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It was recently shown that a spatially modulated Rashba spin-orbit coupling in a quantum wire
drives a transition from a metallic to an insulating state when the wave number of the modulation
becomes commensurate with the Fermi wave length of the electrons in the wire [G. I. Japaridze
et al., Phys. Rev. B 80 041308(R) (2009)]. On basis of experimental data from a gated InAs
heterostructure it was suggested that the effect may be put to practical use in a future spin transistor
design. In the present article we revisit the problem and present a detailed analysis of the underlying
physics. First, we explore how the build-up of charge density wave correlations in the quantum wire
due to the periodic gate configuration that produces the Rashba modulation influences the transition
to the insulating state. The interplay between the modulations of the charge density and that of
the spin-orbit coupling turns out to be quite subtle: Depending on the relative phase between the
two modulations, the joint action of the Rashba interaction and charge density wave correlations
may either enhance or reduce the Rashba current blockade effect. Secondly, we inquire about the
role of the Dresselhaus spin-orbit coupling that is generically present in a quantum wire embedded
in semiconductor heterostructure. While the Dresselhaus coupling is found to work against the
current blockade of the insulating state, the effect is small in most materials. Using an effective
field theory approach, we also carry out an analysis of effects from electron-electron interactions,
and show how the single-particle gap in the insulating state can be extracted from the more easily
accessible collective charge and spin excitation thresholds. The smallness of the single-particle gap
together with the anti-phase relation between the Rashba and chemical potential modulations pose
serious difficulties for realizing a Rashba-controlled current switch in an InAs-based device. Some
alternative designs are discussed.

PACS numbers: 71.30.+h, 71.70.Ej, 85.35.Be

I. INTRODUCTION

The ability to control and manipulate electron spins in semiconductors via an external electric field forms the
basis of the emerging spintronics technology1. In what has become a paradigm for the next-generation spintronics
device - the Datta-Das spin field effect transistor2 - spin-polarized electrons are injected from a ferromagnetic emitter
into a quantum wire patterned in a semiconductor heterostructure. The Rashba spin-orbit interaction3 intrinsic to
a quantum well patterned in a semiconductor heterostructure causes spin flips of the injected electrons with a rate
tunable by an electrical gate, and by contacting a ferromagnetic collector to the other end of the wire, electrons are
either accepted or rejected depending on their spin directions. However, present techniques for injecting spin-polarized
electrons from a ferromagnetic metal into a semiconductor are quite inefficient. This, among other difficulties, has
obstructed the actual fabrication of a Datta-Das transistor. The best efficiency rates to date, using a Schottky contact
for spin injection, are still far below what is required for a working device4. While other designs for spin transistors
have been proposed, these suffer from similar technical difficulties as the original Datta-Das proposal. Alternative
blueprints for spin transistors that do not rely on spin-polarized electron injection are thus very much wanted.
In a recent work it was shown that a smoothly modulated Rashba spin-orbit coupling in a quantum wire drives a

transition from a metallic to an insulating state when the wave number of the modulation becomes commensurate
with the Fermi wavelength of the electrons in the wire5. It was suggested that this effect may be put to practical
use in a device where a configuration of equally spaced nanosized gates are placed on top of a biased quantum wire.
When charged, the gate configuration produces a periodic modulation of the Rashba interaction, thus blocking the
current when the electron density is tuned to commensurability by an additional backgate. By decharging the gate,
the current is free to flow again. This would realize an “on-off” current switch, controllable by the backgate. The
advantage of this proposal is precisely that it dispenses with the need to inject spin-polarized electrons into the
current-carrying channel of the device.



2

The proposal in Ref. 5 was inspired by earlier work by Wang6 and Gong and Yang7, showing that a current in a
quantum wire where segments with a uniform Rashba coupling alternates with segments with no coupling gets blocked
when the number of segments becomes sufficiently large8. However, the Peierls-type mechanism of the spin-based
current switch identified in Ref. 5 is very different from that in Refs. 6,7, where the current blockade is simply
caused by electron scattering at the artificially sharp boundaries between the wire segments (similar to the scattering
off the boundary between the wire and the ferromagnetic collector in the Datta-Das transistor). Importantly, by
instead modeling the Rashba interaction as smoothly modulated − thus faithfully taking into account the fact that
the top gates that produce the effective Rashba field are of finite extent − yields the extra bonus of allowing for a
well-controlled analysis of effects from electron-electron interactions5. It was found that in the experimentally relevant
parameter range, the electron-electron interactions enhance the current blockade effect, thus assisting the use of a
gate-controlled modulated Rashba interaction as a current switch.
In the present article we revisit the problem to obtain a more detailed picture of the underlying physics. First, we

shall explore how the build-up of charge density wave (CDW) correlations in the quantum wire due to the presence of
the periodic gate configuration influences the current blockade caused by the modulated Rashba interaction. While
one would maybe expect the concurrent modulation of the charge density to always assist the current blockade, the
interplay between the two effects turns out to be more subtle: When the two modulations are in phase they do work
in tandem, but when anti-phased a crossover regime is observed where the two modulations compete with each other
and, as a result, the Rashba current blockade effect is reduced by the joint action of the Rashba interaction and CDW
correlations. While at first surprising, we shall be able to provide a simple explanation of this crossover effect. Secondly,
we shall inquire about the role of the Dresselhaus spin-orbit interaction present in any semiconductor heterostructure
that supports a quantum wire (as most heterostructures used in experiments are made out of compounds with broken
lattice inversion symmetry, thus implying the presence of a Dresselhaus interaction)9. The Dresselhaus interaction is
found to oppose the current-blockade effect, but as long as the Rashba interaction dominates that of Dresselhaus, the
effect is small and does not detract from the viability of using a modulated Rashba interactions as the modus operandi
for a novel type of spin transistor.
The rest of the paper is organized as follows: In Sec. II we lay the groundwork and construct the minimal model

that captures the effect of a modulated Rashba spin-orbit interaction in a quantum wire. In Sec III we show that
a stripped-down version of the model − describing noninteracting electrons − can be mapped onto two independent
sine-Gordon models using bosonization. We perform a renormalization-group (RG) analysis of the relevant low-energy
limit of the theory, and extract the condition for an opening of a mass gap in the spin- and charge sectors. In Sec.
IV we extend the analysis to the realistic case of interacting electrons. This analysis is patterned upon that in the
previous section, albeit with some added technical subtleties. By carrying it out with Sec. III as a template, we
believe that our results will gain in transparency and ease of interpretation. Again we extract the condition under
which an insulating gap opens, allowing us to assess the effectiveness of using a gate-controlled modulated Rashba
interaction as a current switch. In Sec. V we then carry out a case study, using our results to predict the size of
the gap for a quantum wire patterned in a gated InAs-based heterostructure for which good experimental data are
available. While we find that for this particular structure the gap will be too small to be usable for a current switch,
our analysis points the way to more effective designs. Finally, in Sec. VI we summarize our results. Throughout the
paper we try to provide enough detail to make it essentially self-contained to a reader with some acquaintance with
bosonization and perturbative RG methods.

II. THE MODEL

In the following we consider a set-up with a 1D quantum wire formed in a gated 2D quantum well supported
by a semiconductor heterostructure. We assume that the electrons in the wire are ballistic, restricting us to wire
lengths on the micronscale for most materials. Moreover, by modeling the wire as an ideal 1D wire that carries only
one conduction channel, we will neglect effects from the transverse confining potential. This simplification greatly
facilitates our analysis, but, as we shall argue, has little or no effects on our results. In the standard tight-binding
formalism11, the kinetic energy and the chemical potential as well as the interaction energy between the electrons in
the wire are described by the lattice Hamiltonians H0 and He-e respectively, with

H0 = −t
∑

n,ζ

(

c†n,ζcn+1,ζ+H.c.
)

−µ
∑

n,ζ

c†n,ζcn,ζ , (1)

He-e =
1

2

∑

n,n′,ζ,ζ′

V (n− n′)c†n,ζc
†
n′,ζ′cn′,ζ′cn,ζ . (2)
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Here c†n,ζ (cn,ζ) is the creation (annihilation) operator for an electron with spin ζ =↑, ↓ on site n, t is the electron
hopping amplitude, and µ a uniform chemical potential controllable by an electrical backgate. The Coulomb interac-
tion V (n− n′) between electrons at sites n and n′ is screened by the metallic gates in the device, with the screening
length set by the distance to the nearest gate12.
The electrons in a 2D quantum well are subject to two types of spin-orbit interactions, the Dresselhaus9 and Rashba3

interactions, both originating from the inversion asymmetry of the potential V (r) = Vcr(r) + Vext(r), where Vcr(r) is
the periodic crystal potential, and Vext(r) is the aperiodic part containing effects from other sources (quantum well
confinement, impurities, electrical gates, etc.). The potential gradient ∇V (r) produces a Pauli spin-orbit interaction
that can be written as

HSO = λcr (k ×∇Vext(r)) · σ − b(k) · σ, (3)

where, in the first term, the contribution from Vcr has been absorbed in the effective constant λcr, while in the second
term, b(k) is an intrinsic spin-orbit field produced by Vcr only. Here k is the wave number of an electron, with σ the
vector of Pauli matrices representing its spin. In semiconductors where the crystal potential lacks inversion symmetry,
i.e. Vcr(−r) 6= Vcr(r) (including zinc-blende lattice structures, to which the often used GaAs and InAs quantum wells
belong), the internal spin-orbit field b(k) in Eq. (3) fails to average to zero in a unit cell, resulting in a spin splitting
encoded by the effective Dresselhaus interaction9. For a heterostructure grown along [001], with the electrons confined
to the quantum well in the xy-plane, the leading term in the Dresselhaus interaction takes the simple form

Hβ = β(kxσx − kyσy), (4)

with β a material- and structure-dependent parameter10.
The spin degeneracy in a quantum well can be lifted also because of the structure inversion asymmetry of the

confining potential contained in Vext(r). More precisely, the spatial asymmetry of the edge of the conduction band
along the growth direction of the quantum well (i.e. in the z-direction perpendicular to the symmetry plane of the
well) mimics an electric field in that same direction, and one obtains from Eq. (3) the Rashba interaction3

Hα = α(kxσy − kyσx). (5)

The Rashba coupling α has a complex dependence on several distinct features of the quantum well, including the
ion distribution in the nearby doping layers13, the relative asymmetry of the electron density at the two quantum
well interfaces14, and importantly, the applied gate electric field15. The latter feature allows for a gate control of
the Rashba coupling α, with a variation of more than a factor of two from its base value reported for InAs quantum
wells16. One must realize that α in Eq. (5) is a spatial average of a microscopic randomly fluctuating Rashba coupling.
In a zinc-blende lattice structure the fluctuations can be quite large, with a root-mean square deviation roughly of
the same size as the average α13. As discussed in Ref. 17, for quantum wells with an anomalously large Rashba
coupling − as in the HgTe quantum wells which support quantum spin Hall states − this large disordering effect
may cause an Anderson transition to an insulating state when the electron-electron interaction is weakly screened. In
other zinc-blende lattice structures, like GaAs or InAs favored in most spintronics applications, the disordering effect
is weaker, with a Rashba-induced localization length that is expected to be much longer than the mean-free path due
to impurity scattering. Having already assumed that the wire has a length that is smaller than the mean free path,
we can therefore ignore the random fluctuations in the Rashba coupling in what follows.
Projecting the Dresselhaus and Rashba interactions in Eqs. (4) and (5) along the direction x̂ of the quantum wire

and using the same tight-binding lattice formalism as in Eqs. (1) and (2), one obtains

