a thin cylinder and a
thin torus, for a given size (perimeter) of the small di-
mension. In general, the extraction of the proper domi-
nant terms, which directly imply the thin torus limiting
states, requires the use of degenerate perturbation the-
ory, as we described earlier.15 Here we pursue a shortcut
instead. The dominant terms of the thin torus Hamil-
tonian follow quite unequivocally from the knowledge of
the limiting zero-energy ground states, and the fact that
the limiting Hamiltonian is local, with terms decaying
exponentially with distance. This decay happens over a
characteristic scale that is short compared to the orbital
separation. The latter essentially implies that no two
terms can compete (lead to cancellations in the ground
state energy) that act at a different range. This imposes
severe constraints on the effective thin torus Hamilto-
nian.

Considering the A- and B- ground states, clearly there
must be terms in the thin torus Hamiltonian that assign
an energy to any four adjacent orbitals containing more
than two particles, or else there would be zero modes at
higher filling factor. Likewise, there must be an energy
cost associated with any two particles that are no more
than two orbitals apart, if these two particles are forming
a triplet. There is no such energy cost for singlets. With-
out this triplet energy, we could make many ν = 1/2 zero
modes by placing one particle of any spin orientation in
every second orbital. In the presence of only these two
types of interactions, the A- and B-type product states
would be the unique zero energy ground states at filling
factor ν = 1/2. To allow for the A′-type states, off-
diagonal terms of competitive magnitude must also be
present. These terms will act on configurations where a
doubly occupied orbital and a singly occupied orbital are
separated by two empty sites, Fig. 3. The off-diagonal
matrix element leads to a new configuration where the
doubly occupied site and the single particle have moved
past one another, essentially trading places while con-
serving their center-of-mass. We denote the strength of
this matrix element by −t. At the same time, since the
particle configuration described here involves three par-
ticles in four adjacent sites, there must be an energy cost

V associated with it. It is easy to see that for

V = t , (24)

the A′-pattern is a zero energy eigenstate of the result-
ing Hamiltonian. To see this, we first discuss the case
of odd particle number. Indeed, the matrix elements de-
fined above immediately imply that there must also be
zero energy states for N odd,24 in the thin torus limit.
In this limit, these states are equal amplitude superpo-
sitions of all states connected by the off-diagonal matrix
element described above, where a singly occupied orbital
forms a defect between two adjacent A-patterns, and be-
comes delocalized my means of the process shown in Fig.
3. It is easy to see that for a given spin state of the de-
fect site, there are two classes of states connected by such
matrix elements. This gives rise to two ground states for
each value of Sz, related by a single magnetic transla-
tion. The fact that the equal amplitude superpositions
of this kind are zero energy eigenstates of the Hamilto-
nian defined above can be understood as a consequence
of a “detailed balance” condition: Consider a state enter-
ing the superposition, with the defect in a fixed position.
The diagonal energy associated with this state (2t) equals
t times the number of other such states (2) that have di-
rect matrix element with the state under consideration.
Note that the diagonal energy is indeed 2t, because of
the doubly occupied orbitals to the left and right of the
defect. General solvable Hamiltonians satisfying detailed
balance conditions have been studied in Ref. 41.
The above considerations immediately extend to the

A′-type states for even particle number. Now each state
in the equal amplitude superposition has two defects,
which form a singlet. We see that the detailed bal-
ance condition is still satisfied. The only states in the
superposition that require additional consideration are
those where the two defects are near neighbors, as in the
first line of Fig. 2b). In this configuration, the diago-
nal energy cost is reduced by half, since each defect sees
only one neighboring doubly occupied site, three orbitals
away. The other neighbor is given by the other defect,
two sites away. However, as stated above, two particles
forming a singlet do not repel each other, even at close
distance. The energy of the state is thus again 2t. On
the other hand, there are only two other configurations
(as opposed to four) with direct matrix elements into this
state.
We see now that the above matrix elements lead to the

