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We numerically study the disorder effect on the thermoelectric and thermal transport in bilayer
graphene under a strong perpendicular magnetic field. In the unbiased case, we find that the
thermoelectric transport has similar properties as in monolayer graphene, i.e., the Nernst signal has
a peak at the central Landau level (LL) with a height of the order of kB/e and changes sign near
other LLs, while the thermopower has an opposite behavior. We attribute this to the coexistence
of particle and hole LLs around the Dirac point. When a finite interlayer bias is applied and a
band gap is opened, it is found that the transport properties are consistent with those of a band
insulator. We further study the thermal transport from electronic origin and verify the validity of
the generalized Weidemann-Franz law.

PACS numbers: 72.80.Vp; 72.10.-d; 73.50.Lw, 73.43.Cd

I. INTRODUCTION

Thermoelectric transport properties of graphene have
recently attracted much experimental1–3 and theoreti-
cal4–9 attention. The thermopower (the longitudinal
thermoelectric response) and the Nernst signal (the
transverse response) in the presence of a strong mag-
netic field are found to be large, reaching the order of the
quantum limit kB/e, where kB and e are the Boltzmann
constant and the electron charge, respectively1–3. This
has been attributed to the semi-metal type dispersion of
graphene and/or in the vicinity of a quantum Hall liq-
uid to insulator transition where the imbalance between
the particle and hole types of carriers is significant. The
thermoelectric effects are very sensitive to such an imbal-
ance and become large in comparison with conventional
metals.

In our previous study on graphene in the presence of
disorder and an external magnetic field9, we have shown
that its thermoelectric transport properties are deter-
mined by the interplay of the unique band structure,
the disorder-induced scattering, the Landau quantiza-
tion and the temperature. While the band structure
and the magnetic field determine the Landau level (LL)
spectrum, the broadening of each LL is controlled by the
competition between disorder-induced scattering and the
thermal activation. We find that all transport coefficients
are universal functions of WL/EF and kBT/EF when
both WL and kBT are much smaller than the Landau
quantization energy ~ωc. Here, WL is the width of the
central LL (WL is determined by the full width at half-
maximum of the longitudinal conductivity σxx peak). EF

and T are the Fermi energy and the temperature, respec-
tively. When kBT ≪ WL, the thermoelectric conductiv-
ities vary as the density of states (and the particle-hole
symmetry) is tuned by EF from the center of the LL to
the mobility gap. When kBT ≫ WL, thermal activation

dominates and certain peak values of the thermopower
Sxx or the Nernst signal Sxy reach universal numbers
independent of the magnetic field or the temperature.
While both Sxx and Sxy near high LLs (ν 6= 0) have
similar behaviors to those in two-dimensional (2D) semi-
conductor systems displaying the integer quantum Hall
effect (IQHE)10–13, they have opposite behaviors around
the central LL. Sxy has a peak while Sxx vanishes and
changes sign at the Dirac point (EF = 0). We have fur-
ther argued that the unique behavior at the central LL is
due to the coexistence of particle and hole LLs. As pro-
tected by the particle-hole symmetry, the contributions
from particle and hole LLs cancel with each other exactly
in the thermopower but superpose in the Nernst signal.
The results for such a tight-binding analysis are in good
agreement with the experimental observations1–3.

In this work, we extend our study to bilayer graphene
which has two parallel graphene sheets stacked on top of
each other as in 3D graphite (the AB or Bernal stack-
ing). While some common features are observed related
to LLs with the same underlying particle-hole symme-
try, bilayer graphene also demonstrates some interesting
and different properties from monolayer graphene14–19.
The low energy dispersion of bilayer graphene can be ef-
fectively given by two hyperbolic bands ǫk ≈ ±k2/(2m∗)
touching each other at the Dirac point (EF = 0), i.e., the
electrons or holes have a finite mass m∗ which is in con-
trast to the massless excitations in monolayer graphene.
Another important difference of bilayer graphene is the
possibility to open up a band gap with a bias voltage,
or a potential difference, applied between the two layers.
This tunable gap system is advantageous to conventional
semiconductor materials, making bilayer graphene more
appealing from the point of view of applications. The
thermoelectric transport properties of bilayer graphene
are also expected to be interesting. The thermopower of
bilayer graphene without a magnetic field has been con-
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sidered20. It is shown that as the density of states is also
of the pseudogap type without a biased voltage, one ex-
pects that the relation for the thermopower Sxx ∼ T/EF

