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We report on a theoretical study of one-dimensional (1Cisticalized at few-layer graphene system ribbon
edges, and at interfaces between few-layer graphene systitindifferent valley Hall conductivities. These 1D
states are topologically protected when valley mixing igleeted. We address the influence on their properties
of stacking arrangement, interface structure, and exteleatric field perpendicular to the layers. We find
that 1D states are generally absent at multilayer ribborchain direction edges, but present irrespective of
crystallographic orientation at any internal valley-Haterface of an ABC stacked multilayer.

PACS numbers: 73.22.Pr, 03.65.Vf, 73.43.-f, 81.05.ue

I. INTRODUCTION bations that couple different valleys. The goal of the pnése
study is to assess the degree to which these caveats arie pract
] ] ] ] ) cally important.
Metallic surface states in a system with an insulating bulk 1D states of the type we consider were first found in numer-

are often related to topological ordeAn important example . . : : : :
) ; . , ical studies of zigzag bilayer ribbots and later recognized
is provided by the quantum Hall effect of two-dimensional gzag Y 9

(2D) systems in presence of an external magnetic field i@s valley Hall edge states by Morpurgal. > They have also
which two-dimensional (1D) edge statesccompany integer een previously studied theoretically in single-layepdrene

ol 9% samples with an imposed staggered potenfid?,i.e. a po-
valyed Chern |nd_|ce°?s_of bulk 20 banc_zls. The recent identifi- tential that has opposite signs on the graphene honeycomb’s
cation of topological insulator materiélbas provided a new

. = A and B sublattices. A more detailed analysis of the cor-
example, one V.Vh'Ch does not rely on eXte.”?a' magnetic f'eldﬁ’espondence between bulk and edge in bilayer graphene has
In topological insulators strong spin-orbit interactigyisld

bulk bands that h trivial val t atBooloaical i been carried out recently, concluding that the existenddoof
ulk bands that have non-trivial values otalapologicalin-. 4104 gt gn edge depends on its morphol8dpy.the present

dex and support topologically protected surface statese Th ; ;
present study explores a 2D bulk example in which the rel_paper we consider both bilayer graphene and other few layer

e ; : raphene systems in which electric fields open up an ener
evant topological index is, as in the quantum Hall case, ag b Y b b vy

it lued Chern ind thouah tic field | ap and yield a valley Hall effect. Continuum model consid-
glreesgeer;\/a ue erm index even though no magnetic eld 13 ations suggest that 1D states should be present at thekedge

graphene ribbons with a valley Hall effect and at interfdmes
Our work is motivated by the suggestion of Martin, Blanter, tween systems with different valley Hall effect quantum rum
and Morpurg8 that 1D states can be induced in bilayer bers. We will refer to the former type of 1D state as an edge
graphene by changing the sign of an inter-layer electrid fiel state and to the latter as a kink state. In the case of bilayer
(Electric field below will always refert to a field directed-be graphene, for example, an interface that supports kinkstat
tween the layers of a few-layer graphene system.) Thessstatis easily produced by changing the sign of the electric field
have a formal structure similar to that of the zero modes thaalong a line inside the material. To create the correspandin
appear in the A phase 8He thin films at domain walls be- 1D kink states in monolayer graphene, it would be necessary
tween regions with opposite spontaneous orbital monfentsto change the sign of the staggered potential.
They have been studied as special kind of tunable Luttinger |n this paper we usa-band tight-binding models to assess
liquids” and are expected to influence 2D transport in presthe influence of stacking orders and edge geometries on edge
ence of periodic potential modulations in superlattf@he  and kink state properties. As in the bilayer case, we find that
1D states in Ref.[5] can be understood as being a consequengg: valley Hall edge states in multilayers do not survive for
of separate Chern indices of opposite sign associated th t armchair edge terminations. However, kink states are lglear
K andK’ Dirac points of bilayer graphene. The property thatpresent for both zigzag and armchair crystallographiawaie
these Chern numbers are implied by the momentum spaagns of an internal interface along which the valley Halagu
Berry curvature of bilayer graphene’s bafughen the electric  tum number changes. Section Il contains the main results of
field is non-zero is referred to as the valley Hall effect. Theour work. We start discussing the valley Hall conductivity i
valley Chern numbers emerge when the electric field breakgrms of the low energy continuum model of ABC stacked
inversion symmetry to open a gap in the 2D bulk bilayer eleciayer graphene. We conclude that we can normally exiect
tronic structure. However, because the two valleys share thiD kink state branches per valley localized along electeid fi
Brillouin-zone of a bilayer graphene crystal, separater@he sign-change lines. Then we useorbital tight-binding cal-
numbers are never precisely defined and are strictly spgakirtulations on multilayer ribbons to test the continuum model
an artifact of the commonly employed continukmp elec-  presenting results for the energy bands of valley Hall eage a
tronic structure model. Correspondingly, the 1D states$ thakink states for a number of different cases. Finally in Séc. |
are the subject of Ref.[5] are not guaranteed to be present ate close with a brief summary and a discussion of our find-
all energies and are not topologically protected agairm$tipe  ings.



