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A twisted graphene bilayer consists of two graphene monolayers rotated by an angle θ with
respect to each other. Theory predicts that charge-neutral twisted graphene bilayers display a
drastic reduction of their Fermi velocity vF for 0 <

∼
θ <
∼

20◦ and 40 <
∼

θ <
∼

60◦. In this paper we
present evidence for an additional anisotropic reduction of vF in the presence of external electrostatic
fields. We also discuss in quantitative detail velocity renormalization for other relevant bands in
the vicinity of the K point. Except for a rigid energy shift, electrostatic fields and doping by metal
atoms give rise to similar renormalization of the band structure of twisted graphene bilayers.

PACS numbers: 73.22.Pr, 73.21.Ac

I. INTRODUCTION

Graphene is a two-dimensional zero-gap material with carbon atoms arranged in a honeycomb lattice. It has
outstanding electronic, optical and mechanical properties1,2 with charge carriers exhibiting a linear dispersion that can
be described by a relativistic Dirac-Weil equation. Bulk graphite is formed when graphene layers are stacked following a
well-defined (Bernal) pattern. In contrast, graphene layers grown by silicon sublimation on SiC(0001̄)3,4 or by chemical
vapor deposition (CVD) on metal substrates5,6 contain rotational faults or “twists”7 between successive layers. The
electronic structure of these twisted graphene multilayers differs from that of graphite and displays linear bands
close to the charge neutrality level.4,8,9 Few-layer graphene with rotational faults is arguably a promising material
for a number of device applications, including field-effect transistors,10–12 resistance standards,13 and transparent
electrodes.14,15

Band structure calculations on bilayer graphene with rotational faults, the so-called “twisted graphene bilayer”
(TGB), confirm the persistence of the linear dispersion7,16–19 down to tens of meVs away from the charge neutrality
point,20 with no gap opening under transverse electric fields.7,21 This is markedly different from the Bernal-stacked
bilayer, where a tunable electronic gap is created by transverse electrostatic fields.22,23 Starting from a Bernal-stacked
graphene bilayer, a TGB is formed by rotating the upper layer about the overlapping A-sublattice by an angle θ with
respect to the lower layer. Commensurate structures labeled by (m,n) correspond to a rotational angle of θ satisfying
the condition:7,17,18,20

cos(θ) =
n2 + 4nm+m2

2(n2 + nm+m2)
. (1)

The lattice vectors of the TGB supercell are t1 = na1 +ma2, and t2 = −ma1 + (n+m)a2, where a1 and a2 are the
lattice vectors of the primitive unit cell in monolayer graphene (|a1| = a0).
A drastic reduction of the Fermi velocity vF in TGBs with respect to that of monolayer graphene vF0 has been

predicted for small θ.7,18,19,24 A transition from a parabolic (Bernal) to a linear dispersion24 sets in at θ values
somewhere between 0◦ and 2◦ (or 58◦ and 60◦). For extremely small values of θ, complex behavior is expected.19,25,26

The electronic coupling for low energy bands between layers in a TGB differs from that in a Bernal bilayer, since the
coupling takes place, to the first order, between states near the Dirac point in one layer and those in the other layer
at energies ±Ec,

7 with:

Ec(θ) = h̄vF0∆K = 2h̄vF0|K| sin(θ/2), (2)

where |K| = 4π/3a0. In Bernal bilayer the coupling occurs for states at the same energy. Besides the velocity
renormalization for small values of θ and the lack of gap opening in transverse electrostatic fields, little has been
reported for TGBs under electrostatic fields or charge doping.
On the experimental side, values for vF obtained by a host of techniques on various types of samples are scattered.