known thin torus ground states. Interestingly, however,
they also imply the existence of gapless excitations in the
thin torus limit. This can be seen in two different ways.
First, we can consider an equal amplitude superposition
like the A′-states, but with the defect pair put into a
triplet state. This will lead to a new orthogonal state
with a finite energy expectation value. However, this
energy will vanish in the thermodynamic limit, since the
amplitude of each configuration scales as 1/N , and the
number of offensive configurations scales as N , leading
to an energy expectation value of order t/N .
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FIG. 4. Charge 1/4 Domain walls between A/A′ and B-
strings. Underscores label the domain wall positions as de-
fined in the text. The hopping process indicated in a) moves
the right domain wall in the ABA sequence to the left by
four orbitals. b) shows the situation after three such moves,
which shrinks the size of the B-string to zero, and leads to
an additional 0 between mutually shifted A-strings. c)+d)
shows the same for a BAB sequence. Note that for the con-
ventions defined in the text, the merged domain walls now
coincide at the same orbital. In any case, each allowed zero
energy sequence of patterns can be assigned a sequence of do-
main wall positions satisfying Eq. (28) in a unique manner.
e) and f) show patterns involving A′-strings with two (e) or
one (f) delocalized defect. Only a “snapshot” of the state is
shown with defects in fixed positions, where it is understood
that these defects are delocalized as indicated and stated in
the text. The right defect in (e) is shown at the rightmost
possible position.

Moreover, we can also consider giving the delocalized
singlet defect in the A′-state a small but finite momentum
k. It is easy to see that this leads to a dispersion propor-
tional to k2, in agreement with general arguments41 for
Hamiltonians with the detailed balance property. These
findings seem consistent with the notion that the HR
state can be thought of as a critical state between the
strong and weak pairing phase of a d-wave supercon-
ductor of composite fermions.16 The implication of gap-
less excitations in the thin torus limit of the hollow core
Hamiltonian is the main result of this paper.

IV. DOMAIN WALLS AND ZERO-MODE

COUNTING ON THE TORUS

The zero modes of the hollow-core Hamiltonian do not
only consist of the ground states at filling factor ν = 1/2,
but also of all states that have 2n quasi-hole type exci-
tations added to a ν = 1/2 liquid. We are now in a
position to identify the thin torus limits of the complete
set of zero modes. Enumerating the number of zero mode
states for fixed particle number N and fixed n has been
an integral part of the study of solvable Hamiltonians

on the sphere,24,26,42–44 where the counting is aided by
the polynomial structure of the underlying wave func-
tions. Here we will generalize some of these results to
the torus. The thin torus limiting states serve as natural
bookkeeping devices for this task, enabling the counting
of zero modes even in the absence of a simple polynomial
structure of the many-body wave functions. Note that
although we make use of the simplicity of the thin torus
states for the counting, the number of zero modes does
not depend on the aspect ratio of the torus. Remarkably,
the torus counting formulas we obtain in this way retain
the structure of their counterparts for the sphere, and do
not involve additional sums over topological sectors, as
one might naively expect.
In the thin torus limit, quasi-holes manifest them-

selves as domain walls between the various ground-state
patterns.10,12 In the ν = 1/2 state, the charge of elemen-
tary quasi holes is 1/4.18 Domain walls of this charge
can be made between A- and B-type ground state pat-
terns as shown in Fig. 4. It is clear that these domain
walls avoid any energy cost from the dominant terms of
the thin torus Hamiltonian as described in the preced-
ing section. Any A-string pattern allows for the presence
of a singlet pair of defects that is delocalized within the
string as in an A′-type ground state, Fig. 4e). When
this is the case we will continue to speak of an A′-string
within the sequence of patterns. It is easy to see that
the detailed balance condition remains satisfied at the
boundary of such an A′- string. The reasons are simi-
lar to those discussed above for configurations as shown
in the first line of Fig. 2b), where the members of the
singlet defect pair as at close distance. It follows that
states containing A′-strings, separated by hole-type do-
main walls from other permissible strings, are zero energy
eigenstates of the thin torus Hamiltonian. For the same
reasons, a single delocalized defect with given Sz may be
embedded into an A-string, Fig. 4f), like in the odd N
ground states at ν = 1/2 discussed above. We will also
refer to such strings asA′-strings, with the understanding
that A′-strings can harbor one or two delocalized defects.
To enumerate the number of zero mode states for N par-
ticles with 2n quasi-holes present, we thus need to count
the number of all string-sequences of the form