Il. VALLEY-HALL EDGE AND KINK STATES IN clearly distinguished. In this picture, familiar quanturalH
MULTILAYER GRAPHENE considerations suggest the presence of 1D channels at edges
and along lines where the valley Hall conductivity changes.
The electronic structure results for multilayer graphéne r  The microscopic tight-binding model calculations we parfo
bons presented here were obtained using-arbital tight-  are intended to test the degree to which these considesation
binding model Hamiltonian with nearest-neighbor hoppingare reliable.
and a lattice position dependent external potehtial

H = — Z Vi CiTCj—f—zUi CiTCi. (1)

<AT> [

a.

The hopping amplitudg ; we used is equal tb= 2.6 eV for
in-plane hopping antl, = 0.34¢eV for out of plane hopping.

¢’ andc; are creation and destruction operatoréaand jt"
lattice sites. This model can yield 1D edge state or kinkestat
branches at energies inside bulk gaps which can be explainec
qualitatively in terms of the model’'s bulk valley Hall eftec
This quantum valley Hall effect and its edge states are tobus
to long range disorder potentials, magnetic or not, as lang a
the system is free from of valley scattering perturbatibhs.
We start by discussing the valley Hall properties of mwta
systems using a low energy model Hamiltonian, before return
ing to tight-binding model calculations carried out for ABA
and ABC stacked bilayers trilayers, and tetralayer graphen
ribbons. We consider a variety of different examples thpt ca
ture some essential features of stacked multilayer eleictro
structure.

A. Valley Hall effect and associated 1D states in chirally
stackedN-layer systems

The low energy Hamiltonian in ABC stacked (rhombohe-
dral) N-layer graphene is useful as a simplified route for gain-
ing insight of the system despite the simplifying assumsio
In particular, the valley Hall properties of ABC stackeddmr  F|G. 1: Schematic illustration of the relationship betweehey Hall
bohedral)N-layer graphene can be derived from the low en-effects and 1D conduction channels at interfaces expectéldecba-
ergy band structure in which Bloch states are localized tpain sis of continuum model considerations. The number of 1D mode
on top and bottom layers. Because the phase difference bger valley is an integem evaluated from differences between valley
tween top and bottom layer wavefunction components varieghern numbers = [N} — Ng‘. When the layer numbeM is odd, the
more rapidly with momentum direction (measured from thejntegral of the Berry curvatures is half-odd-integer, agemty that is
K andK’ Dirac points) in largeN systems, the valley Chern related to the half-quantized Hall effect of Dirac systerdge find
numbers increase witN.1820 To be more precise the wave that the number of 1D channels is then usually reduced tontiee i
functions of the states closest to the Fermi level residetljnos ger part of the integrated Berry curvature difference. Témse of
on the top and bottom layer lattice sites without a verticalthe arrows directed perpendicular to the page indicatesitjre of
neighbor, and the valley Chern number in the presence of aiffeé Chern number associated with each vallepper panel: lllus-
electric field is equal tdN /2 except possibly at very low car- tration of_ABC trl_layer g_raphene with opposite electricdisigns in
rier densities and weak electric fields where weak band-strud®ft 2nd right regions with three 1D modes per vallegwer panel:

. . Junction formed between pentalayer and trilayer regiodgua uni-
ture features can play a role. (Note that for dtithis quantity

. . form bias potential. In this case the valley Hall condutitag have
is not an integer; we nevertheless refer to the values asChefo same sign but different magnitude on opposite sidesedifter-

indices for convenience.) The sites with vertical neiglsbor tace and the number of 1D channels is expected to be propattio

have more weight in higher energy bands. the difference of the individual Berry curvature integralhe con-
Strictly speaking, Chern numbers should be calculated byinuum model picture illustrated here can be invalidatecatymic

integrating Berry curvatures over the whole Brillouin zpne scale physics at the interface, particularly when the nuroblayers

including contributions from near both andK’ points. This  on opposite sides of the interface is different.

total Chern number always vanishes, as it must when time-

reversal symmetry is not violated. In the continuum model

approximation, however, we can speak of valley resolved con Our working assumption in this section is that the following

tributions to Chern numbers because the valley indices areffective continuum mod&} captures essential properties of

ky
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the full Hamiltonian: equal to[N/2]?1. Changing either edge termination or stack-
L 1/A 0 ing sequence introduces qualitative changes in the ribbod b
Hy = -t < W0 ) > ( 0 —A) (2)  structure as we now describe.