Raman spectroscopy seemed to indicate27–29 a 5% reduction of the Fermi velocity in folded graphene. Early transport
experiments3 gave vF /vF0 = 0.66 in folded graphene and vF /vF0 = 0.7 in epitaxial graphene (EPG) grown on
SiC(0001̄). ARPES9 and STM30 measurements on other EPG samples yielded vF /vF0 = 1.0. High magnetic field
STM topography and Landau level spectroscopy had been combined to study graphene twisted layers grown by
CVD showing a strong angle-dependent Fermi velocity renormalization,31 in quantitative agreement with theoretical
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FIG. 1: (Color online) (a) The large hexagons indicate the Brillouin zone of each of the two rotated layers, while the small
hexagon illustrates the size of the Brillouin zone for the twisted graphene bilayer. (b) The small hexagon in (a) is magnified to
indicate the T − T ′ segment over which the band structures are discussed in this work. The band structure is symmetric with
respect to the dash-dot line, so that energy bands at the Kθ and K points are the same.

predictions. Recent ARPES investigations on graphene layers grown on SiC(0001̄) yielded vF /vF0
∼= 1.0 for all the

samples studied.32

While theoretical studies have assumed charge neutral TGB, many experimental graphene multilayer systems have
certain degree of doping9,30,32 by the substrate,33 by extraneous contamination, or intentionally produced.34–40 This
shifts the location of the Fermi level and induces a potential difference across layers. In this work, we study in
detail the effect of electrostatic potential or doping on the electronic energy bands in TGBs using density functional
theory (DFT) and tight-binding calculations beyond the first-order analytical results in Ref. 7. We have identified
an enhanced, anisotropic reduction of vF with an on-site perturbation ∆E/2 (−∆E/2) applied to the upper (lower)
layer. Additionally, when ∆E ≥ Ec we find that linear bands with velocities close to vF0 reappear away from the
Fermi level. This is corroborated by k-point resolved charge population analysis in each layer indicating almost single
layer occupation. Calculations with charge doping are shown to reproduce this behavior on TGBs induced by the
relative on-site energy shifts between layers, with the additional advantage of resetting the location of the Fermi level.
The paper is organized as follows: In Sec. II we summarize the calculational details. In Section III A we discuss

the band structure for an (8,9) TGB (θ = 3.89◦) and a (14,15) TGB (θ = 2.28◦) as ∆E varies. We then present the
velocities of linear bands in TGBs as a function of ∆E and θ and discuss the identified trends. In Section III B we
investigate an (8,9) TGB under charge doping. We offer conclusions in Sec. IV.

II. CALCULATIONAL DETAILS

We perform DFT calculations on TGBs under transverse electrostatic fields or charge doping. Our calculations are
carried out within the local-density approximation (LDA)41,42 with the SIESTA package,43,44 in which the valence
electrons are described with Troullier-Martins pseudopotentials45 and a set of localized numerical atomic orbitals.46 In
addition, tight-binding calculations are performed for π electrons with up to third nearest-neighbors in-plane hopping
(with γ0 = 2.80 eV) and a separate, exponentially decaying inter-plane hopping term with γ1 = 0.42 eV (qπ = 3.15
and qσ = 7.48; see Ref. 19 for more details). We use the wave functions from the tight-binding calculations to compute
the layer population σj(k) for a given eigenstate j at a specific k-point, defined as:

σj(k) =

∑
i∈LM |Ψj(i,k)|

2

∑
l |Ψj(l,k)|2

, (3)

where i and l denote atomic sites and Ψ is the tight-binding expansion coefficient. The sum in the numerator runs over
only the lower monolayer (LM), while the sum in the denominator runs unrestrictedly over all atoms in the supercell.
σj(k) is zero (one) if only the orbitals in the the upper (lower) layer are populated. In general, 0 ≤ σj(k) ≤ 1.
In this paper we focus on (m,n) TGBs satisfying m = n+ 1 (n > 0). This is one of the two families of TGBs as

described by Mele20 with a one-to-one correspondence between n and θ. The DFT calculations are carried out in the
presence of charge dopants or electrostatic fields. We focus on systems for which the Fermi velocity vF is renormalized
by at least 20% with respect to vF0, namely, θ < 10◦ according to Refs. 7 and 19 in order to investigate any additional
renormalization induced by the electrostatic field or doping. The structural parameters used are a0 = 2.42 Å and
d = 3.35 Å.
The first Brillouin zones of the top and rotated bottom layers are shown in Fig. 1(a). The small hexagon illustrates