ABABA′BABA′ . . . (25)

with 2n domain walls, where strings can have variable
lengths, including 0 (for the fusion of two domain walls at
the same point, see Fig. 4b),d) ), and B-strings alternate
with A- or A′-strings. In the following, we will always
assume n > 0, unless explicitly stated otherwise.
Knowing the structure of general quasi-hole states in

the thin torus limit, we can count their number. We
define the domain-wall position wi, 0 ≤ i < 2n as the
position of the first occupied orbital in an A, A′- or B-
string,45 Fig. 4 . We first consider only a subset of pat-
terns that satisfy a “special boundary condition” where
w0 = 0 is the leading position of an A- or A′-string. Let
Φ0(N,n) be the number of such patterns for N particles
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and 2n domain walls. The LLL then consists of qN + n
orbitals, with q = 2 in the present case. We will, how-
ever, later generalize the result to ν = 1/q HR states. It
is easy to see that, if all patterns satisfying the special
boundary condition are translated in all possible qN + n
ways, each viable pattern is generated exactly n times.
It follows that the total number of states for N particles
with 2n quasi-holes is

Φ(N,n, q) =
qN + n

n
Φ0(N,n) . (26)

To find an expression for Φ0(N,n), let F be the total
number of defects present in the A′-strings of a pattern.
Let Φ0;F (N,n) be the number of patterns satisfying spe-
cial boundary conditions and having F defects. For each
such pattern, we can consider the pattern obtained by
“squeezing out” all the defects. This is then a pattern
with N − F particles, and the same number of domain
walls, all of which are between A- and B-strings, with
no A′-strings present. The number of such patterns is
Φ0;0(N−F, n). Conversely, to go from a pattern without
defects and N −F particles to one with F defects and N
particles, F defects must be distributed over n A-strings.
Each A-string can either harbor one defect of any spin
projection, or two defects forming a singlet. Distributing
the F defects over n A-strings is thus exactly the same
problem as putting F spin-1/2 fermions into n available

spatial orbitals. The number of ways to do this is

(

2n
F

)

,

such that

Φ0;F (N,n) =

(

2n
F

)

Φ0;0(N − F, n) . (27)

A similar combinatorial factor of

(

2(n− 1)
F

)

appears

in the same problem on the sphere.24 The difference is
owed to boundary conditions on the sphere, which, in
the absence of quasi-holes at the poles, enforce the pres-
ence of A-type strings at both boundaries in the “dom-
inance pattern” of the state. The latter might also be
thought of as the ground state in a “prolate spheroid
limit,” where such boundary conditions should become
manifest at a Hamiltonian level, in close analogy to the
discussion given above for the torus.46 In particular, this
boundary condition is the reason for the non-degeneracy
of the ground state at the “incompressible” filling factor
on the sphere.
It thus remains to calculate Φ0;0(N,n). This is

straightforward. The possible domain wall positions are
characterized by the conditions

0 = w0 ≤ w1 ≤ . . . ≤ w2n−1 < qN + n

w2j = w2j−1 + 1 mod 2q

w2j+1 = w2j mod 2q .

(28)

These can be simplified by introducing new integers ki
via

w2j = 2qk2j + j , w2j+1 = 2qk2j+1 + j . (29)

The only constraint on the ki is then

0 = k0 ≤ k1 ≤ k2 ≤ . . . ≤ k2n−1 ≤
N

2
. (30)

The number of possibilities to satisfy this constraint is
just the number of (weak) compositions of N/2 into 2n
parts, and is thus

Φ0;0(N,n) =

(

N/2 + 2n− 1
2n− 1

)

. (31)

Putting together Eqs. (27), (31) , summing over all rel-
evant values of F and plugging into Eq. (26) gives

ΦHR,torus(N,n, q) =

qN + n

n

∑

F, F=N mod 2

(

2n
F

) (

(N − F )/2 + 2n− 1
2n− 1

)

.

(32)

This result is also valid for HR states at general filing
factor ν = 1/q, q ≥ 2. For this we only need to observe
that the unit cells for the A- and B-patterns become

0...0 0........0 0...0

0..0  0..........0 0..0

q-1 orbitals q+1 orbitals

q orbitals q orbitals (33)

at general q, which easily follows from a generalization
of the calculation presented in the preceding sections,
where q replaces the exponent 2 in the Laughlin-Jastrow
factor. A′-strings likewise consist of delocalized charge
neutral defects inside an A-pattern, subject to analogous
rules. Only Eq. (26) depends on q, and the validity of its
generalization to general q is obvious.
One may also be interested in the number of the zero-

mode multiplets of given total spin S, for given n, N , q.
It is clear that this can be answered similarly, through a
straightforward replacement of the combinatorial factor
in Eq. (27) by that corresponding to the number of spin
S-representations in a system of F spin-1/2 fermions with
access to n states.
With the “special” boundary condition replaced by the

boundary conditions for the sphere that we identified
above, the same method yields47