continues to hold. In addition, it is found that the room-
temperature thermopower with a bias voltage can be en-
hanced by a factor of 4 than that of the value in mono-
layer graphene or unbiased bilayer graphene20, making
it a more promising candidate for future thermoelectric
applications. Our study is to consider the thermopower
and the Nernst effect under a magnetic field.

When an external magnetic field B is applied, as in
graphene and other IQHE systems, electron energies of
bilayer graphene are quantized into Landau levels. As
the band dispersion changes, these LLs follow a differ-
ent quantization sequence En = ±

√
n(n− 1)~ωc with

ωc ∼ B from
√
B for graphene. This has been confirmed

by the theoretical21 and experimental22 studies on the
quantum Hall effects, and further verified by our numer-
ical calculation23. Compared with graphene, though the
massive nature of particles and hyperbolic dispersion are
different, the existence of the central LL (ν = 0) and
the associated chiral and particle-hole symmetries are
preserved. Therefore, the study on the thermoelectric
transport in bilayer graphene not only provides theoret-
ical predictions for their properties, in particular, their
dependence on disorder and magnetic field for this sys-
tem, but also helps to verify our argument on the cen-
tral LL that its unique behavior is due to the chiral and
particle-hole symmetries associated with the Dirac point.

For such purposes, we carry out a numerical study of
the thermoelectric transport in both unbiased and bi-
ased bilayer graphene. We focus on studying the effects
of disorder and thermal activation on the broadening
of LLs and the corresponding thermoelectric transport
properties. In the unbiased case, we indeed observe sim-
ilar behaviors as in monolayer graphene for the central
LL. Both the longitudinal and the transverse thermo-
electric conductivities are universal functions of WL/EF

and kBT/EF and display different asymptotic behaviors
in different temperature regions. The calculated Nernst
signal has a peak at the central LL with a height of the
order of kB/e, and changes sign near other LLs, while the
thermopower has an opposite behavior. A higher peak
value is obtained comparing to graphene due to the dou-
bled degeneracy. This confirms our argument that as the
particle and hole LLs coexist only in the central LL, the
thermopower vanishes while the Nernst effect has a peak
structure. As before, we verify the validity of the semi-
classical Mott relation, which is shown to hold in a wide
range of temperatures. When a bias is applied between
the two graphene layers, the thermoelectric coefficients
exhibit unique characteristics quite different from those
of unbiased case. Around the Dirac point, the trans-
verse thermoelectric conductivity exhibits a pronounced
valley with αxy = 0 at low temperatures, and the ther-
mopower displays a very large peak. We show that these
features are associated with a band insulator, due to the
opening of a sizable gap between the valence and con-

duction bands in biased bilayer graphene. In addition,
we have calculated the thermal transport properties of
electrons for both unbiased and biased bilayer graphene
systems. In the biased case, it is found that the trans-
verse thermal conductivity displays a pronounced plateau
with κxy = 0, which is accompanied by a valley in κxx.
This provides additional evidence for the band insulator
behaviors. We further compare the calculated thermal
conductivities with those deduced from the Wiedemann-
Franz law, to check the validity of this fundamental rela-
tion in graphene systems.

This paper is organized as follows. In Sec. II, we in-
troduce the model Hamiltonian. In Sec. III and Sec.
IV, numerical results based on exact diagonalization and
thermoelectric transport calculations are presented for
unbiased and biased systems, respectively. In Sec. V, nu-
merical results for thermal transport are presented. The
final section contains a summary.