HDR = −i
∑

n,ζ,ζ′

c†n,ζ

[

γD σx
ζζ′+γR σy

ζζ′

]

cn+1,ζ′ +H.c., (6)

where γD=βa−1, γR=αa−1, with a the lattice spacing. The relative sign and magnitude of γD and γR depends on
the material as well as on the particular design of the heterostructure, with |γD| ≈ |γR| ≈ 5× 10−2 meV in a typical
GaAs-based quantum well, while in a HgTe quantum well the Rashba coupling is orders of magnitude larger than that
of Dresselhaus, with |γR| ' 102 × |γD| ≈ 10 meV18. Let us mention in passing that the effect of a uniform spin-orbit
interaction on the electron dynamics in a quantum wire has been theoretically investigated for both noninteracting19

and interacting electrons20–22, and is by now well understood.
We shall assume that the wire is patterned in a heterostructure on top of which are placed a periodic sequence

of equally sized nanoscale gates, positively charged and pairwise separated by the same distance as their extensions
along the direction of the wire. The gates may be realized by a series of ultrasmall capacitively coupled metallic
electrodes deposited on the top of the heterostructure, as illustrated in Fig. 1. By charging the gates, one produces a
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periodic modulation of the Rashba coupling, together with a concurrent modulation of the local chemical potential in
the wire, with amplitudes depending on the associated voltage drop across the well (proportional to the gate voltage
VG). The modulation will be smoothly varying along the wire, reflecting the finite extent of the gates in addition to
effects from distortions and stray electric fields. To a good approximation, the modulation can be represented by a
simple harmonic and thus we may write

Hmod= i
∑

n,ζ,ζ′

(

γRmod cos(qna)c
†
n,ζσ

y
ζζ′cn+1,ζ′−H.c.

)

−
∑

n,ζ

µmod cos(qna)c
†
n,ζcn,ζ . (7)

Here |γRmod | (µmod) is the amplitude of the Rashba field (local chemical potential) modulation, both of wave
number q. Note that the Rashba coupling and the chemical potential modulations are “in phase” when γRmod > 0
(and hence has the same sign as µmod, which is always positive), while for γRmod < 0 the two modulations are
“out of phase” by π. The two possible phase relations between the Rashba and the chemical potential modulations
are illustrated in Fig. 1. Assuming that the gate electrodes which produce the chemical potential modulation are
positively charged, the segment of the wire below a gate has an enhanced magnitude of the local chemical potential
(see Fig. 1), but with a negative sign. Note that the negative sign has been taken out of the sum in Eq. (7) (as well
as in Eq. (1) which contains the uniform chemical potential)23.

FIG. 1: (Color online) Schematic figure of the device studied in the paper. The modulated chemical potential and Rashba
interaction are shown for both “in phase” and “out of phase” modulations. The amplitudes of the chemical potential and
Rashba modulations are proportional to the gate voltage VG.

The second-quantized expression for the lattice Hamiltonian Hmod in Eq. (7) provides a microscopic definition of
the Rashba and chemical potential modulations and is manifestly Hermitian by virtue of the subtraction of the H.c.-
term. This procedure replaces the symmetrization α(x)(−i∂/∂x) → {α(x),−i∂/∂x}/2 for a spatially varying Rashba
interaction α(x)(−i∂/∂x)σy often employed in the literature as a means to ensure Hermiticity in a first-quantized
continuum formalism24.
It is important to stress that the relation between a spatially modulated gate bias and a Rashba interaction may

be more complex than transpires from our simple model. Already when tuning a gate voltage that is uniform along
a quantum wire patterned in a heterostructure, the Rashba interaction has been shown to sometimes respond in a
surprising way, even reversing its sign without a reversal of the gate bias25,26. In fact, the details of how the various
effects mentioned above (including the external gate voltage), influence the magnitude and the sign of the Rashba
parameter in a gated heterostructure have proven notoriously difficult to sort out, and remains a somewhat contagious
issue27. We shall not attempt to add to this discussion, but instead focus on the physics implied by the idealized
situation described by Hmod in Eq. (7).
Having defined our model by the Hamiltonian

H = H0 +He-e +HDR +Hmod, (8)

with H0, He-e, HDR and Hmod given by Eqs. (1), (2), (6), and (7), respectively, it is now convenient to pass to a
basis which diagonalizes the uniform spin-orbit interaction HDR. For this purpose we first perform a rotation of the
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coordinate system by an angle 2θ = arctan(γD/γR) around the ẑ-axis to select the direction of the combined uniform
Rashba and Dresselhaus field, ∼ γD x̂+ γR ŷ, as our new ŷ′-axis:

e−iθσz [γDσx + γRσy ]e
iθσz = γeff σy′ , (9)

where γeff =
√

γ2
R + γ2

D. We then introduce a spinor basis which diagonalizes σy′ ,

(

dn,+
dn,−

)

≡ 1√
2

(

e−iθcn,↑ − ieiθcn,↓
−ie−iθcn,↑ + eiθcn,↓

)

, (10)

where the spinor components τ =± of the operator dn,τ label the new quantized spin projections along ŷ′, with y′

defining the orientation of the axis around which the expectation value of the spin will now be precessing. With this,
we write the transformed Hamiltonian as

H ′ = H ′
0 +H ′

e-e +H ′
DR +H ′

mod, (11)

with

H ′
0 = −t

∑

n,τ

(

d†n,τdn+1,τ+H.c.
)

−µ
∑

n,τ

d†n,τdn,τ (12)

H ′
e-e =

1

2

∑

n,n′,τ,τ ′

V (n− n′)d†n,τd
†
n′,τ ′dn′,τ ′dn,τ (13)

H ′
DR = −i γeff

∑

n,τ

τ d†n,τdn+1,τ +H.c., (14)

H ′
mod = − i

∑

n,τ

γR(n)τ cos(2θ)d
†
n,τdn+1,τ

+ i
∑

n,τ

γR(n) sin(2θ)d
†
n,τdn+1,−τ

− 1

2

∑

n,τ

µ(n)d†n,τdn,τ +H.c., (15)

with γR(n)≡γRmod cos(qna) and µ(n)≡µmod cos(qna).
Let us add a comment that our procedure leading up to Eqs. (11) - (15) is not to be confounded with the gauge

transformation approach to two-dimensional spin-orbit interactions recently suggested by Tokatly and Sherman28 (see
also Ref. [29]). Whereas our transformation is simply a global spinor rotation, the gauge transformation in Ref. [28]
is by construction a local rotation, yielding a manifest spin-charge duality. It would be interesting to explore whether
the approach by Tokatly and Sherman28 can be adapted to the case also of a modulated spin-orbit interaction, but
for now we leave this for the future.
While the theory defined by Eqs. (11) - (15) may look forbiddingly complex, we shall find that a bosonization

approach yields a well-controlled analytical solution in the physically relevant limit of low energies. In the next
section we study the case with no electron-electron interaction, i.e. with V (n − n′) = 0 for all n, n′ in Eq. (13).
This simplification allows us to focus on the key elements of our solution approach, paving the ground for the more
elaborate analysis of the full theory in Sec. IV.

III. NON-INTERACTING ELECTRONS

A. Effective Hamiltonian

Neglecting the electron-electron interactionHe-e, and taking γR(n) = µ(n) = 0 (assuming that there is no modulated
electric field present), the remaining piece of the Hamiltonian in Eq. (11), H ′

0 + H ′
DR, is easily diagonalized by a

Fourier transform,

H ′
0 +H ′

DR =
∑

k,τ=±
E(0)

τ (k)d†k,τdk,τ . (16)



6

Here

E(0)
τ (k) = −2t̃ cos[(k + τq0)a]− µ, (17)

with t̃ =
√

t2 + γ2
eff and q0a = arctan(γeff/t), and where a is the lattice constant. At band-filling ν = Ne/2N0,

with Ne [N0] the number of electrons [lattice sites], the system is characterized by the four Fermi points kτF,R =

kF +τq0, k
τ
F,L = −kF + τq0 (τ = ±), where kF = πν/a, reflecting the band splitting caused by the uniform spin-orbit

interaction H ′
DR in Eq. (14).

To analyze the effect of adding the modulated term H ′
mod in Eq. (15) to H ′

0+H ′
DR, it is convenient to linearize the

spectrum around these Fermi points and then pass to a continuum limit with na → x. By decomposing the lattice
operators dn,τ into right- and left-moving fields Rτ (x) and Lτ (x),

dn,τ →
√
a
(

eik
τ
F,RxRτ (x) + eik

τ
F,LxLτ (x)

)

,

we find that in this limit H ′
0 +H ′

DR+H ′
mod=

∑

τ

∫

dx (Hτ +H.c.), with

Hτ = −i(vF /2)
(

:R†
τ (x)∂xRτ (x) : − :L†

τ (x)∂xLτ (x) :
)

− (λRe
−iπν + µmod) cos(qx)e

−2ikF xR†
τ (x)Lτ (x)

+ iλD sin(πν) cos(qx)e−iq0τ(2x+a)
(

R†
τ (x)R−τ (x) − L†

τ (x)L−τ (x)
)

. (18)

Here vF = 2at̃ sin(πν), λR = 2γ̃R sin(q0a), and λD = γ̃D, with γ̃j = γRmodγj(γ
2
R + γ2

D)−1/2, j = R,D. The normal
ordering : ... : is carried out with respect to the filled Dirac sea. Note that in deriving Eq. (18) we have omitted all
rapidly oscillating terms that vanish upon integration.
The Hamiltonian in Eq. (18) supports four distinct limiting cases, depending on the difference between the

modulation wave number q and the parameters kF , q0:

(i) |q ± 2kF | ≃ O(1/a), |q ± 2q0| ≃ O(1/a);

(ii) |q ± 2kF | ≃ O(1/a), |q − 2q0| ≪ O(1/a);

(iii) |q − 2kF | ≪ O(1/a), |q ± 2q0| ≃ O(1/a);

(iv) |q − 2kF | ≪ O(1/a), |q − 2q0| ≪ O(1/a).