ΦHR,sphere(N,n) =

∑

F, F=N mod 2

(

2(n− 1)
F

)

Φ0;0(N − F, n+ 1/2) ,
(34)

in agreement with Ref. 24. This may serve as some
confirmation that the matrix elements of the thin torus
Hamiltonian have been identified correctly. Note that
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the torus result (32) explicitly depends on q, whereas the
one for the sphere does not.
The strategy for zero mode counting presented here

can be effortlessly generalized various other paired and
related quantum Hall states.48 E.g., for the Moore-Read
(MR) sequence of states, we can again distinguish two ba-
sic kinds of strings, which may be separated by domain
walls in the thin torus limit of zero mode states.11,13,49

One type of string must always contain an even num-
ber of particles, whereas the other may be even or odd
in length. At ν = 1/2, e.g., we have 11001100 . . . ,
and 10101010 . . . ,13 with the latter type of string be-
ing able to contain an odd number of particles. This
even/oddness can again be associated with a fermionic
degree of freedom.50 A calculation highly analogous to
that carried out above for HR states yields

ΦMR,torus(N,n, q) =

qN + n

n

∑

F, F=N mod 2

(

n
F

) (

(N − F )/2 + 2n− 1
2n− 1

)

,

(35)

where F corresponds to the number of spinless fermions
associated with strings of odd length.23 The change in
the fermionic combinatorial factor compared to Eq. (32)
reflects the fact that the fermionic degrees of freedom are
now spinless. The above may again be compared to the
known result for the sphere.24

Similarly, the MR sequence is intimately related51 to
the (331)-Halperin bilayer state.17 Here we adopt the
convention24 to refer to the Halperin state with m =
m′ = q + 1, n = q − 1 as a (331)-state at general fill-
ing factor 1/q, the case q = 2 being the proper (331)-
state. In the thin torus limit,15 the (331)-patterns can
be “collapsed” onto the MR patterns by dropping the
(pseudo)-spin information. At ν = 1/2, one pattern is
XX00XX00 . . . where XX denotes an equal amplitude
superposition between ↑↓ and ↓↑. We will refer to this
pattern as “A-pattern”, as it is also the pattern associ-
ated with the ground state on the sphere. This pattern
collapses onto the 11001100 . . . MR pattern, and combi-
natorially behaves in the same manner. The other MR-
pattern is descended in the same way from what we will
call the “B-pattern” of the (331)-state

↑ 0 ↓ 0 ↑ 0 ↓ 0 . . . ↑ 0 ↓ . (36)

Here, we insist on the leading spin being ↑, and the final
one being ↓. More generally, we can of course add a
sequence ↓ 0 at the left end, and/or a sequence 0 ↑ at
the right end. These we can think of as the insertion
of an up-spin and/or down-spin fermion into a “state”
provided by each B-string. This then exactly reproduces
the counting for the HR state, and we find that52

Φ(331),torus(N,n, q) = ΦHR,torus(N,n, q) . (37)

We emphasize that this identity does not quite hold for
the sphere,24 which is chiefly due to the exchanged roles

between A- and B-patterns with regard to harboring the
spin-1/2 fermions. On the torus, however, this exchange
of roles is inconsequential. We also note that Eq. (37)
does not hold for n = 0. This is so because we can
distinguish B-strings with 0 and 2 fermions only for B-
strings that terminate in a domain wall. For n = 0,
Periodic boundary conditions on the torus prevent this
distinction.
For the (331)-state we could also ask for the number of

zero-modes with given value of the total Sz . Again, this
amounts to a trivial replacement of the fermion combi-
natorial factor in Eq. (32). The general relation Eq. (37)
between the (331) and HR counting also carries over to
sub-sectors of given total Sz. Unlike for the HR case,
however, the total spin S is a priori not-well defined for
the (331)-zero modes.
Finally, close connections between the HR state and

the Haffnian19,25 have recently been observed.37 There,
a scheme has been proposed to map the HR counting
problem onto that of the Haffnian, by dressing the lat-
ter with spin according to certain rules. In the present
context, it is more natural to proceed along the reverse
direction, which allows us to obtain an explicit Haffnian
torus counting formula. This can be done by applying
the results obtained for the HR case to the Haffnian by
“dropping” the spin degree of freedom. More precisely,
we assume that the matrix elements in the thin torus
limit of the Haffnian parent Hamiltonian25 are the same
as in the HR case, except that there is no analogue of the
penalty for two particles to be at distance 2 or less, if they
form a triplet state. With this rule dropped, it is easy to
see that now there is no limit to the number of delocal-
ized spinless defects that can be immersed into the (now
spin collapsed) A-pattern. These defects should hence be
thought of as spinless bosons. Making the proper adjust-
ments to Eq. (34) reproduces the Haffnian counting on
the sphere,25 and making similar adjustments to Eq. (32)
yields