II. MODEL AND METHODS

We consider a bilayer graphene sample consisting of
two coupled hexagonal lattices including inequivalent

sublattices A, B on the bottom layer and Ã, B̃ on the top
layer. The two layers are arranged in the AB (Bernal)
stacking24,25, where B atoms are located directly below

Ã atoms, and A atoms are the centers of the hexagons
in the other layer. Here, the in-plane nearest-neighbor

hopping integral between A and B atoms or between Ã

and B̃ atoms is denoted by γAB = γÃB̃ = γ0. For the
interlayer coupling, we take into account the largest hop-

ping integral between B atom and the nearest Ã atom
γÃB = γ1, and the smaller hopping integral between an

A atom and three nearest B̃ atoms γAB̃ = γ3. The values
of these hopping integrals are taken to be γ0 = 3.16 eV,
γ1 = 0.39 eV, and γ3 = 0.315 eV, as same as in Ref.23.

We assume that each monolayer graphene has to-
tally Ly zigzag chains with Lx atomic sites on each
chain26. The size of the sample will be denoted as
N = Lx × Ly × Lz, where Lz = 2 is the number of
monolayer graphene planes along the z direction. We
have confirmed that the calculated results does not de-
pend on the system sizes (as long as the system lengths
are reasonably large, not much smaller than 24)23. We
model charged impurities in substrate, randomly located
in a plane at a distance d from the graphene sheet with
long-range Coulomb scattering potentials27–30. This type
of disorder is known to give more satisfactory results for
transport properties of graphene in the absence of a mag-
netic field31. When a magnetic field is applied perpen-
dicular to the bilayer graphene plane, the Hamiltonian
can be written in the tight-binding form
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H0 = −γ0(
∑

〈ij〉σ

eiaijc†iσcjσ +
∑

〈ij〉σ

eiaij c̃†iσ c̃jσ)

− γ1
∑

〈ij〉1σ

eiaij c†jσB c̃iσÃ − γ3
∑

〈ij〉3σ

eiaijc†iσAc̃jσB̃ + h.c.

+
∑

iσ

wi(c
†
iσciσ + c̃†iσ c̃iσ) , (1)

where c†iσ(c
†
iσA), c

†
jσ(c

†
jσB) are creation operators on A

and B sublattices in the bottom layer, and c̃†iσ(c̃
†

iσÃ
),

c̃†jσ(c̃
†

jσB̃
) are creation operators on Ã and B̃ sublattices

in the top layer, with σ as a spin index. The sum
∑

〈ij〉σ

denotes the intralayer nearest-neighbor hopping in both
layers,

∑
〈ij〉1σ

stands for interlayer hopping between the

B sublattice in the bottom layer and the Ã sublattice in
the top layer, and

∑
〈ij〉3σ

stands for the interlayer hop-

ping between the A sublattice in the bottom layer and

the B̃ sublattice in the top layer, as described above.
The magnetic flux per hexagon φ =

∑
7
aij =

2π
M is pro-

portional to the strength of the applied magnetic field
B, where M is assumed to be an integer and the lat-
tice constant is taken to be unity. For charged impu-

rities, wi = −Ze2

ǫ

∑
α 1/

√
(ri −Rα)2 + d2, where Ze is

the charge carried by an impurity, ǫ is the effective back-
ground lattice dielectric constant, and ri and Rα are the
planar positions of site i and impurity α, respectively. All
the properties of the substrate (or vacuum in the case of
suspended graphene) can be absorbed into a dimension-
less parameter rs = Ze2/(ǫ~vF ), where vF is the Fermi
velocity of the electrons. For simplicity, in the following
calculation, we fix the distance d = 1nm and impurity
density as 1% of the total sites, and tune rs to control the
impurity scattering strength. The characteristic features
of the calculated transport coefficients are insensitive to
choice of these parameters.

For the biased system, the two graphene layers gain
different electrostatic potentials, and the corresponding
energy difference is given by ∆g = ǫ2 − ǫ1 where ǫ1 =
− 1

2∆g, and ǫ2 = 1
2∆g. The Hamiltonian can be written

as: H = H0 +
∑
iσ

(ǫ1c
†
iσciσ + ǫ2c̃

†
iσ c̃iσ). For illustrative

purpose, a relatively large asymmetric gap ∆g = 0.1γ0 is
assumed, which is however experimentally achievable18.

