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correlations
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Raman spectroscopy of molecular junctions is a promising diagnostic and control tool. We present
a model for charge transfer contribution to SERS, generalizing previous considerations to strong
laser pulses of arbitrary time dependence. The approach paves a way to realistic simulations of
Raman spectroscopy experiments in molecular junctions. We demonstrate that the optical response
of molecular conduction junctions is correlated with the electron transport. Feynman diagrams
responsible for such similarity are analyzed, and a possible explanation for observed (anti-)correlated
behavior of Stokes signal and conductance is proposed.

PACS numbers: 85.65.+h 33.20.Fb 78.20.Jq 78.67.-n

I. INTRODUCTION

Surface enhancement of Raman spectroscopy for
molecules chemisorbed on metal surfaces has been
observed,1–4 and explained by a combination of local
surface plasmon resonance (LSPR) of the metal5,6 and
charge transfer (CT) between the molecule and the
metal.7–14 Recent advancements in experimental tech-
niques allowed measurement of optical response in molec-
ular junctions. In particular, simultaneous measurement
of electronic conductance and Raman response was re-
ported in Ref. 15, and Refs. 16,17 use Raman spec-
troscopy for observation of heating in current carrying
junctions.

Like older “standard” spectroscopies (resonant18,19

and off-resonant20–24 inelastic electron tunneling spec-
troscopy, and noise spectroscopy25), junction optical
spectroscopies are expected to play important roles in
the field of molecular electronics both as diagnostic meth-
ods and as control tools for molecular devices. Optical
spectroscopy at equilibrium is well-established.26 Optical
spectroscopy of current-carrying junctions sets a theoret-
ical challenge in the need to describe the optical response
of an open non-equilibrium molecular system.

Recently, a theory of Raman scattering in molecular
junction, modelled by two levels (HOMO and LUMO or
ground and excited state) attached to metallic electrodes,
was considered within nonequilibrium Green’s function
(NEGF) formulation.27,28 This consideration is restricted
to mostly resonant Raman scattering in a junction under
steady-state conditions. With most of experimental mea-
surements performed for off-resonant situation, two theo-
retical approaches were proposed: 1. the same two-level
model was employed within quantum master equation
(QME) approach to calculate junction polarizability29

and 2. the single-level model for charge transfer contri-
bution to surface-enhanced Raman spectroscopy (SERS)
at equilibrium introduced in Ref. 8 was generalized to
steady-state junction situation within NEGF.30. Since
standard QME misses essential junction information (see
e.g. Refs. 31,32 for discussion), the latter development
is more promissing. Note however, that incident field in

both 8 and 30 is treated at second order of perturbation
theory, which is questionable for strongly enhanced local
fields detected in experiments. Treating the incident field
classically in nonperturbative manner is more relevant
for SERS. Also explicit time-depency of the driving field
can be easily incorporated into the model. This together
with developed approaches for time-dependent transport
within NEGF33–38 paves a way to practical formulation
of a scheme capable of simulation of time-dependent Ra-
man scattering in realistic molecular junctions.
Here we consider a model for non-resonant Raman

spectroscopy in molecular junctions, generalizing consid-
eration of Ref. 30 to non-perturbative treatment of driv-
ing laser field with possibility to include explicit time-
dependence of the latter into consideration. Section II
introduces our model, and discusses the approach used
to simulate off-resonant vibrational Raman signal. Ap-
plication of the approach to analytically solvable case of
single harmonic mode is considered in section III. Nu-
merical examples and discussion of correlation between
Raman flux and junction conductance are given in sec-
tion IV. Section V concludes and outlines directions for
future research.

II. MODEL

We consider a molecule (M) coupled to two metal-
lic contacts (L and R) - reservoirs of free charge car-
riers each at its own equilibrium - and a bath of free
radiation (accepting) modes. Contacts induce an elec-
tric current (electron transfer between the molecule and
contacts) across the junction. Radiation bath represents
device measuring outgoing photon flux. The molecule is
modeled by a single level ε0 coupled to a single molecular
vibration, and driven by an external (classical) electro-
magnetic field (pumping mode). The Hamiltonian of the
system is

Ĥ(t) =Ĥ0(t) + V̂ (1)

Ĥ0(t) =ĤM (t) + ĤK + Ĥp (2)

V̂ =V̂et + V̂p. (3)
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Here ĤK (K = L,R), Ĥp are contacts and radiation bath
Hamiltonians

ĤK =
∑

k∈K

εkĉ
†
k ĉk (4)

Ĥp =
∑

f

νf â
†
f âf (5)

where ĉ†k (ĉk) is an operator of creation (annihilation) of

an electron in state k of the contact, and â†f (âf ) creates

(annihilates) a photon in state f of the radiation bath.
The molecular Hamiltonian is

ĤM (t) = (ε0 − µE(t)) d̂†d̂+ωvv̂
†v̂+Mv(v̂+ v̂†)d̂†d̂ (6)

where d̂† (d̂) is a creation (annihilation) operator for an
electron on the level ε0, E(t) is an external driving field,
µ is the projection of the molecular dipole moment to the
direction of the external field, v̂† (v̂) creates (annihilates)
a phonon in a molecular vibration, and Mv characterizes
coupling between a tunneling electron and the vibration.
Finally, V̂et and V̂p couple the molecule to contacts and
the radiation bath

V̂et =
∑

k∈{L,R}

(

Vkd̂
†ĉk + h.c.