the size of the Brillouin zone for the TGB supercell. It is amplified in Fig. 1(b) in order to indicate the line T -T ′ in
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FIG. 2: (Color online). Changes of band dispersions for the (8,9) twisted graphene bilayer (θ = 3.89◦, Ec = 0.64 eV) as
the electrostatic field increases. Energies calculated using density functional theory (DFT) are shown by solid lines in the
upper row for the following electric fields: (a) 0.0, (b) 0.4, (c) 0.7, and (d) 1.0 eV/Å. For comparison, the dispersions of a
single-layer graphene with an (8,9) supercell in zero field are plotted in the lower part of (a). Tight-binding results are shown by
symbols; results with (without) the interlayer interaction included are shown in the upper (lower) row; and the on-site energy
differences ∆E between the two layers that best describe the results of DFT calculations are indicated. The color coding of the
data indicates layer population as defined in Eq. (3), with single-layer population at the extremes of the color bar and equal
population in the middle of the color scale. Bands of interest are highlighted with numbers and bold lines. The small rectangle
in (d) will be discussed in Fig. 3. The horizontal axis spans the range of (−0.058, 0.058) Å−1 in all subplots.

reciprocal space for which the band structure is plotted throughout this paper. The band structure is symmetric with
respect to the dash-dot line in Figs. 1(a) and 1(b), and K ′

θ (K ′) is folded back to K (Kθ).
We will discuss two particular groups of bands: The first one corresponds to those studied in Refs. 7 and 19, while

the second group lies lower in energy around the K point. In order to provide a measure of the linearity (or lack
thereof) of these bands at the vicinity of the K point, we carry out power-law fits on band segments starting at K
and ending half-way towards T (or T ′).

III. RESULTS

A. Band Renormalization by Electrostatic Field

We first consider an (8,9) TGB (θ = 3.89◦, Ec = 0.64 eV, and vF /vF0 ≃ 0.8). In the upper row of Fig. 2, we show
the band structures obtained from DFT calculations (solid lines) for the transverse electric fields of 0.0, 0.4, 0.7, and
1.0 eV/Å, respectively. Also shown are the band structures from tight-binding calculations with corresponding on-site
energy differences between the two layers: ∆E = 0.00 (open circles), 0.36, 0.64, and 0.82 eV (diamonds), respectively,
which are chosen to best fit the DFT results. The on-site entries in the tight-binding Hamiltonian for a given layer
are shifted by either +∆E/2 or −∆E/2 in order to keep the energy zero at the Fermi level. For comparison, we
show in the lower row of Fig. 2 the corresponding tight-binding band structures with the interlayer interaction turned
off, resulting in two sets of monolayer bands displaced by ±∆E/2. Our calculated band structure with ∆E = 0
in Fig. 2(a) is consistent with those discussed in previous studies:7,18,19,24 the low-energy isotropic linear dispersion
around the K point is preserved in the TGB; and the magnitude of the Fermi velocity vF is reduced when compared
to vF0 (vF0 = 0.83 × 106 m/s in our LDA calculations), a signature of coupling in TGBs with small θ’s.7,19,24 The
reduction of vF is due to the coupling between states in the Dirac cone of one layer and three pairs of states in the
Dirac cone of the other layer separated by a finite energy Ec(θ) as defined in Eq. (2). As will be discussed below, Ec

defines a critical energy scale for the evolution of the band structures as ∆E increases.
The band structures for finite ∆E are shown in Fig. 2(b)-(d). The layer population as defined in Eq. (3) is presented