In the linear response regime, the charge current in
response to an electric field or a temperature gradient
can be written as J = σ̂E+ α̂(−∇T ), where σ̂ and α̂ are
the electrical and thermoelectric conductivity tensors, re-
spectively. These transport coefficients can be calculated
by Kubo formula once we obtain all the eigenstates of the
Hamiltonian (in our calculation, σxx is obtained based on
the calculation of the Thouless number23). In practice,
we can first calculate the T = 0 conductivities σji(EF ),

and then use the relation12

σji(EF , T ) =

∫
dǫ σji(ǫ)

(
−∂f(ǫ)

∂ǫ

)
,

αji(EF , T ) =
−1

eT

∫
dǫ σji(ǫ)(ǫ − EF )

(
−∂f(ǫ)

∂ǫ

)
,(2)

to obtain the finite temperature electrical and ther-
moelectric conductivity tensors. Here, f(x) =
1/[e(x−EF )/kBT + 1] is the Fermi distribution function.
At low temperatures, the second equation can be ap-
proximated as

αji(EF , T ) = −π2k2BT

3e

dσji(ǫ, T )

dǫ

∣∣∣∣
ǫ=EF

, (3)

which is the semiclassical Mott relation12,13. The ther-
mopower and Nernst signal can be calculated subse-
quently from32

Sxx =
Ex

∇xT
= ρxxαxx − ρyxαyx,

Sxy =
Ey

∇xT
= ρxxαyx + ρyxαxx. (4)

The thermal conductivity, measuring the magnitude
of the thermal currents in response to an applied tem-
perature gradient, includes electron and phonon contri-
butions. In our numerical calculations, phonon-derived
thermal conductivity is omitted. The electronic ther-
mal conductivities κji at finite temperature assume the
form13

κji(EF , T ) =
1

e2T

∫
dǫ σji(ǫ)(ǫ − EF )

2

(
−∂f(ǫ)

∂ǫ

)

− Tαji(EF , T )σ
−1
ji (EF , T )αji(EF , T ). (5)

For diffusive electronic transport in metals, it is well
known that the Wiedemann-Franz law is satisfied be-
tween the electrical conductivity σ and the thermal con-
ductivity κ of electrons33:

κ

σT
= L, (6)

where L is the Lorentz number and takes a constant
value: L = π2

3 (kB

e )2.

III. THERMOELECTRIC TRANSPORT IN

UNBIASED BILAYER GRAPHENE

We first show the calculated thermoelectric conductivi-
ties at finite temperatures for unbiased bilayer graphene.
As seen from Fig.1(a) and (b), the transverse thermo-
electric conductivity αxy displays a series of peaks, while
the longitudinal thermoelectric conductivity αxx oscil-
lates and changes sign at the center of each LL. At low
temperatures, the peak of αxy at the central LL is higher
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FIG. 1: (color online). Thermoelectric conductivities at fi-
nite temperatures of bilayer graphene. (a)-(b) αxy(EF , T )
and αxx(EF , T ) as functions of the Fermi energy at differ-
ent temperatures. (c) shows the temperature dependence of
αxy(EF , T ) for monolayer and bilayer graphene. (d) com-
pares the results from numerical calculations and from the
generalized Mott relation at two characteristic temperatures,
kBT/WL = 0.05 and kBT/WL = 1. The system size is taken
to be N = 96×48×2, magnetic flux φ = 2π/48, and disorder
strength rs = 0.3 (we consider uniformly distributed positive
and negative charged impurities within this strength) with
WL/γ0 = 0.0376.