)

(7)

V̂p =
∑

f

Mf

(

âf + â†f

)

d̂†d̂ (8)

This model is a generalization of the SERS model con-
sidered previously.8,30 Note that molecular Hamiltonian
(6) can be represented in a more general form (e.g. in
terms of Hubbard operators) with an appropriate change
in the methodology to calculate Raman scattering and
current in the junction (see Ref. 40 for details).
Time-dependent current at interface K (L or R) is cal-

culated with the usual NEGF expression33

IK(t) =2Re

∫ t

−∞

dt′
[

Σ<
K(t, t′)G>(t′, t) (9)

−Σ>
K(t, t′)G<(t′, t)

]

Here Σ
>(<)
K (t, t′) is a greater (lesser) projection of an elec-

tronic self-energy due to coupling to contact K

ΣK(τ, τ ′) =
∑

k∈K

|Vk|2gk(τ, τ ′) (10)

where τ (τ ′) is the contour variable corresponding to the
real time t (t′), and

gk(τ, τ
′) = −i〈Tc ĉk(τ) ĉ

†
k(τ

′)〉 (11)

is Green function of a free electron in state k. In this
model we assume that time-dependent driving is confined
to the molecular region only, so that projections of the

contact self-energies depend on the difference of times,
and Fourier transform yields the familiar result

Σ<
K(E) =iΓK(E)fK(E) (12)

Σ>
K(E) =− iΓK(E) [1− fK(E)] (13)

Here fK(E) = [e(E−µK)/T +1]−1 is Fermi distribution in
a contact K, and

ΓK(E) =
∑

k∈K

|Vk|2δ(E − εk) (14)

is the escape rate from a molecular level into the
contact K. In what follows we assume wide-band
approximation41 treating ΓK as an energy independent
quantity.
G>(<)(t, t′) in Eq. (9) is the greater (lesser) projection

of the single-particle Green function

G(τ, τ ′) = −i〈Tc d̂(τ) d̂
†(τ ′)〉 (15)

To calculate the time-dependent Raman flux we follow
the argument of Refs. 27,28,30. Raman flux into a mode
f is assumed to be an outgoing photon flux from the
system into the mode resulting from coherent scattering
process. Bose (photon) flux from molecular system into
mode f is (derivation is similar to the heat flux derivation
presented in Appendix A of Ref. 42)

Jf (t) =− |Mf |2
νf

Re

∫ t

−∞

dt1

[

∂

∂t1

(

D<
f (t, t1)

)

G>(t1, t)

− ∂

∂t1

(

D>
f (t, t1)

)

G<(t1, t)

]

. (16)

Here D
>(<)
f (t, t′) is the greater (lesser) projection of the

free photon Green function in a mode f

Df (τ, τ
′) = −i〈Tc Q̂f (τ) Q̂

†
f (τ

′)〉 (17)

where Q̂f = âf + â†f , and G>(<)(t, t′) is a greater (lesser)

projection of the two-particle (two-time) electron Green
function

G(τ, τ ′) = −〈Tc n̂(τ) n̂(τ
′)〉 (18)

where n̂ = d̂†d̂. Since the radiation bath is a set of free
empty modes, i.e.

D<
f (t, t

′) =− ie+iνf (t−t′) (19)

D>
f (t, t

′) =− ie−iνf (t−t′) (20)

and

G>(t, t′) = G<(t′, t) =
[

G<(t, t′)
]∗

. (21)

Eq.(16) leads to

Jf (t) = 2|Mf |2Re
∫ t

−∞

dt′ eiνf (t−t′)G<(t, t′). (22)
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Note that Eq.(22) yields time-dependent Raman flux
when only coherent electron scattering events are con-
sidered in G<(t, t′).
Time dependent current, Eq.(9), and Raman flux,

Eq.(22), can be calculated when the single-electron,
Eq.(15), and the two-electron, Eq.(18), Green functions
are known. These Green functions should take into ac-
count interactions with incident field E(t), contacts L
and R, radiation bath {f} and molecular vibration v.
Within the model (1)-(8) the interaction with the pump-
ing field is taken into account non-perturbatively - E(t)
enters the molecular time-dependent Hamiltonian (6) ex-
plicitly as a driving force. We assume that in the absence
of the laser pulse the molecular junction is in a bias in-
duced steady-state, and consider the coupling to contacts
included into ”zeroth-order Hamiltonian”. Thus interac-
tions with the radiation bath and molecular vibration
are treated as perturbations to the unperturbed molecu-
lar junction. Taking into account that the radiation bath
represents a measuring device for outgoing photon flux,
i.e. it counts and absorbs photons, second order in cou-
pling to the bath is adequate to represent the physics.
Coupling to the molecular vibration can be treated at
different levels of sophistication, including dressed states
picture with Hubbard NEGF40 or generalized QME31,32

approaches. Below (for illustration purposes only and to
keep discussion simple) we restrict this treatment to sec-
ond order in electron-vibration coupling. It was shown
in Ref. 30, that main contribution to Raman process in
this case comes from the particle-particle (or particle-
hole) scattering processes (see example of a diagram in
Fig. 1a). This leads to expression for the time-dependent
Raman flux in the form

Jf (t) =2|Mf |2|Mv|2Im
∫ t

−∞

dt′eiνf (t−t′) (23)

×
∫ +∞

−∞

dt1

∫ +∞

−∞

dt2 P
r(t, t1)D

<
v (t1, t2)P

a(t2, t
′)

where r, <, and a stands for retarded, lesser, and ad-
vanced projection, respectively, of the electron bubble
diagram

P (τ1, τ2) = −iG(τ1, τ2)G(τ2, τ1) (24)

and the phonon Green function

Dv(τ1, τ2) = −i〈Tc Q̂v(τ1) Q̂v(τ2)〉. (25)

Here Q̂v = v̂+ v̂†. Below for simplicity we treat vibration
as a free phonon. The lesser projection of the free phonon
Green function is