ΦHaff,torus(N,n, q) =

qN + n

n

∑

B
B=N mod 2

(

B + n− 1
n− 1

) (

(N −B)/2 + 2n− 1
2n− 1

)

.

(38)

This agrees with the data published in Ref. 37. Again,
this is valid for n > 0. For n = 0, the non-trivial Haffnian
torus degeneracy can be treated separately,53 and has
been discussed from the point of view of dominance pat-
terns recently.37

V. DISCUSSION

In this work, we have analyzed the thin torus limit of
the Haldane-Rezayi state, by first analyzing the behav-
ior of the ground state wave functions, and inferring the
dominant matrix elements of the thin torus hollow-core
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Hamiltonian. The latter were constructed to be consis-
tent with the uniqueness of the ten zero energy ground
states at filling factor 1/2, and with the necessary locality
of the thin torus Hamiltonian. From there we were able
to deduce the existence of both singlet and triplet gap-
less excitations in the thin torus limit. Assuming adia-
batic continuity of the low energy sector between the thin
torus and the 2D limit, the existence of gapless excita-
tions in the HR state follows, in agreement with general
arguments.5,6,9 So far the notion of adiabatic continuity
has been mainly studied in cases where an energy gap is
believed to exist in the 2D regime, in agreement with the
thin torus limit.10–13 The findings made here do, however,
have much in common with our earlier analysis of a criti-
cal point between the (331)-state and the MR state, using
the thin torus approach.15 There we found gapless exci-
tations in the thin torus limit at a critical point, within
one topological sector of the thin torus theory, but not in
others. We note that even in the fully gapped case, the
excitation spectrum within different topological sectors
is generally not identical in the thin torus limit. This is
so because these sectors become locally distinguishable
in this limit, and need not be related by any symme-
try. Indeed, the ground state degeneracy itself could be
lifted by a local perturbation away from the special solv-
able point. These spectral differences all disappear when
we leave the thin torus limit and cross over into the 2D
regime. For these reasons we argued in Ref. 15 that gap-
less states may generically reveal their gapless excitations
in the Ly → 0 limit of some topological sectors, but not
of others. The present analysis strengthens this case, in
particular because the same observations could be made
for a solvable Hamiltonian, whereas in Ref. 15 we had to
move away from the solvable point.

A small point worth mentioning is the fact that even
though the B-type states do not seem to couple locally to
gapless excitations when the Ly → 0 limit is taken, they
do so in the “dual” limit Lx → 0 of the torus. In par-
ticular, a certain linear combination of B-ground states
(i.e., states approaching B-patterns in the Ly → 0 limit)
will approach A-type patterns in this dual limit (cf. Ref.
54). It is thus true that each of the states in Eq. (1)
locally couples to gapless excitation in at least one of the
two mutually dual limits. This somewhat removes the in-
equivalence between sectors that exists when the Ly → 0
limit is considered by itself.

Despite these subtleties, we argue that the presence of
gapless excitations in the thin torus limit can actually be
a stronger indication for the nature of the 2D limit than
the absence of such excitations. To make this case, we
consider a cylinder with Lx = ∞ and finite Ly. If there
are gapless excitations in the Ly → 0 limit, a sufficient
assumption is that for any finite Ly, the properties of
the system are analytic in Ly. This seems reasonable for
the “special” solvable Hamiltonians. However, if there
are gapless excitations at any value of Ly, they exist by
definition in the limit Ly → ∞, so long as this limit is
well-defined. The converse, however, is not true. Having

an energy gap for any finite value of Ly does not neces-
sarily prevent this gap from closing as the limit Ly → ∞
is taken.55 The assumption of analyticity in Ly, while
still subject to detailed justification, is thus more pow-
erful when gapless excitations are identified in the thin
torus/cylinder limit.