and narrower than others, which indicates that the im-
purity scattering has less effect on the central LL. These
results are qualitatively similar to those found in mono-
layer graphene9 due to the similar particle-hole symmetry
in both cases, but some obvious differences exist. Firstly,
the peak value of αxy at the central LL is larger than that
of monolayer graphene. Secondly, at low temperatures,
αxy splits around EF = ±0.46γ0, which can be under-
stood as due to the presence of ν = ±8 Hall plateau by
lifting subband degeneracy. As shown in Fig.1(b), around
the zero energy, the peak value of αxx shows different
trend with increasing temperature (it first increases with
T at low-temperature region, and then it decreases with
T at high temperatures). This is due to the competi-

tion between
π2k2

BT
3e and

dσji(ǫ,T )
dǫ of Eq.(3). The peak

value of αxx could either increase or decrease depend-
ing on the relative magnitudes of these two terms. At
high temperatures, σji(ǫ, T ) becomes smooth, and con-
sequently αxx begins to decrease. In Fig.1(c), we find
that αxy shows different behavior depending on the rel-
ative strength of temperature kBT and the width of the
central LLWL (WL is determined by the full-width at the
half-maximum of the σxx peak). When kBT ≪ WL and
EF ≪ WL, αxy shows linear temperature dependence,
indicating that there is a small energy range where ex-
tended states dominate, and the transport falls into the
semi-classical Drude-Zener regime. When EF is shifted
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FIG. 2: (color online). Thermoelectric conductivities at finite
temperatures of biased bilayer graphene. (a)-(b) αxy(EF , T )
and αxx(EF , T ) as functions of the Fermi energy at different
temperatures. (c) Compares the results from numerical cal-
culations and from the generalized Mott relation at two char-
acteristic temperatures, kBT/∆g = 0.05 and kBT/∆g = 0.2.
Here asymmetric gap ∆g = 0.1γ0. The system size is taken
to be N = 96×48×2, magnetic flux φ = 2π/48, and disorder
strength rs = 0.3.

away from the Dirac point, the low-energy electron ex-
citation is gapped due to Anderson localization. When
kBT becomes comparable to or greater than WL, the
αxy for all LLs saturates to a constant value 5.54kBe/h.
This matches exactly the universal value (ln 2)kBe/h pre-
dicted for the conventional IQHE systems in the case
where thermal activation dominates12,13, with an addi-
tional degeneracy factor 8. The saturated value of αxy

in bilayer graphene is exactly twice of that of monolayer
graphene, as shown in Fig.1(c), in accordance with the
eightfold degeneracy from valley, spin and layer degrees
of freedom21,22.
To examine the validity of the semiclassical Mott rela-

tion, we compare the above results with those calculated
from Eq.(3), as shown in Fig.1(d). The Mott relation is
a low-temperature approximation and predicts that the
thermoelectric conductivities have linear temperature de-
pendence. This is in agreement with our low-temperature
results, which proves that the semiclassical Mott relation
is asymptotically valid in Landau-quantized systems, as
suggested in Ref. 12.

IV. THERMOELECTRIC TRANSPORT IN

BIASED BILAYER GRAPHENE

For biased bilayer graphene, we show results of αxx

and αxy at finite temperatures in Fig. 2. We see that
αxy displays a pronounced valley, in striking contrast to
the unbiased case with a peak at the particle-hole sym-
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FIG. 3: (color online). The thermopower Sxx and the Nernst
signal Sxy as functions of the Fermi energy in (a)-(b)bilayer
graphene, (c)-(d) biased bilayer graphene at different temper-
atures. All parameters in this two systems are chosen to be
the same as in Fig. 1 and Fig. 2, respectively.

metric point EF = 0. This behavior can be understood
as due to the split of the valley degeneracy in the central
LL by an opposite voltage bias added to the two layers.
This is in consistent with the opening of a sizable gap
between the valence and conduction bands. More oscil-
lations are observed in the higher LLs than the unbiased
case, in consistent with the further lifting of the LL de-
generacy in bilayer graphene. αxx oscillates and changes
sign around the center of each split LL. In Fig.2(c), we
also compare the above results with those calculated from
the semiclassical Mott relation using Eq.(3). The Mott
relation is found to remain valid at low temperatures.