by the color scale of the symbols. When ∆E < Ec(θ) the on-site energy difference between the layers results in a
small perturbation to the band structure. The originally degenerate Dirac cones around the Fermi level in Fig. 2(a)
split into two sets of cones, as labeled by 1-4 in Fig. 2(b). Analysis of layer population in Fig. 2(b) confirms that for
∆E = 0.36 eV charge carriers of bands 1 and 2 are mainly localized in the upper layer while carriers of bands 3 and 4
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FIG. 3: (Color online). (a) Band structure within the rectangle in Fig. 2(d). The colored diamonds correspond to tight-binding
results, and the open circles are from DFT calculations. The (red) lines help stress the linearity of the Dirac cones. The actual
data in the upper portion of the plot (above the crossing point) deviates from the linear trend slightly due to hybridization.
(b) Charge densities obtained from density-functional-theory calculations for states at the particular k-point indicated by the
solid vertical line in (a). These density distributions validate the layer population analysis based on tight-binding results.

(a) ∆E=0.00 eV (b) ∆E=0.15 eV (c) ∆E=0.30 eV (d) ∆E=0.45 eV
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FIG. 4: (Color online). Band structures for the (14,15) TGB (θ = 2.28◦, Ec = 0.38 eV) calculated by the tight-binding method
with various on-site energy differences ∆E between the two layers. The color scheme and highlighted bands are consistent with
those presented in the upper row of Fig. 2. The value of ∆E needed to observe the monolayer-like bands on (d) is smaller
than the one needed for the (8,9) system. The anisotropic flattening of the bands close to zero energy as ∆E increases is also
corroborated. The horizontal axis spans the range of (−0.035, 0.035) Å−1 in all subplots.

are mainly localized in the lower layer. The conical structures are quite linear and isotropic. A comparison between
the upper and lower plots in Fig. 2(b) elucidates the effect of interlayer interaction. This regime was also discussed
in Ref. 21. When ∆E ≃ Ec bands 1-4 start to become nonlinear and anisotropic, as evidenced by the different slopes
to the left and right of the K point in the upper panel of Fig. 2(c). These bands can no longer be described by a
Dirac equation with a renormalized velocity. From the layer population analysis one concludes that these bands carry
almost equal weight from both layers. The lower panel in Fig. 2(c), in which the interlayer interaction is turned off,
indicates that the bands of both layers overlap substantially near K. Therefore, turning on the interlayer interaction
leads to strong band hybridization and the resulting departure from linearity and isotropy. Additionally, these bands
are significantly flatter than those for ∆E = 0 shown in the upper panel of Fig. 2(a). A quantitative analysis will be
provided later.
For ∆E > Ec(θ) the isotropic cone-like structures near the Fermi level are no longer present, as shown in the upper

panel of Fig. 2(d). The original Dirac cone of the lower (upper) layer is shifted down (up) in energy without much
distortion in the presence of an external field. The linear dispersion of the Dirac cone associated with the lower layer
at about −0.4 eV is highlighted by an inverted “v” in Fig. 2(d), and the region indicated by a rectangle is amplified
in Fig. 3(a). The linear and isotropic features are recovered, with the group velocity vL close to vF0, showing a weak
coupling. Layer population analysis in Fig. 3(a) shows that bands become more localized in one layer. This is further
verified by the charge density distributions obtained from DFT calculations, shown in Fig. 3(b).
The role of Ec in the response to the electrostatic field can be understood as follows: A strong hybridization among

bands persists for ∆E ≤ Ec, and this coupling is responsible for the renormalization of the Fermi velocity vF0. For
∆E > Ec bands away from the energy zero are localized toward individual layers. Monolayer-like behavior is predicted
at energy regions |E| > ∆E where bands from opposite layers do not overlap. Strong coupling persists for energies
|E| ≤ ∆E.