We close this section with some comments on possi-
ble generalizations to other states, such as the gaffnian.8

In general, we expect that the existence of gapless ex-
citations cannot be inferred from the knowledge of the
thin torus patterns alone. Instead it requires the de-
tailed study of a given parent Hamiltonian. It is likely a
special feature of the HR state that the complete set of
thin torus patterns already contains enough information
about the parent Hamiltonian such that the existence of
gapless excitations can be concluded (in the thin torus
limit). While in general, a more direct analysis of the
parent Hamiltonian is necessary, we are encouraged to
believe that such an analysis is not only technically pos-
sible in the thin torus limit, but will yield results that
are qualitatively correct also away from this limit.

In this context, it may be of interest that various fam-
ilies of states have been discussed in the literature56,57

that were proposed to have the same patterns of zeros
(as defined in Ref. 29). In particular, the family of
S3 states57 includes both unitary and non-unitary wave
functions, and parent Hamiltonians for both kinds have
been proposed. Two states in this infinite family can,
in general, be distinguished by their torus degeneracy,
which presumably can become arbitrary large. At the
same time, at the incompressible filling factor ν = 3/4
there exist only 20 thin torus patterns that satisfy the
generalized Pauli principle (GPP) associated with the
patterns of zeros (no more than 3 particles in any 4 ada-
cent orbitals). For an S3 state whose torus degeneracy
D ≤ 20, we expect the thin torus limits of the ground
states to be some subset of these 20 patterns. On the
other hand, for D > 20 it is necessarily possible to form
linear combinations of ground states that become orthog-
onal to these 20 patterns in the thin torus limit. The thin
torus limits of such states will be more complicated, and
will violate the GPP. This may happen, e.g., in much the
same manner in which our A′ states violate the GPP en-
forced by the diagonal matrix elements in the thin torus
limit. For these reasons, we find it not unlikely that thin
torus limits, taken for a complete orthogonal set of torus
ground states, may still distinguish different members of
the S3 family of states. In particular, we see no obvious
reasons why the adiabatic continuity conjecture must fail
in those cases where a suitable parent Hamiltonian does
exist. Though complicated thin torus limits may appear,
the case of the HR state presented here suggests that
such limits still contain valuable information. We believe
that a detailed investigation of the utility of the present
approach to the S3 states would be interesting, and leave
this possibility for future study.
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VI. CONCLUSION

We have constructed the thin torus picture of the
Haldane-Rezayi state, and found the existence of gap-
less excitations in this limit. This provides some further
evidence in favor of the conjectured gapless nature of this
state. We have also used our results to derive, for the first
time, zero mode counting formulas for the special Hamil-
tonian of the HR state –and several others– on the torus.
The observations made here in the thin torus limit may
serve to guide a more rigorous proof of the gapless na-
ture of the HR state. For this one would need to identify
wave function expressions that analytically continue the
gapless excitations found here, say, to a torus of arbitrary
size and aspect ratio. We leave this exciting possibility
for future work.
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Appendix A: The structure of the p-matrix

In this and the following appendices, we present the
remaining details in the calculation of the thin cylinder
limits of the HR ground states. We first proof that the
matrix pαβ that leads to the maximum of Eq. (4) is al-
ways of the form (8). To this end, we plug Eq. (5) into
Eq. (4), obtaining

S = const +
∑

α,β,γ

(pαβpαγ + pαβmαγ + pαγmαβ) . (A1)

For fixed indices α, β, we extract the dependence of S on
the matrix element pαβ = −pβα via

S = 2(p2αβ + pαβrαβ) + const , (A2)

where the constant and rαβ depend on other matrix ele-
ments of the p-matrix, but not on pαβ , and

rαβ =
∑

γ,γ 6=β

(pαγ +mαγ)−
∑

γ,γ 6=α

(pβγ +mβγ) . (A3)

It is clear from the quadratic structure of Eq. (A2) that
for any p-matrix that maximizes S, |pαβ | must take on
the maximum possible value mαβ. For otherwise, the
value of S could certainly be increased. More precisely,
it follows that

pαβ = mαβ sign(rαβ) , (A4)

unless it happens that rαβ = 0, in which case either sign
of pαβ is possible. In either case, r̃αβ = rαβ + 2pαβ is
certainly non-zero so long as |pαβ | = mαβ is non-zero,
and we always have

pαβ = mαβ sign(r̃αβ) . (A5)

From Eq. (A3), we also have

r̃αβ = rα − rβ , (A6)

where

rα =
∑

γ

(pαγ +mαγ) . (A7)

There is a permutation ρ of N objects such that rα ≤ rβ
for ρα < ρβ , where equality of rα and rβ can, by construc-
tion, only hold for mαβ = 0. For such a permutation, we
then have

pαβ = mαβ sign(ρα − ρβ) , (A8)

which is Eq. (8). We have thus shown that this equation
must hold for any p-matrix that leads to a maximum of S,
for some permutation ρ. As explained in the main text,
ρ can be thought of as giving rise to an arrangement of
particles on a “squeezed lattice”.