We further calculate the thermopower Sxx and the
Nernst signal Sxy using Eq. (4), which can be directly
determined in experiments by measuring the responsive
electric fields. In Fig. 3(a)-(b), we show results of Sxx

and Sxy in unbiased bilayer graphene. As we can see,
Sxy (Sxx) has a peak at the central LL (the other LLs),
and changes sign near the other LLs (the central LL),
similar to the case of monolayer graphene9. This oscil-
latory feature has been observed experimentally34. In
our calculation, the peak value of Sxx at n = −1 LL is
found to be 14µV/K (note that kB/e = 86.17µV/K ) for
kBT = 0.05WL and 26µV/K for kBT = 0.1WL, which
is in agreement with the measured value 15µV/K34. At
zero energy, both ρxy and αxx vanish, leading to a van-
ishing Sxx. Around the zero energy, because ρxxαxx

and ρxyαxy have opposite signs, depending on their rel-
ative magnitudes, Sxx could either increase or decrease
when EF is increased passing the Dirac point. In bi-
layer graphene, we find that Sxx is always dominated
by ρxyαxy, and consequently Sxx decreases to negative
value as EF passing the Dirac point. We find that
the peak value of Sxx in the central LL is ±6µV/K at
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FIG. 4: (color online). (a)-(b) Thermal conductivities
κxy(EF , T ) and κxx(EF , T ) as functions of the Fermi en-
ergy in bilayer graphene at different temperatures, (c)-
(d)Compares the thermal conductivity as functions of the
Fermi energy from numerical calculations and from the
Wiedemann-Franz law at two characteristic temperatures.
The parameters chosen here are the same as in Fig. 1.

kBT = 0.05WL. On the other hand, Sxy has a peak
structure at zero energy, which is dominated by ρxxαxy.
The peak value is 42µV/K at kBT = 0.05WL, which is in
good agreement with the experimental value 40µV/K34.

In Fig. 3(c)-(d), we show the calculated Sxx and Sxy

in biased bilayer graphene system. As we can see, Sxy

(Sxx) has a peak around zero energy (the other LLs), and
changes sign near the other LLs (zero energy). In our cal-
culation, Sxx is dominated by ρxxαxx, which is different
from unbiased bilayer graphene. At low temperatures,
the peak value of Sxx near zero energy keeps almost un-
changed around ±181µV/K, which is much larger than
that of unbiased case. With the increase of temperature,
the peak height increases to ±396µV/K at kBT = 0.5∆g.
Theoretical study20 indicates that, the large magnitude
of Sxx is mainly a result of the energy gap. On the
other hand, Sxy has a peak structure around zero en-
ergy, which is dominated by αxyρxx. With σxx ∼ 2e2/h
near EF = 0, we find that the peak height is 198µV/K
at kBT = 0.1∆g, which is larger than that of unbiased
case.

V. THERMAL CONDUCTIVITY FOR

UNBIASED AND BIASED BILAYER

GRAPHENE SYSTEMS

We now focus on thermal conductivities. In Fig. 4,
we plot results of the transverse thermal conductivity
κxy and the longitudinal thermal conductivity κxx for
unbiased bilayer graphene at different temperatures. As
seen from Fig.4(a) and (b), κxy exhibits two flat plateaus



6

-0.2 -0.1 0.0 0.1 0.2
0.00

0.02

0.04

0.06

0.08
-0.2 -0.1 0.0 0.1 0.2

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.2 -0.1 0.0 0.1 0.2
0.0

0.1

0.2

0.3
-0.2 -0.1 0.0 0.1 0.2

-0.4

-0.2

0.0

0.2

0.4

0.0 0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4

L-1
xx

 /
xx

  

kBT/ g

 EF=0
 EF=0.1 g
 EF=0.2 g

 

 

 

 

(d) 
 k

B
T/

g
=0.05

 k
B
T/

g
=0.05,W-F Law

 k
B
T/

g
=0.1

 k
B
T/

g
=0.1,W-F Law

0.0 0.1 0.2 0.3 0.4
-0.04

0.00

0.04

L-1
xy

 /
xy

  

kBT/ g

 EF=0.3 g
 EF=0.5 g
 EF=0.8 g

 