In the first case (i), all terms in Eq. (18) proportional to λR or µmod or λD are rapidly oscillating and thus average
to zero when integrated. It follows that in this limit the model describes a two-component free Fermi gas, i.e. a
metallic phase with gapless excitations. In contrast, in case (ii), when |q − 2q0| ≪ O(1/a), the corresponding terms
proportional to λD become slowly varying and contribute to the dynamics. These terms emulate the presence of a
transverse effective field, causing electrons to flip their spins along the direction of the combined uniform Rashba and
Dresselhaus fields. Turning to case (iii), with |q−2kF | ≪ O(1/a) but with |q±2q0| ≃ O(1/a), one now finds that the
terms proportional to λD are washed away upon integration, while the terms proportional to λR or to µmod survive.
This implies that backscattering and CDW correlations come into play, dramatically changing the physics: A band
gap opens at all four Fermi points, causing a transition to a nonmagnetic insulating state. Finally, in case, (iv), all
terms in Eq. (16) contribute to the integrated Hamiltonian, leading to a rather complex theory. This case, however,
where kF and q0 both approach q, requires a fine tuning of both the electron density (upon which kF depends) and
the uniform Rashba interaction in Eq. (5) (upon which q0 depends). This case is expected to be hard to realize in an
experiment, and in the following we shall focus on the more accessible case (iii).

B. Bosonization picture: Band insulator from modulated Rashba interaction

To see how the spectacular effect driven by the modulated Rashba interaction comes about (case (iii) in the previous
section), it is useful to bosonize the theory. Using standard bosonization, we write the right- and left-moving fermionic
fields as

Rτ (x) =
ητ√
2πa

ei
√
π[ϕτ(x)+ϑτ (x)], (19)

Lτ (x) =
η̄τ√
2πa

ei
√
π[ϕτ(x)−ϑτ (x)], (20)

where ϕτ (x) and ϑτ (x) are dual bosonic fields satisfying ∂tϕτ = vF∂xϑτ , and where ητ and η̄τ are Klein factors which
keep track of the fermion statistics for electrons in different branches30.
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Inserting the bosonized forms of Rτ (x) and Lτ (x) into Eq. (18) and carrying out some simple algebra, one obtains
the bosonized Hamiltonian

H ′
0 +H ′

DR+H ′
mod =

∑

τ

∫

dx
{ vF

2
[ (∂xϑτ )

2 + (∂xϕτ )
2 ]

+
∑

j=±1

[λR

πa
sin

(

(q + 2jkF )x+ πν +
√
4πϕτ

)

− µmod

2πa
sin

(

(q + 2jkF )x+
√
4πϕτ

) ]}

. (21)

It is useful to cast the Hamiltonian in Eq. (21) on the more compact form

H ′
0 +H ′

DR+H ′
mod=

∑

τ

∫

dx
{ vF

2
[ (∂xϑτ )

2+(∂xϕτ )
2 ]

+
MR

πa

∑

j=±1

cos[(q + 2jkF )x+φ0+
√
4πϕτ ]

}

, (22)

where

MR =
√

λ2
R + µmodλR cos(πν) + µ2

mod/4, (23)

φ0 = − arctan

(

µmod + 2λR cos(πν)

2λR sin(πν)

)

. (24)

For the case that we are interested in, i.e. with |q− 2kF | ≪ O(1/a), the j = −1 component of the modulated term
in Eq. (22) comes into play31. For this case we can gauge out the small term ∝ x from the argument of the cosine

by the transformation (q − 2kF )x + φ0 +
√
4πϕτ →

√
4πϕτ and rewrite the Hamiltonian as H ′

0 + H ′
DR+H ′

mod =
∑

τ

∫

dxHbos,τ (x), with Hamiltonian densities

Hbos,τ =
vF
2
[ (∂xϕτ )

2 + (∂xϑτ )
2 ]− µeff√

π
· ∂xϕτ

+
MR

πa
cos(

√
4πϕτ ), (25)

where

µeff = vF (2kF − q)/2 (26)

serves as an effective chemical potential. By tuning the density of electrons so that µeff = 0, the system is seen to
be governed by two commuting sine-Gordon models32 with interaction terms cos(βϕ+) and cos(βϕ−) respectively,
where β2 = 4π. As follows from the exact solution of the sine-Gordon model33, in this case the excitation spectrum
is gapped and consists of solitons and antisolitons with masses M+ = M− = MR (together with soliton-antisoliton
bound states, so called breathers, with masses ≥ MR). A soliton (or antisoliton) corresponds to a configuration of the

field ϕτ , for a given component τ , that connects two neighboring minima
√
4πϕ0

τ = π+2πn (n ∈ Z) of the functional

potential V [ϕτ ] = MR cos(
√
4πϕτ ). The previous field configurations define the set of possible ground states of ϕτ with

vacuum expectation values 〈ϕ0
τ 〉 =

√
π(1/2 + n). For example, a field configuration where ϕτ (−∞) =

√
π/2 [3

√
π/2]

and ϕτ (∞) = 3
√
π/2 [

√
π/2] supports a soliton [antisoliton] with fermion number Nτ = 1 [−1], defined by

Nτ =
1√
π

∫ ∞

−∞
dx ∂xϕτ (x). (27)

The charge and spin quantum numbers of the single-particle excitation are given by

Q = N+ +N−, Sz =
1

2
(N+ −N−). (28)

The simplest single-particle excitation is obtained by considering a soliton or antisoliton in the spin τ = + component,
keeping the ground state unperturbed for the spin τ = − component: N+ = ±1, N− = 0. Such an excitation has
charge Q = ±1 and spin Sz = ±1/2 (with spin projections τ = ± along the direction of the momentum-dependent
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combined uniform Rashba and Dresselhaus fields). Thus, the elementary excitations of the system are free massive
fermions with mass MR, each carrying unit charge and spin 1/2. It follows that the joint action of the modulated
Rashba coupling and the chemical potential, with the electron density tuned so as to satisfy the commensurability
condition µeff = 0, turns the electron gas into an effective band insulator. The corresponding band gap is equal
to the doubled mass of the single-particle excitation, ∆ = 2MR, since conservation of charge and spin requires the
simultaneous excitation of a soliton and an anti-soliton. Note from Eq. (23) and the definition of λR after Eq.
(18) that the effect of the Dresselhaus interaction is to reduce the gap. Fortunately, as we shall show in Sec. V,
this unwanted effect (from the point of view of spintronics applications) is negligible when compared to the stronger
Rashba interaction.

C. Bosonization picture in the spin-charge basis

The nature of the metal-insulator transition becomes more transparent if we treat the model in a basis with charge
(c) and spin (s) bosons − the standard basis in which to include effects of electron-electron interactions30. Thus
introducing the dual charge fields

ϕc =
1√
2
(ϕ+ + ϕ−), ϑc =

1√
2
(ϑ+ + ϑ−) (29)

and spin fields

ϕs =
1√
2
(ϕ+ − ϕ−), ϑs =

1√
2
(ϑ+ − ϑ−), (30)

some simple algebra on Eq. (25) yields that H ′
0 +H ′

DR+H ′
mod =

∫

dx [H0c +H0s +Hcs], with

H0c =
vF
2
[(∂xϕc)

2 + (∂xϑc)
2]−

√

2

π
µeff ∂xϕc , (31)

H0s =
vF
2
[(∂xϕs)

2 + (∂xϑs)
2
]

, (32)

Hcs =
2MR

πa
cos(

√
2πϕc) cos(

√
2πϕs) . (33)

At µeff = 0 Eqs. (31)-(33) describe two bosonic charge and spin fields coupled by the strongly (renormalization-
group) relevant operator Hcs (of scaling dimension 1). This operator drives the system to a strong-coupling regime
where the charge and spin fields are pinned at their ground state expectation values. Therefore, at µeff = 0, both charge
and spin excitations develop a gap (let us call them Mc and Ms, respectively) and the system becomes a nonmagnetic
insulator, consistent with the finding in the previous section where the system develops a gap also in the bosonic
τ = ± basis. As µeff is tuned away from zero the influence of the operator Hcs in Eq. (33) gets weaker and eventually
averages to zero upon integration when µeff exceeds the insulator band gap given by the mass Mc of charge excitations.
At this point, the system then turns metallic. Therefore, the competition between the chemical potential term and
the commensurability energy drives a continuous insulator-to-metal transition from a gapped phase at µeff < µc

eff to
a gapless phase at µeff > µc

eff = Mc
34. The (de-)tuning of µeff in our Eq. (26) can be achieved by changing either kF

or q, i.e. the band filling ν (kF = πν/a) or the wave length λ of the gate modulation (q = 2π/λ). Either alternative
poses its own experimental difficulties, although we expect that the band filling is more easily controllable, using a
back gate with a variable voltage. Therefore, we shall hereafter assume that the tuning mechanism is provided by an
adjustable band filling. Thus − rephrasing this in a language closer to experiment − by detuning the voltage of the
backgate of the device so that the electron density ns of the quantum well is shifted from the value π/2λ2, one will
observe a transition from a nonmagnetic insulating state into a metallic phase35. In this phase the electrons in the
wire exhibit ordinary Fermi liquid behavior with gapless quasiparticle excitations. This kind of transition belongs to
the universality class of commensurate-to-incommensurate transitions30: The conductivity σ close to the transition
scales as σ ∼ (µ − µc)

1/2, with the compressibility κ diverging as κ ∼ (µ − µc)
−1/2, before dropping to zero on the

insulating side.
The insulator-to-metal transition just discussed corresponds to the picture put forward by Schulz in Ref. 36 where

a Hamiltonian similar to that defined by our Eqs. (31) - (33) is refermionized into a two-band model (cf. Eq. (4) in
Ref. 36). The two bands are separated by a gap ∆, with a chemical potential µ0 = 0 corresponding to a completely
filled lower band. In other words, in this state the system is a band insulator with a gap ∆. For µ0 smaller than the
critical value −∆/2, holes are introduced at the top of the lower band, whereas for µ0 larger than ∆/2, electrons are
added to the bottom of the upper band; in both cases the system becomes metallic. This refermionized picture thus
makes it clear that it takes a finite critical µ0 for the transition to occur: by tuning the chemical potential to zero
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the system not only develops a gap but also a rigidity that sustains the gap when the system is shifted away from
commensurability.
Going back to Eqs. (31) - (33), it is instructive to see how the single-fermion excitations obtained in the previous

section can be reconstructed in the present spin-charge basis. Here we follow a route developed in Ref. 37 in studies of
a similar problem in the case of the ionic Hubbard model. First note that only the relative sign between 〈cos(

√
2πϕc)〉

and 〈cos(
√
2πϕs)〉 in Eq. (33) is fixed to be negative (so as to minimize 〈Hcs〉). Thus, there are two possibilities for

the ground state charge and spin field expectation values:

I : 〈ϕc〉 =
√
2πm and 〈ϕs〉 =

√

π

2
(2n+ 1), (34)

II : 〈ϕc〉 =

√

π

2
(2m+ 1) and 〈ϕs〉 =

√
2πn, (35)

with m,n ∈ Z. To obtain the single-fermion excitations one has to consider field configurations that connect two
groundstates that belong to distinct sets I (Eq. (34)) and II (Eq. (35)). As an example, a field configuration that

connects ϕc = 0 with ϕc =
√

π/2 in the charge sector and ϕs =
√

π/2 with ϕs =
√
2π in the spin sector corresponds

to an excitation with charge and spin quantum numbers38

Q =

√

2

π

∫ ∞

−∞
dx ∂xϕc(x) = 1, (36)