D<
v (t1, t2) = −i

(

Nve
−iωv(t1−t2) + [1 +Nv]e

iωv(t1−t2)
)

(26)
where Nv = [e~ωv/T − 1]−1 is Bose-Einstein thermal dis-
tribution.
Raman spectroscopy measures the flux of outgoing

photons resulting from the electron scattering. It is rea-
sonable to expect, that the energetics (spectrum) of the

...++ +

(c)

(b)
,

+

,

(a)

FIG. 1: Feynman diagrams for Raman scattering (a), related
two-particle scattering process (b), and fourth order pertur-
bation terms for electronic self-energy (c). Solid, dashed, and
wavy lines describe electron propagation associated with an
incident light field and coupling to contacts, propagation of
outgoing photon, and phonon of the molecular vibration, re-
spectively.

former may be at least partially similar to the ener-
getics (spectrum) of the latter. Indeed, inelastic elec-
tron tunneling spectroscopy is an example of obtaining
information on vibrational degrees of freedom through
electric current measurements. For example, recently
similar argument was used to show that phonon spec-
troscopy for double quantum dot locally coupled to the
molecular vibration can be measured by the electric
conductance.43 The electron participating in the Raman
scattering event may contribute to the current (conduc-
tance) in the molecular junction. Clearly, the current has
contributions also from electrons undergoing other scat-
tering events (elastic scattering, inelastic scattering on
molecular vibration, scattering by pumping mode only),
however with appropriate choice of the molecular level
position relative to Fermi energy in the contacts, one may
hope to observe contribution to current mostly from Ra-
man scattered electrons.

Experimental data on simultaneous measurements of
Raman scattering and conductance shows correlation
between optical and transport properties in molecular
junctions.15 Explanation of the effect used in Ref. 15 is
based on the assumption that the molecule changes its
conformation under laser pulse. While such scenario is
reasonable and indeed may explain the effect, here we
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propose an alternative explanation, which may also be
relevant.
Electron-electron (electron-hole) scattering events con-

tributing to the Raman diagram, Fig. 1a, are presented in
Fig. 1b. One can obtain those three scattering diagrams
by cutting two of four electron lines in Fig. 1a. These
scattering events contribute to single-particle self-energy
terms shown in Fig. 1c. The self-energies provide infor-
mation on energetics of the Raman scattering process in
the electric current. Among four diagrams presented in
Fig. 1c, the dominant contribution for the electric cur-
rent is given by two rainbow diagrams (top row), while
the others (diagrams in parentheses) are negligible. Cor-
responding contributions to the electron self-energy on
the Keldysh contour are

Σivf (τ1, τ2) =− |Mv|2
∫ ∞

0

dνfρ(νf )|Mf |2

× [Fivf (τ1, τ2) + Fifv(τ1, τ2)] (27)

where

Fivf(ifv)(τ1, τ2) ≡Dv(f)(τ1, τ2)

∫

c

dτ3

∫

c

dτ4 Df(v)(τ3, τ4)

×G(τ1, τ3)G(τ3, τ4)G(τ4, τ2). (28)

Here G(τ, τ ′) is single particle Green function defined in
Eq.(15), Df (τ, τ

′) and Dv(τ, τ
′) are photon and phonon

Green functions defined in Eqs. (17) and (25), respec-
tively, and

ρ(νf ) =
ν2f
π2c3

e−νf/νc (29)

is the optical density of the radiation bath (c is the speed
of light and νc is the cut-off frequency). Note, the single-
particle Green function G(τ, τ ′) in (28) takes into account
coupling between molecule and contacts, and external
driving by construction.
Additional (lower order in interaction) contributions

to the current (not related to Raman spectroscopy), that
we consider, are elastic, inelastic, and Rayleigh scatter-
ings. Self-energy corresponding to the elastic scattering
is defined in Eq.(10), Rayleigh scattering yields

Σif (τ1, τ2) = i

∫ ∞

0

dνfρ(νf )|Mf |2G(τ1, τ2)Df (τ1, τ2)

(30)
and inelastic effects are treated within the second Born
approximation

Σiv(τ1, τ2) = i|Mv|2G(τ1, τ2)Dv(τ1, τ2) (31)

to be consistent with the level of theory (second order
perturbation theory) used in treating Raman process (see
Fig. 1a).
The total self-energy is

Σ(τ1, τ2) =
∑

K=L,R

ΣK(τ1, τ2) + Σiv(τ1, τ2)

+Σif (τ1, τ2) + Σivf (τ1, τ2). (32)

Lesser and greater projections of the single-electron
Green function needed to calculate current, Eq.(9), are
obtained from Keldysh equation44

G≶(t, t′) =

∫ +∞

−∞

dt1

∫ +∞

−∞

dt2 G
r(t, t1)Σ

≶(t1, t2)G
a(t2, t

′)

(33)
Additive structure of the self-energy, Eq.(32), upon sub-
stitution to Eqs. (33) and (9) leads to an additive expres-
sion for the time-dependent current

IK(t) = IiK(t) + IivK (t) + IifK (t) + IivfK (t) (34)

where

IxK(t) = 2Re

∫ t

−∞

dt′
∫ +∞

−∞

dt1

∫ +∞

−∞

dt2

[

Σ<
K(t, t′)Gr(t′, t1)Σ

>
x (t1, t2)G

a(t2, t) (35)

−Σ>
K(t, t′)Gr(t′, t1)Σ

<
x (t1, t2)G

a(t2, t)
]

with x ∈ {L+R, iv, if, ivf}. This concludes the descrip-
tion of procedure to simulate time-dependent Raman and
current in the molecular junction for our model.