 

 

 

EF/ 0

(c) 
 k

B
T/

g
=0.05

 k
B
T/

g
=0.05,W-F Law

 k
B
T/

g
=0.1

 k
B
T/

g
=0.1,W-F Law

(b) 

xx
/

 (k
B/h

)

EF/ 0

 kBT/ g=0.05
 kBT/ g=0.1
 kBT/ g=0.2

biased bilayer graphene

 

(a) 
xy
/

 (k
B/h

)

 kBT/ g=0.05
 kBT/ g=0.1
 kBT/ g=0.2

FIG. 5: (color online). (a)-(b) Thermal conductivities
κxy(EF , T ) and κxx(EF , T ) as functions of the Fermi en-
ergy in biased bilayer graphene at different temperatures,
(c)-(d)Compares the thermal conductivity as functions of
the Fermi energy from numerical calculations and from the
Wiedemann-Franz law at two characteristic temperatures.
The parameters chosen here are the same as in Fig. 2.

away from the center of the central LL. At low tem-
peratures, the transition between these two plateaus is
smooth and monotonic, while at higher temperatures,
κxy exhibits an oscillatory feature at kBT = 0.5WL be-
tween two plateaus. On the other hand, κxx displays a
peak near the center of the central LL, while its peak
value increases quickly with T . To test the validity of
the Wiedemann-Franz law, we compare the above results
with those calculated from Eq.(6) as shown in Fig.4(c)
and (d). The Wiedemann-Franz law predicts that the
ratio of the thermal conductivity κ to the electrical con-
ductivity σ of a metal is proportional to the temperature.
This is in agreement with our low-temperature results,
while deviation is seen at relatively high temperatures.

In Fig. 5, we show the calculated thermal conductiv-
ities κxx and κxy for biased bilayer graphene. As seen
from Fig.5(a) and (b), around zero energy, a flat region
with κxy = 0 is found at low temperatures, which is ac-
companied by a valley in κxx. These features are clearly
in contrast to those of unbiased case due to the asymmet-
ric gap between the valence and conduction bands. When
temperature increases to kBT = 0.2∆g, the plateau of
κxy = 0 disappears, while κxx displays a large peak. In
Fig.5(c) and (d), we also compare the above results with
those calculated from the Wiedemann-Franz law using
Eq.(6). Due to the presence of energy gap, we find that
the Wiedemann-Franz law is not valid in biased bilayer
graphene.

VI. SUMMARY

In summary, we have numerically investigated the
thermoelectric and thermal transport in unbiased bi-
layer graphene based on the tight-binding model in the
presence of both disorder and magnetic field. We find
that the thermoelectric conductivities display different
asymptotic behaviors depending on the ratio between
the temperature and the width of the disorder-broadened
Landau levels (LLs), similar to those found in monolayer
graphene. In the high temperature regime, the transverse
thermoelectric conductivity αxy saturates to a universal
value 5.54kBe/h at the center of each LL, and displays a
linear temperature dependence at low temperatures. The
calculated Nernst signal Sxy shows a peak at the central
LL with heights of the order of kB/e, and changes sign
at the other LLs, while the thermopower Sxx has an op-
posite behavior. These results are in good agreement
with the experimental observation34. The validity of the
semiclassical Mott relation between the thermoelectric
and electrical transport coefficients is verified in a range
of temperatures. The calculated transverse thermal con-
ductivity κxy exhibits two plateaus away from the band
center. The transition between these two plateaus is con-
tinuous, which is accompanied by a pronounced peak in
longitudinal thermal conductivity κxx. The validity of
the Wiedemann-Franz law relating the thermal conduc-
tivity κ and the electrical conductivity σ is verified to be
satisfied only at very low temperatures.