5

1.0

0.8

0.6

0.4

0.2

0.0

θ (Degrees)

v
/v

F
0

(a)
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0 4 6 8 102

(c)

∆E (eV)
0.0 0.2 0.4 0.60.1 0.3 0.5 0.7

(b)
1.0

0.9

0.8

0.7

0.6

0.5

0.4

v
/v

F
0

0.0 0.2 0.6 0.80.4 1.0
∆E (eV)

v
/v

F
0

vL

vL

vF

vF

EC

vF(∆E=0)

vL(∆E=EC)

EC

α

1.2

1.1

1.0

0.0 1.01.0∆E (eV)E (eV)

0.0 0.7
∆E (eV)

α

1.2

1.1

1.0

FIG. 5: (Color online). (a) and (b): Amount of band renormalization versus ∆E for the bands highlighted in Fig. 2 and Fig. 4,
respectively. The insets show α, the exponent of the power-law fit of the bands of interest. (c) Comparison of the band velocity
at the Fermi level vF for bilayer graphene with ∆E = 0 eV (black line: Ref. 7), and the renormalized velocity of the lower
band vL at ∆E = Ec (red filled dots; the trend line is only a guide to the eye). Notice that vL(Ec) > vF for θ <

∼
5◦.

The results discussed above for the (8,9) TGB (θ = 3.89◦) are quite general for other similar or larger θ values. We
show in Fig. 4 the tight-binding band structures for the (14,15) TGB (θ = 2.28◦, Ec=0.38 eV). Similar results are
found: At ∆E = 0, the bands around the Fermi energy are renormalized with vF /vF0 = 0.45. As the bias increases
the bands crossing the Fermi level gradually become flatter, non-linear, and anisotropic. When ∆E is larger than Ec

[Fig. 4(d)] the layer population analysis indicates the presence of predominantly one-layer bands starting from −0.3
eV. We have highlighted the inverted “v” feature, similar to the one displayed in Fig. 2(d), but noticed that a “v”
feature in blue (light gray) is also seen at energies E > 0.30 eV, also corresponding to weakly coupled Dirac bands.
The color scheme and highlighted bands are consistent with those in Fig. 2. The interesting observation is that as
θ decreases, the value of ∆E needed for these linear features to reappear also becomes smaller, as expected from
Eq. (2).
Having established the good agreement between DFT and tight-binding results, in the following we will continue

our analysis based on tight-binding calculations. The focus will be on the band segments highlighted with solid thick
lines in Figs. 2(b) and 2(d), and in Figs. 4(b) and 4(d). Average band velocities from linear fit as a function of ∆E
for these segments are plotted in Fig. 5(a) for the (8,9) TGB and in Fig. 5(b) for the (14,15) TGB, respectively.
Power-law fits are performed on data points from K to the midpoint between K and T , which contains a significant
and representative number of data points. The insets in Figs. 5(a) and 5(b) show the plot of α, the exponent of
the power-law fits. As ∆E increases and approaches Ec, vF (open blue squares) further decreases due to enhanced
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θ and ∆E for which band structures were plotted in Figs. 2 and 4. See text for more details.

coupling between states of the two layers. Departure from the linear behavior is noticed as α becomes larger than
one as ∆E increases [see the open squares in the insets of Figs. 5(a)-(b)]. In the shaded regions of Figs. 5(a) and
5(b) the coupling is particularly significant that quasiparticle states of those bands near energy zero can no longer
be well described as isotropic massless Dirac fermions (see also Fig. 2(c), upper panel and Fig. 4(c)). For ∆E > Ec,
the Dirac bands for the lower layer are recovered at an energy location below the Fermi level. The velocity vL of the
charge carriers for this band (open red circles) increases with ∆E, approaching vF0. α also approaches one at the
same time [see insets in Figs. 5(a)-(b)]. This is a result of weak hybridization with the bands from the upper layer.
We now perform a quantitative investigation of the band dispersion versus the twist angle θ and focus on the same

velocity terms discussed above. The results are obtained using the tight-binding method. In Fig. 5(c) we provide
a comparative analysis of the renormalization of this lower band at the critical bias value Ec(θ) [filled red dots in
Figs. 5(a) and 5(b)]. We have considered angles corresponding to n = 3, 4, ..., 18 in Eq. (1) in order to examine a
large range of twist angles for the general trend to be visible. [Figure 5(c) includes the data points from Figs. 5(a)
and 5(b) that are marked with solid circles.] The continuous line vF (∆E = 0)/vF0 is from Ref. 7. The velocity for the
lower band vL varies slightly as a function of the twist angle and becomes larger than vF (∆E = 0) for θ <