Appendix B: The squeezed lattice: Effective

Coulomb interaction

The proper choice of ρ depends on the symmetric ma-
trix mαβ , which depends both on the state and on the
“pairing permutation” σ under consideration, as defined
in the main text, Eqs. (6), (12). Here we show that
the proper choice of ρ, i.e. the arrangement of the par-
ticles on the squeezed lattice, is obtained by minimizing
an energy due to an effective attractive “Coulomb inter-
action” between members of a pair. To see this, we first
observe that in the second term of Eq. (A2), the sum over
γ gives rise to the α-independent constant

∑

γ mαβ, such
that the term vanishes after summing over α and β by
symmetry. For the same reasons, the third term vanishes
as well. In we did not use this fact in Appendix A, since
its present form, the argument given there can be used
in more general situations where

∑

γ mαβ depends on α.
This is the case, e.g., in Ref. 15. For the first term of
Eq. (A2), we plug in a general relation of the form (22) :

S =
∑

αβγ

sαβsαγ sign(ρα−ρβ)sign(ρα−ργ)+const . (B1)

According to Eq. (A8), for the A- and B-states, the s-
matrix is just the m-matrix defined in Eqs. (6) and (12).
Here we will consider a slightly more general problem,
of which these equations are special cases. Consider a
pairing of N indices, where we denote the partner of the
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index α by α, such that α = α. Consider then a sym-
metric matrix sαβ defined as

sαβ = 0 for α = β

sαβ ≡ sα = sα for β = α

sαβ = s otherwise.

(B2)

Plugging this into Eq. (B2) yields, after some amount of
straightforward calculation:

−S = 2
∑

α

s(s− sα)|ρα − ρα|+ const. (B3)

In the A- and B-state, sα is a constant, and the coefficient
s(s − sα) is positive (cf. Eqs. (6), (12)). Note also that
ρα and ρα are the positions of a pair on the squeezed lat-
tice. We can thus interpret Eq. (B3) as the total energy
of particles on the squeezed lattice where pairs interact
via an attractive linear 1D Coulomb potential. Clearly,
minimization of this energy requires one to place mem-
bers of a pair onto adjacent sites of the squeezed lattice,
as shown in Eq. (9). For the A- and B-states, this then
has the implications stated in the main text.
The above observations are now easily extended to the

A′-states. The structure of the s-matrix was worked out
in the main text, Eq. (23). Recall that a single pair has
been excluded from the pairing P . Eq. (23) is then an-
other special case of Eq. (B2), with sα = 0 for all except
one pair of indices, for which sα = sα = 1 = s. The
implications of this are plainly apparent in Eq. (B3). All
pairs attract in the same manner as before, except for
the special “broken” pair, whose Coulomb attraction has
now been switched off. The position of the members of
the broken pair on the squeezed lattice are then arbi-
trary; they all lead to the same maximum value of S.
All the other pairs must still be nearest neighbors on the
squeezed lattice. The resulting “un-squeezed” thin cylin-
der state is the equal amplitude superposition described
in the bulk of the paper.
The present method to work out the thin torus pat-

terns of the Haldane-Rezayi state can be used for other
paired states as well. In particular, it applies almost
without change to Moore-Read states. This, in addition
to the similar structures of the counting rules found here
and in Ref. 24, is another manifestation of various formal
connections between these states.