Sz =
1√
2π

∫ ∞

−∞
dx ∂xϕs(x) = 1/2, (37)

i.e. a massive fermion (of mass MR), which is the elementary excitation in the band insulator. To obtain a pure
charge or spin excitation one must consider field configurations that connect groundstates within the sets I and II.
For example, given set I in Eq. (34), we can lock the charge at ϕc = 0 and consider a spin soliton connecting the

groundstates at ϕs =
√

π/2 and ϕs = 3
√

π/2. Such an excitation carries charge Q = 0 and spin

Sz =
1√
2π

∫ ∞

−∞
dx ∂xϕs(x) = 1. (38)

In the noninteracting case considered here it is clear that that this excitation is built from two massive fermions
with opposite charge and the same spin. Similarly, a charge soliton can be obtained by locking the spin at one of
the possible groundstates and consider a charge field configuration that connects, say, ϕc = 0 and ϕc =

√
2π. This

excitation carries charge

Q =

√

2

π

∫ ∞

−∞
dx ∂xϕc(x) = 2 (39)

while having zero spin, being built from two massive fermions with the same charge and opposite spin.
Following this logic, a derivation of Mc and Ms should give Mc = Ms = 2MR. As we shall see, the mean-field

approach used in the next section to evaluate Mc and Ms gives a slightly overestimated value. We shall return to this
issue below, and show how it can be resolved by a proper regularization procedure.
The opening of a gap for both charge and spin excitations39 at commensurability, µeff = 0, reflects the fact that

the system has turned into a nonmagnetic band insulator. Using the standard bosonized expression for the charge
density,38

ρc(x) ≃
1√
2π

∂xϕc

+A sin(
√
2πϕc + 2kFx) cos(

√
2πϕs) (40)

with A a constant, one verifies from Eqs. (34) and (35) (which apply at µeff = 0), that the ground state of the system
corresponds to a CDW-type band insulator, with long-range charge-density modulation

ρc(x) ≃ ρmc sin(2kFx), (41)

where

ρmc ∼ 〈cos(
√
2πϕc)〉〈cos(

√
2πϕs)〉 . (42)
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As should be clear from the non-conservation of spin in the presence of the spin-orbit interactions, the massiveness
of the spin excitations does not correspond to the formation of a spin density wave (SDW). Indeed, by writing down
the bosonized expression38 for a SDW with spin projection along the direction of the combined uniform Rashba and
Dresselhaus fields, ρs(x) ≃ (1/

√
2π)∂xϕs + B cos(

√
2πϕc + 2kFx) sin(

√
2πϕs), with B a constant, one immediately

verifies from Eqs. (34) and (35) that it has no amplitude for a long-range 2kF modulation.

D. Bosonic mean-field theory in

the spin-charge basis

To pave the ground for including electron-electron interactions into the problem, we next decouple the interaction
term Hcs in Eq. (33) in a mean-field manner by introducing

mc = 2MR|〈cos(
√
2πϕs)〉| , (43)

ms = 2MR|〈cos(
√
2πϕc)〉| . (44)

Note that the mean-field decoupling is well controlled since, at the strong-coupling fixed point, fluctuations are strongly
suppressed by the pinning of the charge and spin bosons. Using Eqs. (43) and (44), we find that the mean-field version
of the bosonized Hamiltonian H ′

0 +H ′
DR+H ′

mod =
∫

dx [H0c +H0s +Hcs], defined in Eqs. (31) - (33), can be written
as Hmean =

∫

dx [Hc +Hs] with

Hc =
vF
2
[(∂xϕc)

2 + (∂xϑc)
2] +

mc

πa
cos(

√
2πϕc)−

−
√

2

π
µeff∂xϕc, (45)

Hs =
vF
2
[(∂xϕs)

2 + (∂xϑs)
2] +

ms

πa
cos(

√
2πϕs) . (46)

When µeff = 0, the Hamiltonian defined by Eqs. (45) and (46) is again given by a sum of two decoupled sine-Gordon
models (cf. Eq. (25)). However, the dimensionalities of the cos(βϕ) operators at β2 = 2π [spin-charge basis, Eqs.
(45), (46)] and β2 = 4π [τ = ± basis, Eq. (25)] are different.
By exploiting the exact solution of the sine-Gordon model, we can easily estimate the size of the insulating gap in

the spin-charge basis40. The excitation spectra of Eq. (45) at µeff = 0 and Eq. (46) consist of solitons and antisolitons
with masses Mc and Ms, respectively (in addition to the charge and spin breathers with masses bounded below by
Mc and Ms, respectively). These charge and spin soliton masses are related to the “bare” masses mc and ms in Eqs.
(45) - (46) by41

Mκ/Λ = C0 (mκ/Λ)
2/3

, κ = c, s. (47)

with Λ an energy cutoff that blocks excitations into the second conduction channel of the quantum wire (for details,
see Sec. V).

The ground state expectation values of cos(
√
2πϕκ) are in turn given by42

|〈 cos
√
2πϕκ 〉| = C1 (Mκ/Λ)

1/2 , κ = c, s, (48)

with C0 ≈ 1.4 and C1 ≈ 1.0. (For details, see Appendix A.) By combining Eqs. (47) and (48) with (43) and (44) one
reads off that

Mc = Ms = 2γMR, (49)

with γ = C3/2
0 C1 ≃ 1.7.

Note that charge and spin solitons, though formally decoupled, move with the same velocity vF (cf. Eqs. (45) -
(46)), a record of their composite nature since, as demonstrated in Sec. III.C, charge and spin excitations are built
from single fermions of mass MR, unit charge and spin S = 1/2, the latter being the elementary excitations in the
τ = ± basis of Sec. III.B. Thus, the mean-field treatment in the spin-charge basis faithfully captures the character
of the excitations. However, the size of the two-particle gap, Mc or Ms as given in Eq. (49), gets overestimated by a
factor of 1.7 when compared to the result ∆ = 2MR, obtained in Sec. III.B. As we shall show in the next section, the
factor of 1.7 can be removed by introducing a regularized form of the gap.
Recall that tuning the effective chemical potential away from zero “closes” the band gap, and thus drives an

insulator-to-metal transition by depinning the charge field from its ground state expectation value. The combined
Eqs. (44),(47), and (48) reveal that, in the process, the spin sector becomes gapless as well, asMs ∼ 〈cos(

√
2πϕc)〉 = 0.
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E. Functional behavior of the effective band gap

Having established that the masses of the charge- and spin excitations in the non-interacting theory, Mc and Ms

respectively, are determined by the single-fermion mass MR, let us return to Eq. (23) to analyze its dependence on
the relative phase between the two modulations and their amplitudes λR and µmod. As emphasized in the previous
sections, the mass MR is a key parameter of our theory, encoding the effective band gap ∆ = 2MR in the insulating
state of noninteracting electrons.
In Sec. V, when analyzing a generic gated heterostructure, we shall see that both λR and µmod depend linearly on

the voltage VG of the top gates (cf. Fig. 1). We may thus write λR = c1VG and µmod = c2VG, where c1 and c2 are
constants depending on the details of the setup and of the sample.
To analyze the gap behavior it is important to distinguish the two ways in which the parameters λR and µmod can

be varied: One possibility is to consider (i) a fixed system (i.e. keeping c1 and c2 fixed) and varying the gate voltage
VG; alternatively, one may consider (ii) different systems but keeping the gate voltage fixed, e.g. by testing different
samples from an ensemble of properly gated heterostructures (all of which satisfy the commensurability condition
|q − 2kF | ≪ O(1/a)).
Let us start by investigating the possibility (i). In this case, we can rewrite µmod = (c2/c1)λR and Eq. (23) as

MR = c(ν)|λR| (50)

where c(ν) =
√

1 + (c2/c1) cos(πν) + (c2/c1)2/4 is a system specific parameter adjustable by the band filling ν (which,
in turn, can be varied by a back gate with a variable voltage).
Figure 2 shows MR as a function of λR for band fillings ν = 1/100, 1/10, 1/4, 1/2. The reason for considering

systems only up to half-filling is the following: Due to the commensurability condition |q− 2kF | ≪ O(1/a), the values
of the filling ν in Figure 2 correspond to modulation wave lengths λ = 100a, 10a, 4a, and 2a, respectively (as seen
from the relations q = 2π/λ and kF = πν/a). Since the ultrasmall gates that we propose to be used for producing
the modulation each has a spatial extension λ/2 along the quantum wire (c.f. Figure 1), it follows that ν = 1/2 sets
an upper (and in practice, unattainable) physical limit for possible band fillings: If ν > 1/2, the dimension of a gate
would have to become subatomic. In fact, as can be gleaned from the experimental data cited in Sec. V, our theory
would likely break down already for band fillings around ν ≈ 1/3 since at larger fillings higher subbands will come
into play, causing subband mixing. As we shall also see in Sec. V, the 1D band filling with present-day semiconductor
heterostructures is typically around ν ≈ 1/10, implying a gate extension of a few nanometers. Already this presents
a challenge to the experimentalist.
The plots in Figure 2 are shown for λR running from −1 to +1, thus accounting for the two possible phase relations

between the Rashba and the chemical potential modulations. For “in phase” [“out of phase”] modulations, the plots
are shown for test systems where c2/c1 ≃ 1 [c2/c1 ≃ −1].
We see that for both “in phase” and “out of phase” modulations, the gap is an increasing linear function of |λR|

with slope depending on the band filling. The increase of the gap is consistent with the phenomenological expectation
that the insulating state gets more stable as the pinning Rashba interaction goes stronger, and is in agreement also
with the corresponding result in Ref. 5. There, however, the modulation of the charge density was not taken into
account and, thus, the formalism did not capture the gap dependence on the band filling. The split of a single gap line
for different values of ν, as manifest in Figure 2, is an interesting feature of the system resulting from the combination
of the modulated Rashba interaction and CDW correlations.
Another interesting aspect of the gap behavior is that, given a certain band filling ν and a value for |λR|, the gap

for “in phase” modulations is larger than for “out of phase” modulations, implying a stronger localization effect when
the the Rashba interaction and the chemical potential act in “unison”. The difference MR(λR)−MR(−λR) goes to
zero as ν approaches 1/2 (half-filled band).
Turning now to case (ii), we can define a new variable δ ≡ λR/µmod = c1/c2 that characterizes a particular setup,

material, or design and is independent of the value of the applied gate voltage. With that we can rewrite Eq. (23) as

mR =
√

δ2 + cos(πν)δ + 1/4 (51)

where mR = MR/µmod.
Figure 3 shows mR as a function of δ for the same band fillings ν = 1/100, 1/10, 1/4, 1/2 used in case (i). The plots

are shown for δ running from −1 to +1, accounting for “in phase” and “out of phase” Rashba and chemical potential
modulations.
To understand the behavior revealed by Figure 3, let us first look at the right-half of the graph where the Rashba

and chemical potential modulations are “in phase”. The plots here show a monotonic increase of mR with δ, implying
that with devices where the top gate voltages VG have been tuned so as to produce the same fixed value of µmod, the
gap will be larger in the device with the larger value of λR. This behavior is equivalent to that obtained in case (i).
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FIG. 2: (Color online) MR as a function of λR (common arbitrary units) for given values of the band-filling ν. “In phase”
[“Out of phase”] modulations correspond to c2/c1 ≃ 1 [c2/c1 ≃ −1]

.