III. HARMONIC DRIVING

Electric field E(t) in molecular Hamiltonian ĤM ,
Eq. (6), is a local field formed by response of surface
plasmons to an incident laser beam. Areas of high local
field intensity (“hot spots”) make detection of molecular
optical response feasible.45 Tools of classical electrody-
namics may be employed to simulate time dependency
of a local field.38,39 Treating the latter as a driving force
one can get the time-dependent Raman signal and charge
flux within the approach described above.
To make analytical progress possible, here we restrict

our consideratin to harmonic driving

E(t) = E0 cos(νit) (36)

where νi is the frequency of the incident wave. In this
case analytic expressions for projections of the single-
particle Green functions (15) are33

Gr(t, t′) =− iθ(t− t′) exp

{

−i

(

ε0 − i
Γ

2

)

(t− t′)

−i
C

νi
[sin(νit)− sin(νit

′)]

}

(37)

G≶(t, t′) =

∞
∑

k1,k2=−∞

Jk1

(

C

νi

)

Jk2

(

C

νi

)
∫

dE

2π
Σ

≶
L+R(E)

×e
−i C

νi
[sin(νit)−sin(νit

′)]
e−i[E(t−t′)−νi(k1t−k2t

′)]

[E − ε0 − k1νi + iΓ2 ][E − ε0 − k2νi − iΓ2 ]
(38)
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where Γ = ΓL + ΓR, C = µE0, θ(t − t′) is the Heavi-

side step function, and Σ
≶
L+R = Σ

≶
L +Σ

≶
R. Derivation of

Eq.(38) employed the identity

exp

[

i
C

νi
sin(νit)

]

=

+∞
∑

k=−∞

eiνiktJk(
C

νi
) (39)

where Jk is Bessel function of the first kind.46

Substituting (37) and (38) into (23) one gets for the
time-dependent Raman flux

Jf (t) = 2|Mf |2|Mv|2Im
∫ t

−∞

dt′eiνf (t−t′) (NvP
r(t, ωv)P

a(ωv, t
′) + [Nv + 1]P r(t,−ωv)P

a(−ωv, t
′)) (40)

where

P r(t, ω) =

∫ +∞

−∞

dt′P r(t, t′)e−iωt′ (41)

=− i

∞
∑

k1,k2=−∞

Jk1

(

C

νi

)

Jk2

(

C

νi

)

e−i(ω+(k2−k1)νi)t

∫

dE

2π

Σ<
L+R(E)

[E − ε0 − k1νi + iΓ2 ][E − ε0 − k2νi − iΓ2 ]

×
(

1

E − ε0 − k1νi + ω + iΓ2
+

1

E − ε0 − k2νi − ω − iΓ2

)

(42)

is right-side Fourier transform of the retarded projection of the electron bubble diagram, Eq.(24), and P a(E, t′) =
[P r(t′, E)]∗. Averaging (40) over a period of the Raman flux oscillation yields energy conservation condition.
Electric current is calculated substituting (37) and (38) into lesser and greater projections of (27), (30), and (31),

and using resulting expressions in (34) and (35). This yields the following expressions for time-averaged (over an
oscillation period) contributions to the current

〈IiK(t)〉 = 2
∑

ξ

∫

dE

2π

∣

∣

∣

∣

∣

∣

∑

k

Jk

(

C
νi

)

Jk−ξ

(

C
νi

)

E − ε0 + (ξ − k)νi + iΓ2

∣

∣

∣

∣

∣

∣

2

[

Σ<
K(E)Σ>

K̄
(E + ξνi)− Σ<

K̄
(E)Σ>

K(E + ξνi)
]

(43)

〈IivK (t)〉 = 2|Mv|2
∑

ξ

∫

dE

2π
{NvΛξ(ωv, E)

[

Σ<
K(E)Σ>

K̄
(E + ωv + ξνi)− Σ<

K̄
(E)Σ>

K(E + ωv + ξνi)
]

(44)

+ [Nv + 1]Λξ(−ωv, E)
[

Σ<
K(E)Σ>

K̄
(E − ωv + ξνi)− Σ<

K̄
(E)Σ>

K(E − ωv + ξνi)
]

}

〈IifK (t)〉 = 2|Mf |2
∑

ξ

∫ ∞

0

dνf ρ(νf )

∫

dE

2π
Λξ(−νf , E)

[

Σ<
K(E)Σ>

K̄
(E − νf + ξνi)− Σ<

K̄
(E)Σ>

K(E − νf + ξνi)
]

(45)

〈IivfK (t)〉 = 2|Mv|2 |Mf |2Re
∑

ξ

∫ ∞

0

dνf ρ(νf ) (46)

×
∫

dE

2π
{Nv

[

Φ0
ξ(ωv,−ωv, E) + Φ0

ξ(ωv, νf , E)
] [

Σ<
K(E)Σ>

K̄
(E + ωv − νf + ξνi)− Σ<

K̄
(E)Σ>

K(E + ωv − νf + ξνi)
]

+ [Nv + 1]
[

Φ0
ξ(−ωv, ωv, E) + Φ0

ξ(−ωv, νf , E)
] [

Σ<
K(E)Σ>

K̄
(E − ωv − νf + ξνi)− Σ<

K̄
(E)Σ>

K(E − ωv − νf + ξνi)
]

}

where K̄ stands for the alternative to K choice of the the interface, and

Λ0
ξ(x,E) ≡

∣

∣

∣

∣

∣

∣

∑

k

Jk

(

C
νi

)

Jk−ξ

(

C
νi

)

[E − ε0 + x+ (ξ − k)νi + iΓ2 ][E − ε0 + (ξ − k)νi + iΓ2 ]

∣

∣

∣

∣

∣

∣

2

(47)