∼ 5◦. We did
not extend the calculation down to angles smaller than 2◦ because a transition between linear bands and parabolic
(Bernal) bands is expected for such small rotations.24 Additional theoretical work on TGBs7,17–19,24–26,47, outside of
the scope of this paper, points to extremely rich behavior for 0◦ <

∼ θ <
∼ 2◦ (58◦ <

∼ θ <
∼ 60◦).

We summarize our findings in Fig. 6. The evolution of the band structure versus θ and ∆E can be divided into
two broad stages, corresponding to the lower and upper regions separated by the solid line ∆E = Ec(θ). In stage
I low energy bands resemble Dirac cones with a reduced Fermi velocity vF . ∆E amounts to an additional relative
shift due to the broken symmetry between layers. In stage II, Dirac cones appear in bands sufficiently away from
the Fermi level, with their group velocities approaching vF0. There is a intermediate region between stages I and II
(shaded region in Fig. 6) where a large overlap between bands of both layers exists, with a resulting strong coupling
and subsequent absence of monolayer-like dispersion features.

B. Band Renormalization by Charge Doping

We have also investigated the charge doping effect by metal adatoms on the TGB. Eighteen Al atoms are uniformly
distributed over the unit cell area (188 Å2) of the (8,9) TGB (θ = 3.89◦) at a fixed distance d = 3.3 Å away from
one of the graphene layers. We use this system to create a doping condition in order to assess its impact on the
band structure. Therefore, the optimization of adatom positions is not a major concern. We show in Fig. 7 the band
structure as the result of this artificial charge doping. The main features include a shift of the Fermi level due to a
charge transfer from the Al adatoms to the graphene layers and a splitting of the originally degenerate linear bands
associated with the two layers near -0.5 and -0.7 eV. The effect can be reproduced with a tight-binding calculation
using ∆E = 0.30 eV and a rigid shift of energies by ∆2 = 0.58 eV in order to align the bands with the new Fermi
level. The tight-binding results (open dots) compare well with the DFT values (solid lines) in Fig. 7. Except for the
additional shift of the Fermi level ∆2, charge doping and electrostatic gating could be considered equivalent methods
to induce renormalization of the band velocities in TGBs.
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FIG. 7: (Color online). Band structure for the (8,9) twisted graphene bilayer doped with Al atoms: Solid line indicate DFT
results and open dots are results of a π-electron tight-binding calculation. The splitting of bands is clearly visible. Besides, the
Fermi level is now shifted up by ∆2 = 0.58 eV with respect to its value on a charge neutral TGB. The horizontal axis spans
the range of (−0.058, 0.058) Å−1.

IV. CONCLUSIONS

The epitaxial growth of graphene by silicon sublimation on SiC(0001̄) or by chemical vapor deposition on metal
surfaces create graphene layers with rotational faults. In the present work, we have studied effects of applied transverse
electrostatic fields and charge doping on the energy dispersions of twisted graphene bilayers for angles between 2◦ and
10◦ using density functional theory and tight-binding calculations. We have identified: (i) an anisotropic evolution
of the Dirac cones near the charge neutrality level; (ii) an additional flattening of these bands; and (iii) the existence
of a critical on-site energy difference Ec above which linear and isotropic bands reappear away from the Fermi level,
with band velocities approaching that of monolayer graphene. By examining the layer-resolved charge distribution
at relevant k points, we confirm a predominant single layer population for these bands. Since Ec decreases with the
twist angle θ, the value of ∆E required for these features to appear also decreases with θ. We close our discussion by
(iv) providing a qualitative picture of charge doping on these bilayer systems. Doping also creates an electric field in
between layers, and in addition, it helps reset the location of the Fermi level. Our results point to additional features
to be found experimentally in twisted graphene bilayers.
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