FIG. 3: (Color online) mR as a function of the ratio δ ≡ λR/µmod for given values of the band-filling ν.

Now turn to the left-half of the graph where the Rashba and chemical potential modulations are “out of phase”.
Again comparing devices having the same band filling and for which the magnitude VG of the gate voltages have been
tuned to give the same µmod, we observe an unexpected feature. Let us follow what happens when going through
different devices by moving along a curve with a fixed band filling (smaller than 1/2): the gap first decreases with
the strength of the Rashba interaction until it reaches a minimum at δ⋆ = cos(πν)/2; past this value the “normal”
increasing behavior is recovered. This crossover behavior gets more pronounced for smaller values of ν, i.e. as the
system goes more diluted. For ν = 1/100, for example, the crossover almost annihilates the gap at δ ≃ 0.5 (but not
completely as can be seen by zooming in around that point).
To understand how this phenomenon comes about, consider a Gedanken experiment with a single device where

λR is allowed to vary while µmod is kept fixed. In the case with anti-phased modulations, the chemical potential
[Rashba potential] will have a maximum [minimum] in the middle of the segment, call it “A”, below one of the small
positively charged gates (and vice versa for a neighboring gate-free segment, call it “B” (cf. Fig. 1)). Consider first
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the case with λR = 0. Here all electrons will reside in the A-regions since this configuration is energetically more
advantageous. This causes a localization of electrons, with a gap MR = µmod/2 as seen in Figure 3 for δ = 0. Now
turn on λR. To take advantage of the spin-flip Rashba hopping some electrons will start migrating into the B-regions.
This weakens the localization effect of the chemical potential modulation, with the result that the gap decreases. By
successively increasing λR, more and more electrons will migrate into the B-regions, and for a sufficiently large value
of λR, equal to µmod cos(πν)/2, all electrons will reside in the B-regions. From that point on the gap will increase
monotonically as λR (or γR) is further increased, as displayed in Figure 3. For fillings close to the upper physical
limit, that is 1/2, a small λR is enough for a complete electronic migration between the chemical potential A-regions
to the spin-orbit coupling B-regions while, for a more dilute system, the process is “slower”, demanding a larger λR.
The two extreme cases are ν = 1/2 for which the A-regions are emptied right away for any nonzero λR and ν → 0 for
which the necessary λR is (still just) half the amplitude µmod of the original pinning chemical potential.
In the next section we shall investigate how the electron-electron interaction influences the results thus obtained.

IV. INTERACTING ELECTRONS

A. Adding interactions: Bosonization picture

in the spin-charge basis

To incorporate the electron-electron interaction H ′
e-e in Eq. (13) into the bosonic theory we perform the same steps

as in Sec. III.B, first linearizing the spectrum around the four Fermi points and taking a continuum limit. This yields
H ′

e-e =
∫

dxHe-e(x), with

He-e = gττ
′

1 :R†
τLτL

†
τ ′Rτ ′ : + gττ

′

2 :R†
τRτL

†
τ ′Lτ ′ :

+
gττ

′

4

2
(:L†

τLτL
†
τ ′Lτ ′ : +R ↔ L), (52)

with τ, τ ′ = ± summed over, and where gττ
′

1 and gττ
′

2 are the amplitudes, respectively, for back and forward (“disper-

sive”) scattering between electrons of different chiralities, and gττ
′

4 is the amplitude for forward scattering between

electrons of equal chirality30. Whereas the gττ
′

2 and gττ
′

4 processes correspond to scattering with small momentum

transfer, the gττ
′

1 process transfers momentum k ∼ 2kF . For a screened Coulomb interaction with a nonzero screening

length, the gττ
′

1 amplitude is therefore quite small, and can usually be neglected. This is certainly so in the present
case since in a semiconductor structure the Coulomb interaction is much smaller than the band width. It follows
that in this limit the k ∼ 2kF scattering becomes marginally irrelevant and renormalizes to zero at low energies.
Importantly, this conclusion is not invalidated by the presence of the spin-orbit couplings21. From now on we shall
therefore consider the simpler theory where the back scattering has been renormalized away, i.e. with gττ

′

1 ≃ 0.
For a system at commensurate band-filling ν = 1/2n, with n ≥ 1 an integer, the Hamiltonian density in Eq.

(52) should be supplemented by an umklapp term which describes the transfer of 2n electrons of equal chirality
to the opposite Fermi point through exchange of momentum with the lattice. As is well known, these processes
drive a transition to an insulating state at a critical value of the Coulomb interaction determined by the number
2n of electrons participating in the process43. However, the screened Coulomb interaction in a gated semiconductor
structure is too weak to support such a transition except at a half-filled (n = 1) or possibly a quarter-filled (n = 2)
band12. This should be contrasted with the commensurability condition q = 2kF for driving a metal-to-insulator
transition via a modulated Rashba interaction, as derived in Sec. III.B. Since q = 2π/λ, with λ the wavelength of
the Rashba modulation, and kF = νπ/a, this condition translates to λ = 2na when ν = 1/2n. Thus, with a Rashba
modulation tuned to commensurability with 2kF , umklapp processes at n = 1, 2 could come into play only for a
sequence of electrical gates of near-atomic dimensions, λ/2 ∼ a. For this reason we shall neglect umklapp processes
when studying the novel physics coming from a Rashba modulation.
Having disposed of backscattering and umklapp processes, the remaining electron-electron interaction in Eq. (52)

is now easily bosonized using Eqs. (19), (20), (29), and (30). The resulting expression for the bosonized mean field



14

theory representing the full H ′ in Eq. (11) then takes the form H ′
mean =

∫

dx [H′
c +H′

s ], with

H′
c =

∫

dx
{vc
2
[(∂xϑc)

2 + (∂xϕc)
2]

−µeff

√

2Kc

π
∂xϕc +

mc

πa
cos(

√

2πKcϕc)
}

, (53)

H′
s =

∫

dx
{vs
2
[(∂xϑs)

2 + (∂xϕs)
2]

+
ms

πa
cos(

√

2πKsϕs)
}

. (54)

where we have performed the field transformations ϕi →
√
Kiϕi and ϑi → ϑi/

√
Ki, i = c, s. A comparison with

Eqs. (45) and (46) shows that H ′
mean has the same structure as the mean field theory for noninteracting electrons

and is given by two decoupled sine-Gordon models when the commensurability condition µeff = 0 is satisfied. The
electron-electron interaction is encoded by the new parameters vi and Ki, i = c, s, as well as by the reparameterization
of the bare masses mc and ms due to the transformation ϕi →

√
Kiϕi (cf. Eqs. (43), (44)). In the weak-interaction

limit considered here, vi and Ki can be given explicit representations in terms of the scattering amplitudes in Eq.
(52). Introducing the conventional “g-ology” notation30 g‖ ≡ gττ for parallel spins and g⊥ ≡ gτ −τ for opposite spins,
one has that

vi = vF [(1 + y4i/2)
2 − (yi/2)

2]1/2, (55)

Ki =

[

1 + y4i/2 + yi/2

1 + y4i/2− yi/2

]1/2

, (56)

for i = c, s, where

yi =
gi
πvF

, y4i =
g4i
πvF

, (57)

gi = −g2‖ ∓ g2⊥, g4i = g4‖ ± g4⊥, (58)

with the upper and lower signs in eqs. (58) referring to c and s, respectively. If backscattering processes were to be
included in the theory, g2‖ → g2‖ − g1‖ ≡ g̃2‖ in Eq. (58). In addition, the Ks parameter in the spin sector would
become subject to a RG flow, coupled to the marginally irrelevant flow of g1⊥, the amplitude for backscattering of
electrons with opposite spins30. The breaking of spin-rotational invariance by the presence of spin-orbit interactions
implies that the RG fixed-point value of Ks, call it K∗

s , is not slaved to unity but can take larger values. However,
with the backscattering processes being weak the resulting renormalization would be small. We will return to this
issue in Sec. V.

B. Charge-, spin-, and single-particle gaps

Given the bosonized mean-field theory defined by Eqs. (53) and (54) we shall now address the question of how
electron-electron interactions influence the Rashba-induced single-particle gap established in Sec. III.B. As anticipated
in Sec. III.C, this task gets complicated by the fact that already for noninteracting electrons the excitation gap in
the spin-charge basis is nontrivially related to the single-particle gap, being in effect a composite two-particle gap.
Moreover, as seen in Eq. (49), the mean-field theory in the spin-charge basis overestimates the actual size of this
two-particle gap. The situation for interacting electrons gets further confounded by the fact that the spin and charge
gaps are no longer identical, but take on separate values, reflecting the collective nature of the excitations in the
presence of electron-electron interactions.
Taking off from Sec. III.D where we calculated the mean-field charge soliton mass Mc and spin soliton mass Ms for

the case of non-interacting electrons, we perform a similar procedure, now with electron-electron interactions included,
starting with the reparametrized sine-Gordon models in Eqs. (53) and (54). Note that by construction, and in exact
analogy with the noninteracting case discussed in Sec. III.D, Mc and Ms are the mean-field approximations of the
spin and charge gaps of the fully interacting theory, ∆c and ∆s respectively. Using Eqs. (43), (44), (53), and (54),
we get the following relations between Mc,Ms and MR:

η−1
c Mc = η−1

s Ms = Λ(2MR/Λ)
2/(4−Kc−Ks), (59)
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where ηc = ηc(Kc,Ks) satisfies

η16−4Kc−4Ks

c ≡ C(4−Kc)(4−Ks)
c

×B2Ks

c C(4−Ks)Ks

s B8−2Ks

s , (60)

with ηs given by the same expression, but with c ↔ s, and where Bi ≡ B(Ki), Ci ≡ C(Ki), i = c, s, are defined in
Appendix A.
The mean-field version of the noninteracting theory is recovered by choosing Kc = Ks = 1, for which

ηc(1, 1) = C9/8
c B2/8

c C3/8
s B6/8

s |Kc=Ks=1

= C(1)3/2B(1)

≈ 1.7, (61)

with the identical number for ηs(1, 1), the result which we arrived at already in Eq. (49) via a slightly different route.
Thus, to repeat, while the mean-field theory correctly reproduces the identity Mc = Ms for noninteracting electrons,
the size of the corresponding two-particle gap ∆c = ∆s gets overestimated by a factor of 1.7.
We can improve upon the situation by dividing away this number for all Kc and Ks, thus in effect defining a

regularized version of the mean-field spin and charge gaps,

∆i ≡ η−1
i (1, 1)Mi, (62)

with Mi, i = c, s, given in Eq. (59). By construction, this produces gives the correct noninteracting limit.
Fig. 4 shows ∆c and ∆s for the experimentally relevant parameter range 0.6 ≤ Kc ≤ 1.0 and 1.0 ≤ Ks ≤ 1.1. (As

an example, to be elaborated upon in Sec. V, a generic quantum wire obtained by gating an InAs heterostructure is
well described by taking Kc ≈ 0.7 and Ks ≈ 1.1.) The fundamental features of the influence of electronic interactions
on the charge and spin gaps can be gleaned from Fig. 5 that shows a projection of the previous surfaces on the
Ks = 1.0 plane.
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FIG. 4: (Color online) The mean-field regularized charge (∆c) and spin (∆s) gaps measured in units of the bare gap MR, as a
function of the parameters Kc and Ks in the experimentally relevant parameter range 0.6 ≤ Kc ≤ 1.0 and 1.0 ≤ Ks ≤ 1.1.