Φ0
ξ(x, y, E) ≡

∣

∣

∣

∣

∣

∣

∑

k

Jk

(

C
νi

)

Jk−ξ

(

C
νi

)

[E − ε0 + x− νf + (ξ − k)νi + iΓ2 ][E − ε0 − y + (ξ − k)νi + iΓ2 ][E − ε0 + (ξ − k)νi + iΓ2 ]

∣

∣

∣

∣

∣

∣

2

. (48)

As in the case of Raman scattering time averaging yields energy conservation conditions, which provide the en-
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FIG. 2: (Color online) Stokes intensity averaged over period
of oscillation of the photon flux, Eq.(40), shown as a function
of (a) the molecular level ε0 position at Vsd = 1 (solid line,
black) and 3 (dash-dotted line, red) and (b) frequency of the
incident laser field νi at the level position ε0 = 10 (solid line,
black), 15 (dash-dotted line, red), and 20 (dash-double dot
line, blue). Results of Eq.(40) are compared with perturbative
method of Ref. 30 (dotted lines). See text for parameters.

hancement of a contribution at the resonance of corre-
sponding process. For example, IivK has resonances when
energy of the tunneling electron is detuned from ε0 by
|νi − ωv| or ωv, which corresponds to inelastic tunneling
with or without interaction with driving field. Below we
discuss results of numerical simulations of Raman flux,
Eq.(40), and current, Eqs. (43)-(46), in the biased molec-
ular junction subjected to the harmonic driving.

IV. NUMERICAL RESULTS

We present results of simulations of Stokes response
and current for the model (1)-(8) under the harmonic
driving (36) averaged over period of oscillation. Param-
eters of the calculations (in units of Γ) are T = 0.1,

νi = 20, ωv = 5, Mf = Mv =
√
2, and νc = 25. Po-

sition of molecular level ε0 and bias Vsd are indicated for
each calculation. We take Fermi energy EF = 0, and

iν fν

†f

viω ω−

†vi → →

iν fν

†v

vω

†i f→ →

iν fν

†v

iω

†i f→ →

a b c

FIG. 3: (Color online) Sketches of the processes responsible
for peaks in the Stokes intensity, Fig. 2a, located at (a) EF −
ε0 = ±νi (±20) (b) ±(νi − ωv) (±15), and (c) ±ωv (±5).

apply bias in a symmetric way, i.e. µL,R = ±eVsd/2.
Figure 2 compares Stokes intensities calculated from

Eq.(40) to the expressions presented in Ref. 30. The lat-
ter is based on perturbative treatment of coupling to driv-
ing mode, contrary to our approach treating this coupling
exactly. Fig. 2a shows the dependence of Stokes signal
on position of molecular level. Both our approach and
that of Ref. 30 give here similar results. Stokes signal
is symmetric around Fermi energy due to particle-hole
symmetry preserved by the model.
Positions of the Stokes signal peaks at ε0−EF = ±ωv,

±(νi − ωv), and ±νi (see Fig. 2a) can be explained us-
ing the sketches in Figure 3. Coupling between molecule
and contact(s) leads to broadening of the molecular level,
represented within the model as a Lorentzian centered at
the position of the level. One can consider the Lorentzian
as a continuum of independent levels. Presence of the
molecular vibrational degree of freedom allows to dress
each molecular electronic level from this continuum with
vibrational states. The latter are indicated by parabolas
in the Figure 3 as states of harmonic oscillator. Electron
Stokes scattering is a coherent process starting, say, at
vibrationally ground and ending at the first vibrationally
excited state of some filled level from the continuum. In-
termediate state of the scattering process is a level (or
several levels) from the empty part of the continuum. For
EF − ε0 > νi Raman scattering is impossible, since an
intermediate state is not empty. At EF −ε0 ∼ νi (around
−20 in Fig. 2a) the Stokes scattering becomes possi-
ble. Corresponding threshold is illustrated in a sketch
in Fig. 3a.
After crossing this threshold, two processes compete

for the electron at the intermediate (excited) level: Ra-
man scattering and electron transfer from molecule into
contacts. As a result the intensity of Raman signal due to
this process should go down. However, additional chan-
nel for Raman scattering opens at this point. This chan-
nel is a scattering process where electron returning back
into the ground state comes from a different (not initially
excited) intermediate level which is ωv lower in energy in
the Lorentzian than the initially i excited one (see sketch
in Fig. 3b). For Stokes signal this transition comes from a
vibrationally excited state. This additional process leads
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FIG. 4: (Color online) Electric current averaged over period of
oscillation, Eqs.(43)-(46), shown as function of (a) molecular
level position ε0 at bias Vsd = 1 (solid line, black) and 3 (dash-
dotted line, red), and (b) incident laser filed frequency νi at
level position ε0 = 10 (solid line, black), 15 (dash-dotted line,
red), and 20 (dash-double dot line, blue). Dotted line (green)
in pannel (a) shows current without IiK contribution, Eq.(43),
at Vsd = 1. See text for parameters.

to increase in Stokes signal in the range of EF − ε0 from
νi to νi−ωv. At the latter point the channel closes, since
the level returning electron to ground state crosses Fermi
energy, becoming unpopulated. This leads to decrease in
Stokes signal for positions of ε0 closer to EF which results
in a peak in Fig. 2a at ∼ −15.
Similar process occurs with involvement of a level

shifted by ωv from the initial level at ε0 (see sketch in
Fig. 3c). Threshold behavior of the former leads to a
peak at EF − ε0 = ωv (∼ −5 in Fig. 2a). Note that
peaks for level positions above Fermi energy, ε0 > EF ,
can be explained along the same lines, considering hole
in place of particle transport. Note also that bias (two
different chemical potentials on the two sides of the junc-
tion) smears and (at higher biases, Vsd > Γ) splits the
peaks.
Difference between results of our approach from those

of Ref. 30 are more pronounced in Fig. 2b, where Stokes
signal is plotted as a function of incident field frequency.
Our approach takes into account multi-photon processes
absent in the perturbative treatment of original Persson’s
model8 and its generalization30.
Figure 4 presents current, Eqs. (34) and (43)-(46), as

iν

fν

iν

fν

iν

fν

iν

fν

(a) (b)