Appendix C: Coefficient of the dominant terms in

the A′-state polynomial

Here we calculate the coefficient of the dominant mono-
mials in the A′-state thin cylinder limit, as identified in
the preceding appendix. These monomials correspond
to a p-matrix of the form defined in Eqs. (22), (23).
In particular, this will prove that these coefficients are
non-zero. Recall that P in Eq. (23) is a pairing of the
particle indices into N − 1 pairs, with one pair left out.
The permutation ρ must give rise to a squeezed lattice

configuration with all pairs in P nearest neighbors. This
is necessary to maximize S, and hence the κ-dependent
part of the amplitude (3), as shown in Appendix B. All
monomials corresponding to a p-matrix satisfying these
rules can be obtained only from this particular p-matrix.
This is so because other p-matrices satisfying these rules
will either permute particle indices with like spins (which
for fermions, must always lead to a different monomial).
Or, in general, other such p-matrices lead to different
states with the “defect” particles occurring in the A′-
pattern in different positions. On the other hand, p-
matrices not satisfying the rules above will either lead
to monomials with vanishing coefficients, or to ones with
lower S. For these reasons, we only need to focus on a
particular p-matrix satisfying the rules summarized here,
and calculate the coefficient of the monomial obtained by

choosing the term ξ
mαβ+pαβ
α ξ

mαβ−pαβ

β in factors depend-

ing on ξα and ξβ in Eq. (16). It is easy to see that all
such p-matrices lead to a coefficient of the same value,
up to a sign. We thus choose the pairing of up-spin and
down-spin indices given by

P = {(2 ↓, 2 ↑), (3 ↓, 3 ↑) . . . (N ′ ↓, N ′ ↑)} , (C1)

where we write N ′ = N/2 for convenience, and the pair
(1 ↑, 1 ↓) is left out. This defines an s-matrix according
to Eq. (23). We also choose a squeezed lattice configura-
tion, ρ, consistent with this pairing (App. B), and define
pαβ from Eq. (22).
Now we first fix the permutations σ, λ in Eq. (16), and

generate a monomial using the p-matrix from the result-
ing polynomial of the form (17), where the signs depend
on σ and λ. The coefficient of the resulting monomial is
of the form

(−2)N
′−1χ(σ, λ) , (C2)

where the first term indicates that N ′ − 1 of the mixed
terms ξαξβ are chosen, one for each pair in P , except
that not all of them have a coefficient −2. Instead, some
contribute +2, and this change of sign is accounted for
in the factor

χ(σ, λ) = (−1)σ+λ(−1)g(σ,λ) , (C3)

where

g(σ, λ)

N ′

∑

r=2

δσr ,λr (1− δσr ,1) . (C4)

is just the number of pairs (σr ↓, λr ↑) with r > 1 that
are contained in P . The full coefficient of the resulting
monomial then satisfies:

C{nα} = (−2)N
′−1

∑

σ,λ∈SN′

χ(σ, λ) . (C5)

To evaluate this, we represent χ(σ, λ) through a binomial
sum:

χ(σ, λ) =

N ′−1
∑

n=0

(−2)n χn(σ, λ) , (C6)
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where

χn(σ, λ) = (−1)σ+λ

(

g(σ, λ)
n

)

. (C7)

This is obtained from Eq. (C3) by simply applying the
binomial theorem to (−1)g = (1−2)g, and observing that
g(σ, λ) ≤ N ′−1. The point of doing this is that one may
see that

∑

σ,λ∈SN′

χn(σ, λ) = 0 for n < N ′ − 1 . (C8)

To see this, we cast Eq. (C7) in the form

χn(σ, λ) = (−1)σ+λ
∑

ω∈2Γ

|ω|=n

∏

r∈ω

δσr ,λr , (C9)

where Γ = {2, 3, . . . , N ′}, 2Γ is the set of all subsets of Γ,
and the sum is over all subsets ω with n elements. Clearly

for given σ, λ there are

(

g(σ, λ)
n

)

distinct choices for

ω that contribute to the sum. However, for ω fixed and
n < N ′ − 1 we may consider defining a new permutation
σ̃ obtained from σ by exchanging the values of σr1 , σr2

for the smallest two indices r1, r2 that are not contained
in ω. It is clear that when summing Eq. (C7) over σ,
terms with given ω and σ, σ̃ so related will cancel. Thus
Eq. (C8) follows. Eqs. (C3) and (C8) in Eq. (C5) yield

C{nα} = (−2)2N
′−2

∑

σ,λ∈SN′

χN ′−1(σ, λ) . (C10)

By definition of χN ′−1(σ, λ), however, the pairs σ, λ con-
tributing to this last sum are exactly those with σ = λ
and σ1 = λ1 = 1. There are (N ′ − 1)! such pairs. This
gives

C{nα} = 2N−2(N/2− 1)! (C11)

as stated in the main text, which is non-zero.
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