As is manifest by these curves, the important property that ∆s ≤ ∆c, expected on physical grounds30, is respected
by the regularized mean-field gaps. The equality is valid at Kc = Ks = 1.0, that is, in the absence of electronic
interactions, reproducing the result of Sec. III.D.
Fig. 5 also shows that both charge and spin gaps are decreasing functions of the parameter Kc. Since Kc decreases

with increasing g-couplings (c.f. eqs. (56)-(58)), our results show that the gaps increase with the g-couplings, i.e. are
robust against electronic interactions. Note that the impact of electronic interactions is particularly strong on the
charge gap, which, in the considered range of parameters, more than doubles by increasing the strength of electronic
interactions.
Let us proceed to the calculation of the single-particle gap which, in the experimentally relevant case of electron

[hole] transport through a quantum wire, defines the characteristic energy scale of the system. In particular, this is
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FIG. 5: (Color online) Projections of the mean-field regularized charge (∆c) and spin (∆s) gaps on the Ks = 1.0 plane.

the gap that determines the current blockade effect, the key element in a spin transistor design based on a modulated
Rashba interaction.
Let us first recapitulate the formal definitions for single-particle gaps following the classification used in Ref. 44.

The single-particle gaps are defined as the energies necessary to add to the system one electron or one hole with spin
projection σ ≡ ±1/2:

∆+
σ = [E0(N + 1, σ)− E0(N,S = 0)] , (63)

∆−
σ = [E0(N − 1, σ)− E0(N,S = 0)] , (64)

In the case of non-interacting electrons, studied in Sec. III.B, we identified the single-particle gaps with the mass
MR of the fermionic quasiparticles (massive sine-Gordon solitons and antisolitons in the τ = ± basis): ∆τ = MR.

45

We are now equipped to take on the calculation of the single-particle gap in the presence of electronic interactions.
As we will not be able to resolve the particle- and hole gaps in Eqs. (63) and (64), we instead focus on the average
single-particle gap

M̄ =
1

4
(∆+

σ +∆+
−σ +∆+

σ′ +∆−
σ′), (65)

with ∆+
σ + ∆+

−σ corresponding to the energy required to add two particles with opposite spin, and ∆+
σ′ + ∆−

σ′ the
energy to add a particle and a hole with the same spin. Now, as we saw in Sec. III.C, a charge soliton (of mass ∆c)
is precisely built from a pair of fermions carrying opposite spin, with a spin soliton (of mass ∆s) being composed
of a particle-hole pair in a spin triplet state. While these properties were established for the case of noninteracting
electrons, the generalizations of Eqs. (38) and (39) to the case of rescaled fields,

Sz =

√

Ks

2π

∫ ∞

−∞
dx ∂xϕs(x), (66)

Q =

√

2Kc

π

∫ ∞

−∞
dx ∂xϕc(x), (67)

show that the relation between the gaps as determined by the assignment of quantum numbers are unchanged by
electron interactions. It follows from Eq. (65) that

M̄ =
1

4
(∆c +∆s), (68)

from which we infer − with the help of Eqs. (59) and (62) − the mean-field (average) single-particle gap

M̄mean = κ(Kc,Ks)Λ (2MR/Λ)
2/(4−Kc−Ks), (69)

with

κ(Kc,Ks) ≡
1

4
η−1
c (1, 1)(ηc(Kc,Ks)+ηs(Kc,Ks)), (70)
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and where MR is given by Eq. (23). Eq. (69) is the key result on which we shall build our analysis in the next section.
In the limiting case of non-interacting electrons, where Kc = Ks = 1, ηc = ηs, and κ(Kc,Ks) = 1/2, we obtain, from
Eq. (69), M̄mean = MR and thus recover the result of Sec. III.B.
In Fig. 6 we have plotted M̄mean in the range 0.6 ≤ Kc ≤ 1.0, for Ks = 1.1 and with λR = −2 meV, ν = 0.04,

Λ = 100 meV, and 1 meV ≤ µmod ≤ 10 meV. (The previous values correspond to the case study carried out in
Sec. V.) Again, note the significant effect of the electron-electron interactions on the size of the single-particle gap:
decreasing the strength of electronic interactions, the gap also decreases.
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FIG. 6: (Color online) The mean-field value of M̄mean [meV] of the single-particle gap as a function of the parameters Kc and
µmod in the range 0.6 ≤ Kc ≤ 1.0, for Ks = 1.1 and with λR = −2 meV, ν = 0.04, Λ = 100 meV, and 1 meV ≤ µmod ≤ 10
meV.

V. APPLICATION: TOWARDS A NEW TYPE OF CURRENT SWITCH?

In Ref. 5 it was argued that the insulating gap that opens when the Rashba modulation becomes commensurate
with the band filling is sufficiently large to be exploited in a spin transistor design. When the modulation is turned
off, the electrons are free to move and will carry a current when a drain-to-source voltage is applied. By charging
the gates − thus turning on the modulation − the system becomes insulating and the current gets blocked. A rough
estimate in Ref. 5, using data for a gated InAs heterostrucuture16, suggested a drain-to-source threshold voltage of
the order of 100 mV. In this section we revisit the problem, now equipped with a more complete theory which sports a
refined formula for the single-particle gap, Eq. (69), as well as a description of effects from the concurrent modulation
of the chemical potential.
For a new type of current switch to become competitive it is essential that the ON-OFF switching time τ compares

favorable with that of the ubiquitous MOSFETs that are used in present day electronics. Since τ grows with the
applied gate voltage (with the power dissipation during switching being proportional to the square of the gate voltage),
we shall consider the case where the device operates at or below a typical gate voltage of a MOSFET, in the 1 V
range or lower. While the gate-controlled built-in electric fields in a doped heterostructure can be quite strong, the
issue is whether the resulting Rashba effect − now combined with the chemical potential modulation − can become
sufficiently large to be used as a switch with a gate voltage of this moderate size. An important constraint is here that
leakage currents must be prevented in the OFF state. The present dominance of silicon CMOS devices for current
switching is largely due to the fact that there is virtually no leakage current in the OFF state of a MOSFET, effectively
protecting against unwanted signals as well as against standby power dissipation. Since an assessment of possible
sources of leakage currents can only be made on basis of a specific technical design, we will not be able to fully address
this constraint here. However, the minimal requirement that thermal leakage of charge must be prevented will be an
important bench mark in our analysis. At room temperature, it translates into the requirement that the gap should
be > 25 meV. Clearly, this is a lower bound. Heating of the device, as well as the requirement that the source-to-drain
voltage must not be too small, points to a minimum gap around, maybe, 100 meV. This is the number quoted in Ref.
5, but can it be reproduced within our more elaborate theory?
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To find out, we must assign numbers to the parameters MR,Kc, Ks, and Λ that enter the expression for the
single-particle gap in Eq. (69). We shall use the same data source as in Ref. 5, obtained from the experimental work
by Grundler on gate-controlled Rashba interaction in a square asymmetric InAs quantum well16. By adjusting the
gate voltage appropriately after application of a LED pulse (which increases the 2D carrier density via the persistent
photo effect), Grundler succeeded to tune the Rashba spin splitting without charging the 2D channel, thus allowing
for a direct probe of the gate-voltage dependence of the Rashba parameter α. For our purpose, this is an important
feature, since in our model we treat αRmod as being independent of the electron density. Let us add that quantum wells
based on InAs, realized in In1−xGaxAs/In1−xAlxAs

16,46–48 or InAs/AlSb51 heterostructures, are preferred choices in
many proposals for spintronics applications due to their typical large Rashba couplings α ≈ 5 − 10 × 10−12 eVm46.
Moreover, unless the quantum well is designed with a very small valence band offset, it is also safe to assume that
β ≪ α, with β the Dresselhaus coupling52. As we have found that the Dresselhaus interaction reduces the size of the
insulating gap, this is an additional desired feature of the InAs quantum well probed in the experiment by Grundler16.
In what follows we assume that the heterostructure studied in Ref. 16 has been gated so as to define a single-channel
micron-range ballistic quantum wire.

A. Band gap for non-interacting electrons

Let us start by estimating the insulating band gap for the non-interacting theory. As already discussed, the band
gap is twice the single-fermion mass MR, defined in Eq. (23).
Taking β ≪ α, we neglect the presence of the Dresselhaus interaction completely, for which case λR ≈

2γRmod sin(q0a). By inspection of Eq. (23), an estimate of MR then requires numbers for γRmod, µmod, ν, and
q0a.
Beginning with γRmod, we assume that this amplitude depends on the voltage of the small periodically spaced

gates that produce the modulation (see Fig. 1) in the same way as γR depends on a uniform gate voltage. This is
a reasonable assumption since − neglecting random fluctuations from dopant ions17 − the internal electric field in
the quantum well that supports the Rashba interaction is primarily determined by the slope of the band edge along
the growth direction of the heterostructure (perpendicular to the 2D InAs quantum well interface), and hence its
(extremal) value right below the center of one of the small periodically spaced gates should approach that for the case
of a single large gate. Inspection of Fig. 2 (b) in Ref. 16 reveals that the Rashba interaction α in the device considered
decreases by roughly 2 × 10−11 eVm with an increase in gate voltage of 0.1 V, indicating that the Rashba and the
chemical potential modulations are out of phase by π. As an aside, note that the data in Fig. 2 (b) in Ref. 16 confirms
the theoretical expectation that the change of the Rashba coupling with applied gate voltage is linear, a fact that we
used in Sec. III.E when analyzing the functional dependence of the effective band gap. Translating to our geometry,
the decrease of the Rashba interaction with a positive increase of gate voltage implies that there is a minimum negative
offset, call it −α0, from the uniform value |αR | with no gates present. This is due to the fact that the transverse
component of the net gate electric field (which controls the Rashba interaction) has a nonzero value at the midpoint
between two gates. In other words, the maximum value of the total Rashba interaction (uniform + modulated) in the
presence of the small gates is given by αR − α0 and is attained at the midpoint between two gates. Using the data
quoted from Ref. 16, it follows for the amplitude of the Rashba modulation that |αRmod|= 1 × 10−11 − α0/2 eVm.
The magnitude of the offset α0 is small compared to |αRmod| and hence we take |αRmod| ≈ 1 × 10−11 eVm. We then
have that |γRmod|=|αRmod| /a ≈ 20 meV, where a ≈ 5 Å is the lattice spacing in epitaxial InAs53. With q0a ≈ 0.1,
this in turn implies that |λR| ≈ 2 meV.
Turning to the amplitude µmod of the modulated chemical potential, it is here more difficult to obtain an accurate

number and we will have to do with a rough estimate. There are two types of contributions to µmod from the external
gates; one coming from the transverse component of the applied gate electric field (enabling a local migration of charge
from the quantum well into the dopant layers), the other from its longitudinal component, inducing a rearrangement
of charge inside the quantum wire. We expect the latter to dominate the modulation of the local chemical potential
and here neglect the small residual charge migration caused by the transverse electric field. As for the variation of
the longitudinal electric field along the wire, an exact expression requires a precise description of the fringe fields and
their superpositions from the periodic sequence of top gates. This goes far beyond the scope of our minimal approach
here, where we assume the simplest possible, but still physically meaningful, behavior: a longitudinal electric field
that oscillates harmonically along the wire: E‖(x) = E‖ sin(qx)x̂, choosing x = 0 just below the center of one of the
top gates. The variation of the chemical potential ∆µ(x) along the wire is then related to the negative work required
to bring an electron to x,