FIG. 5: (Color online) Sketches of Raman scattering process
of the type presented in Fig. 3b (a) with and (b) without
contribution to current through the junction.

function of level position ε0 (a) and incident frequency νi
(b) under harmonic driving. Due to presence of a driving
force the central (ε0 = EF ) peak in the current vs. level
position dependence (see Fig. 4a) may come from any
of the (43)-(46) contributions, since elastic and inelastic
(in vibrational degree of freedom or in outgoing photon)
channels are always open in this case (note νi > ωv and
most of νf ). Other peaks are mostly due to inelastic
processes of IiK and IivK , Eqs. (43) and (44), and contri-
butions to the current from the processes which deter-
mine similar structure in Stokes intensity vs. ε0 plot (see

Fig. 2a). The latter comes from the IivfK term, Eq.(46).
There is an important difference between contributions

of the Raman scattering processes into the Stokes inten-
sity and charge flux. This difference is illustrated with
the sketches presented in Fig. 5. Here Raman scatter-
ing process of Fig. 3b is shown for two different position
of ε0 relative to contacts Fermi energy. Both situations
will contribute to Stokes intensity as is discussed above.
However, only one of them will increase the charge flux
through the junction. This difference in contributions ex-
plains the difference in peak structure in the Stokes and
current. Comparing solid lines in Figs. 2a and 4a one
sees absence vs. presence of the two-peak structure in
the region from −20 to −15 at low biases, Vsd < Γ (for
convenience also current without dominant contribution
IiK is presented in Fig. 4a as dotted line).
Fig. 4b demonstrates dependence of the current on fre-

quency of the incident laser field. The structure is similar
to the usual resonant inelastic conductance plots with
two peaks representing elastic (ε0 crosses chemical po-
tential) and first vibrational sideband (ε0 + ωv crosses
chemical potential) contributions. This figure is similar
to the Stokes intensity plot in Fig. 2b. Once more, the
difference in contributions to the Stokes signal and cur-
rent sketched in Fig. 5 explain the difference in structure
of the peaks in Figs. 2b and 4b, respectively.
Finally, we discuss possible fluctuations of the Stokes

and current resulting from fluctuations of underlying
driving parameters: position of the level and bias. Note,
that since the conductance in experiments is measured as
the current at low bias, we can use our results for qualita-
tive comparison to correlation between conductance and
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FIG. 6: (Color online) Stokes intensity averaged over pe-
riod of oscillation of the photon flux (red), Eq.(40), and
time-averaged current (blue), Eqs.(43)-(46), as functions of
(a) position of the molecular level, ε0 at Vsd = 1 (Stokes -
dash-dotted line, current - solid line) and (b) bias Vsd at the
level positions ε0 = 15 (Stokes - dash-dotted line, current -
solid line) and 20 (Stokes - dash-double-dotted line, current
- dashed line). Vertical dashed lines in panel (a) are used as
eye guide. See text for parameters.

Stokes presented in Ref. 15. The latter work explains
this temporal behavior by molecular geometry reorgani-
zation. While such explanation is very reasonable, and
indeed might be the main source of the observed corre-
lated behavior, we propose an alternative mechanism for
the effect.

Figure 6a compares dependence of Stokes and current
on position of the level (see Figs. 2a and 4a). Since the
problem is particle-hole symmetric, we show only half
of the energy region (ε0 < EF ). As is discussed above,
processes shown in Fig. 5 contribute differently to cur-
rent and Stokes, which results in a valley in the current
curve (solid line, blue) around ε0 = −17.5 and absence of
such valley in Stokes curve (dash-dotted line, red). Con-
sequently fluctuations of position of molecular level in
this region may lead to different response in measured
Stokes and conductance. In Fig. 6a vertical dashed lines
are used as eye guide to show two possibilities - shift
of the molecular level closer to Fermi energy may lead
to either a decrease in both Stokes and conductance sig-
nals or a decrease in Stokes with simultaneous increase in
conductance. Therefore, we can speculate that for high-
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FIG. 7: (Color online) Response of Stokes intensity (dash-
dotted line, red) and current (solid line, blue), both averaged
over period of oscillation of the corresponding flux, to instant
shift of the molecular level shown as function of time. The
molecular level is shifted (a) from 1© (-15) to 2© (-17.5) at
t = 0 (correlation), and (b) from 2© (-17.5) to 3© (-20) at
t = 0 (anti-correlation). The three molecular level positions
1©, 2© and 3© are denoted as vertical dashed lines in Fig. 6a.

est occupied molecular orbital (HOMO) residing around
EF − νi +ωv (or LUMO around EF + νi −ωv), for weak
molecule-contact coupling one may expect observing cor-
related (and anti-correlated) response of Stokes intensity
and conductance caused by environmental fluctuations.

Similarly, different response of Stokes and conductance
may stem from bias fluctuations. Fig. 6b shows depen-
dence of Stokes and current vs. bias for two positions of
molecular level. Regions of (anti-)correlations of the two
signals resulting from bias fluctuations are easily identi-
fiable in this plot.