We further discuss the thermoelectric transport of bi-
ased bilayer graphene. When a bias is applied to the two
graphene layers, the thermoelectric coefficients exhibit
unique characteristics different from those of unbiased
case. Around the Dirac point, transverse thermoelectric
conductivity exhibits a pronounced valley with αxy = 0
at low temperatures, and the thermopower displays a
strong peak. Furthermore, the transverse thermal con-
ductivity has a pronounced plateau with κxy = 0, which
is accompanied by a valley in κxx. These are consistent
with the opening of sizable gap between the valence and
conductance bands in biased bilayer graphene.

We mention that in our numerical calculations, the
flux 2π/M in each hexagon gives a magnetic field of the
strength B ∼ 1.3 × 105/M Tesla35. Thus the magnetic
field B we used is about 2700 Tesla. This magnetic field
is much stronger than the ones which can be realized in
the experimental situation, as limited by current compu-
tational capability. In our calculation, the system size is
taken to be N = 96× 48× 2, and M is taken to be Lx or
Ly, in order to use periodic boundary conditions, which
limits us to extremely strong magnetic field. However,
the obtained thermoelectric transport coefficients exhibit
universal behaviors, as long as M is not too small (of the
order 10 or greater).
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11 P. Středa, J. Phys. C 16, L369 (1983).
12 M. Jonson and S.M. Girvin, Phys. Rev. B 29, 1939 (1984).
13 H. Oji, J. Phys. C 17, 3059 (1984).
14 E. McCann, Phys. Rev. B 74, 161403(R) (2006).
15 H. Min, B. Sahu, S. K. Banerjee, and A. H. MacDonald,

Phys. Rev. B 75, 155115 (2007).
16 E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R.

Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea,
A. K. Geim, and A. H. Castro Neto, Phys. Rev. Lett. 99,
216802 (2007).

17 J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo,
and L. M. K. Vandersypen, Nat. Mater. 7, 151 (2008).

18 Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A.
Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature
459, 820 (2009).

19 K. F. Mak, C. H. Lui, J. Shan, and T. F. Heinz, Phys.
Rev. Lett. 102, 256405 (2009).

20 L. Hao and T. K. Lee, Phys. Rev. B 81, 165445 (2010).

21 E. McCann and V. I. Falko, Phys. Rev. Lett. 96, 086805
(2006).

22 K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko,
M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin and A.
K. Geim, Nature Phys. 2, 177 (2006).

23 R. Ma, L. Sheng, R. Shen, M. Liu and D. N. Sheng, Phys.
Rev. B 80, 205101 (2009); R. Ma, L. Zhu, L. Sheng, M.
Liu, D. N. Sheng, Europhys. Lett. 87, 17009 (2009).

24 S. B. Trickey, F. Muller-Plathe, G. H. F. Diercksen and J.
C. Boettger, Phys. Rev. B 45, 4460 (1992).

25 K. Yoshizawa, T. Kato, and T. Yamabe, J. Chem. Phys.
105, 2099 (1996); T. Yumura and K. Yoshizawa, Chem.
Phys. 279, 111 (2002).

26 D.N. Sheng, L. Sheng, and Z.Y. Weng, Phys. Rev. B 73,
233406 (2006).

27 S. Das Sarma, S. Adam, E. H. Hwang and E. Rossi, Rev.
Mod. Phys. 83, 407 (2011).

28 S. Adam and S. Das Sarma, Solid State Communications
146,356 (2008).

29 Y. W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H.
Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, Phys.
Rev. Lett. 99, 246803 (2007).

30 J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D.
Williams, and M. Ishigami, Nature Physics 4, 377 (2008).

31 S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma,
Proc. Natl. Acad. Sci. USA 104, 18392 (2007).

32 Different literatures may have a sign difference due to dif-
ferent conventions.

33 J. M. Ziman, Electrons and Phonons: The Theory of
Transport Phenomena in Solids (Oxford University Press,
Oxford, 1963).

34 S.G. Nam, D.K. Ki, H.J. Lee, Phys. Rev. B 82, 245416
(2010).

35 B. A. Bernevig, T. L. Hughes, H. Chen, C. Wu, and S. C.
Zhang, Int. J. Mod. Phys. B 20, 3257 (2006).