∆µ(x) = −eE‖

∫ x

0

sin(qx′)dx′,
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µ(x) = −µmod cos(qx), (71)

where µmod = −µ(0) = −eE‖/q > 0. Note that the chemical potential variation of Eq. (71) is indeed the one assumed
in the very construction of our model, Eq. (7).
With the assumption that the amplitudes of the longitudinal and transverse components of the net gate electric

field are of the same order of magnitude, we make the approximation E‖ ≈ Vg/d, where Vg is the voltage of a gate
electrode and d is the perpendicular distance between the gate and the wire. Thus, µmod = −eVg/qd. From the
commensurability relation q = 2kF = 2

√
2πns, with ns the 2D electron density of the InAs quantum well, we arrive

at the desired expression for µmod is terms of experimental parameters:

µmod =
−eVg

2d
√
2πns

. (72)

From Ref. 16 we have that d ≈ 60 nm and ns ≈ 0.9 × 1016 m−2. Using a gate voltage Vg ≈ +0.1 V, we obtain
that µmod ≈ 4 meV. This number will get modified when including effects from Fermi statistics, Coulomb interaction,
and the presence of the transverse component of the applied gate electric field. However, guided by experimentally
inferred Fermi level variations with gate voltage in other InAs quantum wells46–48, we expect that our estimate of
µmod for the geometry considered and with the type of heterostructure used in Ref. 16 lies within reasonable bounds.
To have some margin for error, we must actually quote µmod only as taking possible values in a range including 4
meV. Going back to Fig. 4, we see that the single particle gap in the presence of electron-electron interactions is
not a monotonic function of µmod, displaying a minimum exactly around 4 meV. So, restricting the error bar to lie
inside the regime of interest (from the point of view of spintronics applications) of increasing gap, we consider µmod

assuming values in the range from 4 meV to 10 meV.
In order to obtain a value for MR in Eq. (23) (or rather, an interval for possible values for MR, considering the

numerical uncertainty in the µmod-parameter), it remains to determine the 1D band filling ν. With the assumption
that the quantum wire has only a single conducting channel this is straightforward. The data for the Rashba variation
with top gate voltage in Ref. 16 were taken at a constant electron density ns ≈ 0.9 × 1016 m−2. With the Fermi
wave number kF for the quantum wire expected to be roughly the same as for the 2D electron gas, this translates,
via kF = πν/a =

√
2πns, into:

ν = a

√

2ns

π
. (73)

Putting in the numbers, we get ν ≈ 0.04.
Inserting our estimates

λR≈−2meV, 4meV < µmod < 10meV, ν≈0.04,

into Eq. (23), we finally obtain that

0.3meV . MR . 3.0meV, (74)

with the upper bound corresponding to µmod ≈ 10 meV, and with the lower bound attained for µmod ≈ 4 meV. Note
the minus sign in λR≈−2meV, indicating that the two modulations in the type of device considered are antiphased,
which is the reason for the non-monotonic behavior of the gap as a function of µmod (cf. discussion in Sec. III.E).
We should here point out that given the value of ns in Ref. 16, our use of a single 1D conducting channel is

not an unreasonable assumption. A first estimate, using an infinite-well confinement potential may suggest that a
quantum wire with diameter D . 25 nm would satisfy the single-channel condition: λF = 2π/kF =

√

2π/ns ≈ 25
nm. However, with the Fermi energy EF = ~

2πns/m
∗ ≈ 40 meV (with m∗ = 0.04me for a gated InAs quantum

wire16, where me is the electron mass), self-consistency requires that the wire is not much wider than roughly D/2
since otherwise the Fermi level would cut through the first subband. In addition, for our modeling to make sense, our
energy cutoff Λ, first introduced in Eq. (47), must be smaller than the distance ∆E from the Fermi level to the bottom
of the first subband. Below we shall choose Λ ≈ 100 meV, which − again assuming an infinite-well confinement with
∆E = π2

~
2/2m∗D2− requires the wire to be at most 7 - 8 nm wide, still, however, within the realm of present-day

technology49. One should note that a more realistic soft confinement potential could possibly open an additional
conducting channel and lead to population of the first 1D subband, in which case our model would no longer apply.
However, as the gate-controlled Rashba effect in Ref. 16 appears to be rather insensitive to a lowering of the value of
ns, this potential problem should in principle be easy to overcome (cf. Fig. 2 (b) in Ref. 16).
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B. Band gap for interacting electrons

To complete our analysis of the single-fermion mass, we need to include the effect of electron-electron interactions.
These are encoded by the Luttinger liquid charge- and spin parameters Kc and Ks. Using that the forward scattering
amplitudes in Eq. (56) are all equal and given by the k ∼ 0 (zero momentum transfer) Fourier component V (k ∼ 0)
of the screened Coulomb interaction30, g2‖ = g2⊥ = g4‖ = g4⊥ ≈ V (k ∼ 0)/~, we obtain from Eq. (56), neglecting
the small correction from backscattering processes with momentum transfer k ∼ 2kF ,

K−1
c =

√

1 +
2V (k ∼ 0)

~πvF
. (75)

The screening length of the interaction is roughly set by the perpendicular distance d between the quantum wire and
the nearest metallic gate. A detailed analysis50 leads to the expression

V (k ∼ 0) ≈ e2

πǫ0ǫr
ln(

2d′

ξ
) +O(

ξ2

d2
), (76)

where ξ is the radius of the quantum wire and ǫr is the averaged relative permittivity of the dopant and capping
layers between the quantum well and the nearest gate, at a distance d′ from the wire. As an interesting aside, note
that the leading logarithmic term in Eq. (76) depends only on the permittivity of the environment and not on that of
the wire, implying that electrons interact mainly with image charges and not with other electrons in the wire. With
the backgate of the device in Ref. 16 being at a distance d′ ≈ 15 nm from the quantum well, and with an averaged
permittivity ǫr ≈ 12 for the interjacent In0.75Al0.25As and Si-doped In0.75Al0.25As layers

54, we obtain from Eqs. (75)
and (76) that Kc ≈ 0.7, taking ξ ≈ 5 nm and using that vF ≈ 6× 105 m/s54. We should alert the reader to the fact
that the estimate for Kc also comes with some uncertainty, considering that it is obtained using the parameterization
in Eq. (56) which is strictly valid only in the weak-coupling limit Kc ≈ 1. Still, Bethe Ansatz and numerical results
for this class of models have shown that the weak-coupling formula in Eq. (56) does surprisingly well in capturing
effective Kc parameters also for intermediate strengths of the electron interaction when, as in the present case, the
band filling is low, thus providing indirect support for our estimate55.
Turning to the spin parameter Ks, we already noted in Sec. IV (text after Eq. (58)) that its bare value predicted

by Eq. (56) will renormalize to a value slightly larger than unity due to backscattering of electrons. Having ignored
these scattering processes when writing down the spin Hamiltonian in Eq. (54) with the rationale that they are weak
in a semiconductor device, we may compensate for their omission by adjusting the value of Ks by hand, setting it
slightly larger than unity, say at Ks ≈ 1.1. Guided by work on other models where Ks takes values different from
unity we expect this to be a reasonable estimate21. In what follows Ks thus represents the expected RG fixed point
value K∗

s , carrying an imprint of the marginally irrelevant backscattering term in the spin sector. It may be worth
pointing out that the correction to Kc due to backscattering is smaller than that for Ks and is here neglected.
Having put numbers on Kc and Ks we now go back to Eq. (60) and calculate, with the help of Eqs. (A4) and (A6)

in the Appendix,

ηc(Kc=0.7,Ks=1.1) ≈ 2.1 (77)

ηs(Kc=0.7,Ks=1.1) ≈ 1.4. (78)

Combining this with Eqs. (61), (69), (70), and (74) and taking Λ = ~vF /ξ ≈ 100 meV, we finally obtain an estimate
for the single-particle gap M̄mean,

0.4 meV . M̄mean . 4 meV. (79)

Summarizing its specification, this result applies to a periodically gated 5 nm thin quantum wire embedded in a
Rashba-active heterostructure of the type studied in Ref. 16, assuming that the Fermi wave number has been properly
tuned to commensurability with the gate spacing, and taking the gate voltage to be +0.1 V. Note that the length
scale ξ ∼ ~vF /M̄mean at which the gap starts to open up lies within the interval 0.1 µm . ξ . 1 µm, with the lower
[upper] bound corresponding to M̄mean = 4 meV [0.4 meV], thus fitting well within the ballistic regime of an InAs
quantum wire53.
The estimate in Eq. (79) is strikingly lower than that in Ref. 5, where the same kind of system was analyzed using

a simpler theory. One of the missing ingredients in that theory is the interplay between the modulation of the Rashba
interaction with that of the local chemical potential, an effect that we have found to cause a significant reduction
of the gap. Also, the gap in Ref. 16 was extracted from that of the collective charge excitations of the low-energy
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effective model, and not, as in the present approach, properly reconstructed as a single-particle gap, which is the one
relevant for charge transport56.
One notes that already the gap at the upper bound in Eq. (79) is far below the thermal threshold of ∼ 25 meV

that is required to block thermal leakage of charge − a sine qua non for a functioning current switch. Thus, a usable
device based on spin-orbit and charge modulation effects will clearly require a different type of heterostructure and/or
input parameters than what we have assumed here. A significant improvement would be achieved if − by “band
engineering”25,26 − one could grow a heterostructure where the Rashba and chemical potential modulations are in
phase, not out of phase as in the case study above. As evidenced by Eq. (23) and discussed in the context of Fig.
2, this will boost the resulting gap, especially for the case of low electronic density. Secondly, our analysis shows the
importance of having a large electron-electron interaction. This, in principle, is obtainable by further reducing the
electron density, with the added advantage of making the required gate spacing larger (as seen in the commensurability
condition q = 2kF with q = 2π/λ and kF = πν/a) thus giving leave for larger and experimentally more tractable
gates. Finally, and most obvious, by allowing for a larger gate bias than the 0.1 V used in the estimates above, the
gap opening effect will be further boosted. Still, unless one allows for very large voltages, in the 5-10 V range, the
gap − as estimated within our formalism and for the system specifications used here − will be too small for making
a credible case for a working current switch at room temperature. At these large voltages, however, our proposed
device would have no clear advantage compared to standard silicon CMOS designs. Moreover, since the growth of
the modulated Rashba coupling will have saturated at much smaller voltages, any additional gap opening effect will
primarily be due to the CDW correlations from the modulated chemical potential, not to the presence of a Rashba
interaction.
Before closing the case, however, we wish to stress that our numerical estimates have been obtained by filtering

experimental data through an effective low-energy field theory formalism based on a highly simplified lattice model.
We have tried to be careful in processing the data, however, the approach we use is not optimally adapted for this
task. As we have repeatedly pointed out, this makes our numbers marred with uncertainty. Whereas our theory
does provide a “proof-of-concept” of using a periodically gated quantum wire for a low-bias current switch, a definite
verdict about its practicability requires more work, based on a more sophisticated approach in modeling and analysis.