Figure 7 shows correlation (a) and anti-correlation (b)
of Stokes and current as functions of time. We cal-
culate time-dependence of Stokes intensity and current
(both averaged over the period of oscillation) resulting
from instantaneous shifts of molecular levels at t = 0.
Three different molecular level positions at −15, −17.5,
and −20 are denoted by 1©, 2© and 3©, respectively, in
Fig. 6a. Same notation is used in Fig. 7. For the molec-
ular level shift 1© → 2© both Stokes and current signals
decrease together (see Fig. 7a), while shift 2© → 3© leads
to the anti-correlated response (see Fig. 7b). Analyt-
ical forms for the time-dependent Stokes intensity and
current due to the molecular level shift are presented in
the Appendix A. Thus our simple model provides a spe-
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cific mechanism for temporal (anti-)correlation between
Stokes signal and conductance, which may be responsi-
ble for at least part of experimentally observed temporal
correlation phenomena.15

V. CONCLUSION

We consider a time-dependent variant of the charge
transfer SERS model8 previously generalized to steady-
state situations30. Contrary to previous considerations
our approach treats coupling to incident laser field non-
perturbatively, which (together with possibility of consid-
eration of arbitrary time-dependence of incident pulse)
paves a way to realistic simulations of Raman spec-
troscopy experiments in molecular junctions. After for-
mulating general theory we restrict our consideration to
harmonic driving. This allows to derive expressions for
Raman flux and current analytically.
Since both electrons and photons are involved in the

same Raman scattering process, characteristic features
of the two fluxes (Raman photon flux and conductance)
should at least partially resemble each other. We use
this argument to demonstrate within the model similarity
of dependence of the two fluxes on external parameters
(position of molecular level, applied bias, and incident
field frequency). The Feynman diagrams responsible for
the proposed similarity are identified.
We demonstrate that due to the presence of Fermi pop-

ulations in the contacts, the charge flux resulting from
electrons participating in teh Raman scattering has char-
acteristic features specific to the electron flux only. In
particular, for weak coupling (Γ < Vsd) current depen-
dence on position of the molecular level has a two-peak
structure in the region ε0 − EF ∼ ±(νi − ωv). Absence
of such structure for Stokes signal in the same region al-

lows for the same (or opposite) response to fluctuations in
the position of the molecular level. Similarly, correlated
(or anti-correlated) behavior can be found in response to
bias fluctuations. These findings may serve as an alter-
native (to configurational change in molecular structure)
explanation to at least part of (anti-)correlated temporal
behavior of Stokes signal and conductance reported in
Ref. 15.

Extension of the theory to description of molecular
junction responses in the language of molecular states,
incorporation of local fields (e.g. simulated for junction
geometry within finite difference time domain approach)
as realistic driving force, and application of the theory to
realistic simulations is the goal of future research.

Acknowledgments

We gratefully acknowledge support by the National
Science Foundation (CHE-1057930), the U.S.-Israel Bi-
national Science Foundation (grant #2008282), and the
Hellman Family Foundation.

Appendix A: Instant level shift with external

harmonic driving

Analytical expressions for current within the resonant
level model where derived in Ref. 33 for two separate
cases: 1. instant level shift and 2. harmonic driving. Here
we present similar derivation for the case when both ef-
fects are present simultaneously.

Analytic expressions for projections of the single-
particle Green function, Eq.(15), for instantaneous shift
of the molecular level from ε0 to ε0 +∆ at t = 0 driven
by harmonic incident field are

Gr(t, t′) =− iθ(t− t′) exp

(

−i

(

ε0 − i
Γ

2

)

(t− t′)− i∆ [θ(t)t− θ(t′)t′]− i
C

νi
[sin(νit)− sin(νit

′)]

)

(A1)

G≶(t, t′) =

∞
∑

k1,k2=−∞

Jk1

(

C

νi

)

Jk2

(

C

νi

)
∫

dE

2π
Σ

≶
L+R(E) exp

(

−iE(t− t′)− i
C

νi
[sin(νit)− sin(νit

′)]

)

× eiνik1t

E − ε0 − θ(t)∆− k1νi + iΓ2

[

1− θ(t)
∆ei(E−ε0−∆−νik1+iΓ/2)t

E − ε0 − νik1 + iΓ2

]

(A2)

× e−iνik2t
′

E − ε0 − θ(t′)∆− k2νi − iΓ2

[

1− θ(t′)
∆e−i(E−ε0−∆−νik2−iΓ/2)t′

E − ε0 − νik2 − iΓ2

]

For t, t′ < 0 Eqs.(A1) and (A2) reduce to (37) and (38),
respectively.
Substituting (A1) and (A2) into the retarded projec-

tion of (24), and performing right-side Fourier transform
(41) of the resulting expression leads to Eq.(42) for t < 0
and to
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P r(t, ω) = −i

+∞
∑

k1,k2=−∞

Jk1

(

C

νi

)

Jk2

(

C

νi

)
∫

dE

2π
Σ<

L+R(E)

(

1−∆
e−i(E−ε0−∆−νik2−iΓ/2)t

E − ε0 − νik2 − iΓ2

)

exp (i [νi(k1 − k2)− ω] t)
[

E − ε0 −∆− νik1 + iΓ2
] [

E − ε0 −∆− νik2 − iΓ2
] [

E − ε0 −∆− νik1 + ω + iΓ2
] (A3)

(

1− ei(E−ε0−∆−νik1+ω+iΓ/2)t

[

1− 1− e−iωt

ω
∆

(

1 +
ω −∆

E − ε0 − νik1 + iΓ2

)

−e−i∆t

(

1− ∆

E − ε0 − νik1 + iΓ2

)(

1− ∆

E − ε0 − νik1 + ω + iΓ2

)])

+ (ω → −ω)
∗

for t > 0. Note that Eq.(A3) reduces to the form of
Eq.(42) with ε0 → ε0 +∆ when t → +∞.
Time-dependent Raman flux can be obtained from

Eq.(40) substituting (42) and (A3) for t < 0 and t > 0,
respectively. As the time-dependent Raman is averaged
over the period of oscillation at asymptote, t → +∞,

transient time dependency of the resulting expression still
remains. It decays on a timescale of 1/Γ.
Time-dependent current is obtained substituting (A1)

into (35). changed for t > 0 from Eqs. (43)-(46) by Ne-
glecting fast oscillating terms, current components aver-
aged over period of oscillation at asymptote are

〈IiK(t)〉 = 2
∑

ξ

∫

dE

2π

{

e−
Γ

2
t

∣

∣

∣

∣

∣

∣

∑

k

Jk

(

C
νi

)

Jk−ξ

(

C
νi

)

E − ε0 + (ξ − k)νi + iΓ2

∣

∣

∣

∣

∣

∣

2

+
(

1− e−
Γ

2
t
)

∣

∣

∣

∣

∣

∣

∑

k

Jk

(

C
νi

)

Jk−ξ

(

C
νi

)

E − ε0 −∆+ (ξ − k)νi + iΓ2

∣

∣

∣

∣

∣

∣

2
}

×
[

Σ<
K(E)Σ>

K̄
(E + ξνi)− Σ<

K̄
(E)Σ>

K(E + ξνi)
]

(A4)

〈IivK (t)〉 = 2|Mv|2
∑

ξ

∫

dE

2π

{

Nv

[

e−
Γ

2
tΛ0

ξ(ωv, E) +
(

1− eiωvte−
Γ

2
t
)

Λ∆
ξ (ωv, E)

]

(A5)

×
[

Σ<
K(E)Σ>

K̄
(E + ωv + ξνi)− Σ<

K̄
(E)Σ>

K(E + ωv + ξνi)
]

+ [Nv + 1]
[

e−
Γ

2
tΛ0

ξ(−ωv, E) +
(

1− e−iωvte−
Γ

2
t
)

Λ∆
ξ (−ωv, E)

]

×
[

Σ<
K(E)Σ>

K̄
(E − ωv + ξνi)− Σ<

K̄
(E)Σ>

K(E − ωv + ξνi)
]

}

〈IifK (t)〉 = 2|Mf |2
∑

ξ

∫ ∞

0

dνf ρ(νf )

∫

dE

2π

[

e−
Γ

2
tΛ0

ξ(−νf , E) +
(

1− e−iνf te−
Γ

2
t
)

Λ∆
ξ (−νf , E)

]

×
[

Σ<
K(E)Σ>

K̄
(E − νf + ξνi)− Σ<

K̄
(E)Σ>

K(E − νf + ξνi)
]

(A6)

〈IivfK (t)〉 = 2|Mv|2 |Mf |2Re
∑

ξ

∫ ∞

0

dνf ρ(νf ) (A7)

×
∫

dE

2π

{

Nv

[

e−
Γ

2
tΦ0

ξ(ωv,−ωv, E) +
(

1− ei(2ωv−νf )te−
Γ

2
t
)

Φ∆
ξ (ωv,−ωv, E)

+ e−
Γ

2
tΦ0

ξ(ωv, νf , E) +
(

1− ei(ωv−2νf )te−
Γ

2
t
)

Φ∆
ξ (ωv, νf , E)

]

×
[

Σ<
K(E)Σ>

K̄
(E + ωv − νf + ξνi)− Σ<

K̄
(E)Σ>

K(E + ωv − νf + ξνi)
]

+ [Nv + 1]
[

e−
Γ

2
tΦ0

ξ(−ωv, ωv, E) +
(

1− e−i(2ωv+νf )te−
Γ

2
t
)

Φ∆
ξ (−ωv, ωv, E)

+ e−
Γ

2
tΦ0

ξ(−ωv, νf , E) +
(

1− e−i(ωv+2νf )te−
Γ

2
t
)

Φ∆
ξ (−ωv, νf , E)

]

×
[

Σ<
K(E)Σ>

K̄
(E − ωv − νf + ξνi)− Σ<

K̄
(E)Σ>

K(E − ωv − νf + ξνi)
]

}
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where K̄ stands for the alternative to K choice of the
the interface, Λ0

ξ(x,E) and Φ0
ξ(x, y, E) are defined in

Eqs. (47) and (48), respectively. Definition of Λ∆
ξ (x,E)

and Φ∆
ξ (x, y, E) is similar with ε0 → ε0 +∆.
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37 P. Myöhänen, A. Stan, G. Stefanucci, and R. van Leeuwen.

J. Phys.: Conf. Ser. 220, 012017 (2010).
38 M. Sukharev and M. Galperin. Phys. Rev. B 81, 165307

(2010).
39 B.D.Fainberg, M.Sukharev, T.-H.Park, and M.Galperin.

Phys. Rev. B 83, 205425 (2011).
40 M. Galperin, A. Nitzan, and M. A. Ratner. Phys. Rev. B

78, 125320 (2008).
41 G. D. Mahan. Many-Particle Physics. Plenum Press,

(1990).
42 M. Galperin, A. Nitzan, and M. A. Ratner. Phys. Rev. B

75, 155312 (2007).
43 A. Ueda, O. Entin-Wohlman, M. Eto, and A. Aharony.

arXiv:1008.5195 (2010).
44 H. Haug and A.-P. Jauho. Quantum Kinetics in Transport

and Optics of Semiconductors. Springer-Verlag (1996).
45 D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y.

Wu, P. Nordlander, and D. Natelson. Nano Lett. 7, 1396
(2007).

46 I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Se-

ries, and Products. Academic Press (2007).