VI. SUMMARY

In conclusion, we have analyzed the spin- and charge dynamics in a ballistic single-channel quantum wire in the
presence of a gate-controlled harmonically modulated Rashba spin-orbit interaction, and with a concurrent harmonic
modulation of the local chemical potential. To be able to model a quantum wire in a gated heterostructure with
lattice inversion asymmetry, we have also allowed for a uniform Dresselhaus spin-orbit interaction.
Depending on the relation between the common wave number q of the two modulations, the Fermi momentum kF ,

and a parameter q0 which encodes the strength of the Dresselhaus and the uniform part of the Rashba interaction, the
electrons in the wire may form a metallic or an insulating state. Specifically, and most interesting from the viewpoint
of potential spintronics applications, when |q − 2kF |≪ O(1/a) and |q ± 2q0|≃ O(1/a) (with a the lattice spacing), a
nonmagnetic insulating state is formed, with an effective band gap which depends on the amplitudes of the Rashba
and chemical potential modulations as well as on the strengths of the uniform Dresselhaus and Rashba interactions.
Whereas the Dresselhaus interaction reduces the band gap, the uniform part of the Rashba interaction increases its
size. The gap also increases with the amplitude of the modulated part of the Rashba interaction, but only if the local
chemical potential modulation is in phase with that of the Rashba interaction, or if the amplitude of the Rashba
modulation is larger than some threshold value of the chemical potential modulation. Else, the gap is a decreasing
function of the Rashba modulation amplitude. The resulting crossover behavior of the effective band gap is controlled
by the band filling, which sets the threshold value of the chemical potential modulation.
This gap-opening scenario, including the crossover behavior, is found to be robust against electron-electron inter-

actions. To arrive at this conclusion we used a bosonization approach, mapping the interacting problem onto two
mean-field decoupled sine-Gordon models. By a careful analysis of the structure of the ensuing charge- and spin
gaps, we devised a regularization scheme from which the size of the single-particle gap can be reconstructed, and
which allowed us to determine its dependence on the strength of the electron-electron interaction. Exploiting exact

results for the sine-Gordon model we found that the gap scales as M
2/(4−Kc−Ks)
R where MR is the sine-Gordon soliton

(or antisoliton) mass for noninteracting electrons, and where Kc and Ks are the Luttinger liquid charge- and spin
parameters, respectively. Whereas the scaling exponent agrees with that found in Ref. 5, our estimate for the band
gap (using data from the same experimental setup as that studied in Ref. 5) comes out dramatically smaller: As
discussed in the previous section, the theory in Ref. 5 does not include the competition between Rashba and chemical
potential modulations in the experimentally relevant parameter regime, and moreover, the band gap is not prop-
erly reconstructed as a single-particle gap from the collective spin- and charge excitations in the bosonic spin-charge
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basis56.
While our analysis reveals shortcomings with proposals5–7 to use present-day materials and designs for constructing

a low-bias current switch from a gate-controlled modulated Rashba interaction, it also points to possible routes to
overcome the problem. Besides the obvious measure to search for materials with larger Rashba couplings, we have
shown the importance to engineer heterostructures where the gate-controlled Rashba modulation is in phase with
that of the local chemical potential produced by the gate configuration25,26. We have also shown that the size of the
effective band gap can be significantly boosted by reducing the electron density in the quantum wire; this leads to
a reduction of the screening of the electron-electron interaction, and, with that, a larger gap-opening effect from the
Rashba modulation.
From a more fundamental perspective, questions about how the gap-opening scenario is influenced by disorder57,

magnetic field effects58, and subband mixing19 are yet to be addressed. These become challenging problems in the
context of a spatially varying spin-orbit interaction, and may require a theoretical approach that goes beyond the
effective field-theory approach that we have used here. Even with these questions unanswered, however, our prediction
of an electrically driven commensurate-to-incommensurate phase transition is amenable to an experimental test. Of
particular interest would be to test for the rigidity of the insulating state away from commensurability. As discussed in
Sec. III, its robustness is determined by the size of the effective band gap, and will thus be sensitive to the screening of
the electron-electron interaction, and hence to the density of electrons in the wire. By preparing setups with different
modulation wave numbers and electron densities − but otherwise identical − an experiment should see an increase of
the gap with lowered electron density, as predicted in our Eq. (69). Our prediction that the conductivity close to the
transition scales with the chemical potential with a universal critical exponent 1/2 independent of electron-electron
interactions, is also open for experimental probes.
Considering the complexity of the spin- and charge dynamics in a quantum wire when subject to a modulated

Rashba spin-orbit interaction, further work − experimental as well as theoretical − may well uncover hidden features
of this fascinating physical system.
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Appendix A: Mass scales and expectation values in the sine-Gordon model

In this appendix we show how to obtain Eqs. (47) and (48) from the results on the sine-Gordon model in Refs. 41
and 42.
Following the convention in Ref. 42, we write the Euclidean action of the sine-Gordon model as

ASG =

∫

d2x
{ 1

16π
(∂νϕ)

2 − 2µ0

a2
cos(βϕ)

}

. (A1)

where µ0 and β are dimensionless parameters, with 0 < β2 < 1. (Note that the presence of the prefactor 1/16π in the

kinetic term of the action implies that the sine-Gordon coupling β differs by a factor of
√
8π from the conventional

one.32 Also note that by defining µ ≡ µ0/a
2, we have isolated the engineering dimension 1/(length)2 of the bare mass

µ in Ref. 42 in the square of the microscopic length a.) Introducing a velocity parameter v via d2x → vdτdx and

rescaling the field, ϕ →
√
8πϕ, the corresponding Hamiltonian reads

H=

∫

dx
{v

2
[(∂xϑ)

2+(∂xϕ)
2]− 2µ0v

a2
cos(

√
8πβϕ)

}

(A2)

with ∂xϑ the conjugate momentum to ϕ. By the substitutions β2 = Kc/4, v = vc, and 2µ0 = mc/πΛc, with Λc = vc/a
a UV cutoff, we recover the charge-sector mean-field Hamiltonian in Eq. (53) (when µeff = 0). Similarly, the spin-
sector mean-field Hamiltonian in Eq. (54) is obtained via the substitutions β2 = Ks/4, v = vs, and 2µ0 = ms/πΛs,

with Λs = vs/a, together with the phase shift ϕs → ϕs +
√

π/8Ks (which does not affect the renormalization of the
theory).
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The key result in Ref. 41 (encoded in Eqs. (2.12) and (4.1) in the same reference), which relates the sine-Gordon
soliton mass to the bare mass parameter, can now be rephrased as

Mi/Λ = C(Ki)(
mi

Λ
)2/(4−Ki), i = c, s (A3)

where

C(Ki) =
2√
π

Γ( Ki

8−2Ki
)

Γ( 2
4−Ki

)

[

Γ(1−Ki/4)

2Γ(Ki/4)

]2/(4−Ki)

. (A4)

Here Γ is the Gamma function. To extract Eqs. (A3) and (A4) from Eqs. (2.12) and (4.1) in Ref. 41 we have used
that p = (2 −Ki)/2 in these equations, and also that the sine-Gordon action in Eq. (2.1) in Ref. 41 is the same as

that in Eq. (A1) after having rescaled the field, ϕ →
√
8πϕ, and put µ0 = µa2.

To obtain Eqs. (47) and (48), we also need to relate the soliton mass to the groundstate expectation value of the
cosine field; recall from Eqs. (43) and (44) that the mean-field bare mass parameters mc and ms are defined in terms
of 〈cos

√
2πKsϕs〉 and 〈cos

√
2πKcϕc〉, respectively. For this, we turn to Eq. (15) in Ref. 42, from which we infer

〈cos(
√

2πKiϕi)〉 = B(Ki)(M/Λ)Ki/2, (A5)

where

B(Ki) = π2[Γ(1/2 + ξi/2)Γ(1− ξi/2)]
(Ki−4)/2

×
[

sin(πξi/2)

2
√
π

]Ki/2 (1 + ξi)Γ(1−Ki/4)

sin(πξi)Γ(Ki/4)
(A6)

with ξi = Ki/(4 − Ki). Combining Eqs. (A3) - (A6), we obtain the following expressions for the charge and spin
soliton masses,

Mc

Λ
= Cc

(

2MR〈cos(
√
2πKsϕs)〉

Λ

)2/ζc

= CcB
2/ζc
s

(

2MR

Λ

)2/ζc (Ms

Λ

)Ks/ζc

, (A7)

Ms

Λ
= Cs

(

2MR〈cos(
√
2πKcϕc)〉

Λ

)2/ζs

= CsB
2/ζs
c

(

2MR

Λ

)2/ζs (Mc

Λ

)Kc/ζs

, (A8)

where ζi = 4−Ki, Bi = B(Ki), and Ci = C(Ki), i = c, s. Some straightforward algebra on Eqs. (A7) and (A8) finally
yields Eqs. (59) and (60). In the important limiting case of noninteracting electrons, i.e. with Kc = Ks = 1, we have
that B(1) ≡ C1 ≈ 1.0 and C(1) ≡ C0 ≈ 1.4 (cf. Sec. III.D).

1 I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
2 S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
3 E. I. Rashba, Sov. Phys. Solid State 2, 1224 (1960); Y. A. Bychkov and E. I. Rashba, J. Phys C 17, 6039 (1984).
4 For a review, see J. Fabian and I. Zutic in Spintronics − From GMR to Quantum Information, eds. S. Blügel, D. Bürgler,
M. Morgenstern, C. M. Schneider, and R. Waser (Jülich, 2009).
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