In Fig. 2, we plot band structures for ABC and ABA zigzag
where—t, is the interlayer hopping parameter= vgm/t,,  and armchair terminated trilayer and tetralayer ribbonslll
Ug ~ ¢/300 is the Fermi velocity of single layer graphene,
= h(k«+ikyT;) wheret, = +1 labels theK andK’ valleys, Zigzag ABC Zigzag ABA
(k«, ky) is crystal momentum measured from a Dirac point, a =3 b N=3 N=4
andA is the potential difference between layers produced by %, | | y
the electric field. This Hamiltonian leads to momentum-gpac | |
Berry curvatures that are sharply peaked n@arky) = 0. - \
The valley Chern numbers are obtaif€d2! by integrat- =
ing the Berry curvature over 2D momertig,k,) continued ~ *®
to o to obtainC;, = N1,sgn(A)/2. The valley Chern num- -1} f
bers are sometimes referred to as topological charges,eandd o5
noted byNs as a reminder that the topology indices of gapped
2D systems may be thought of as a dimensional reductiol
of topological chargeN; at gapless 3D Fermi poinfsThe
contribution to the Hall conductivity from a particular val
ley is gy = Nz€?/h. In a continuum model, the number of oos
one-dimensional (1D) channels per valley at an interface bei
tween two bulk regions with different valley Hall conduetiv. = < °
ities gy, = N3€?/h is equal to the difference between their =%
valley Chern numbers®1°For ballistic transport each chan- =1 fl/ A
nel contribute®?/h to the two-probe conductance. When the 5%
sign of the electric field is reversed at an interface, ther@he
number differenceis R (N/2) =N, equal to the layer number )
as illustrated schematically in Fig. 1. FIG.. 2: Bapd structures of ABC and ABA stackgd zigzag and arm-

The generalization of the notion of a valley Hall conduc- chair terminated trilayer and tetralayer ribbons in thespree of a

L uniform electric field. (a) ABC stacked layers with zigzagyes!;
tivities from one and two layer systems to genealayer (b) ABA stacked layers with zigzag edges; (c) ABC stacked lay

syst_ems can also be made us_ing the explicit eq_ua_tions for thes with armchair edges and (d) ABA stacked layers with aginch
1D interface states by following a procedure similar to thategges. In each subfigure, the left and right panels représieyer

outlined in Ref. [5]: and tetralayer ribbons, respectively. For ABC stackingeleetric
field opens a bulk band gap containing edge states in thegei
—V(u+Kn (6x+ kY)N v=eéu but noliJ in the armchair gaspe. The nugmbeErJ of edge state%rlgﬁhe
Kn (0x — ky)N u+V(x)u = eu. (3) independe_nt of the _ribbon width, Wh_ereas the number of biaites
branches is proportional to ribbon width. In the case of ABAck-
HereKy = —t, (—i U;:h_/tL)N, N is the number of layers in ing, ribbons are metallic in the trilayer whereas a small gpgns in
the system, and (x) is a general position-dependent function the tetralayer geometry.
which specifies the difference between top and bottom layer
potentials. In the following subsections, we will preségit-
binding calculations for multilayers for a variety of difemt  these calculations we have maintained the same interlayer p
external potential profiles and discuss the validity of thalg  tential differencé\/t = 0.1 between top and bottom layers and
itative picture summarized in Fig. 1. have taken the electric field to be uniform. In the tetralayer
case we used a smaller potential differedd¢e= A/3 to ac-
count for the smaller interlayer distance of the inner layer
B. Multilayer ribbons under a uniform electric field which facilitates distinguishing their edge state bandas
ciated with respect to the outer ones. In multilayer zigzag
The simplest example of valley Hall edge states are thosgbbons with ABC stacking, the uniform electric field gener-
that appear in ABC stacked multilayers under a uniform ex-ates a band gap in the sample Billwith edge states in the
ternal electric field. Tight-binding band structure of hga  gaps. In agreement with previous analgisve find [N/2]
graphene ribbons by Castab al.1%?! has demonstrated the valley Hall edge states in ad-layer ribbon in each valley that
presence of metallic edge states which cross the Fermi levgiropagate in opposite directions and are localized at ofgpos
in neutral zigzag terminated bilayer ribbons and in chyrall edges. Hence, for zigzag edges the number of 1D states at
stacked multilayer zigzag ribbons. Edge state properties dhe physical boundaries of the ribbons with vacuum can also
multilayer graphent and band gaps in presence of an elec-be discussed in terms of valley Chern number differences be-
tric field depend on the layers’ stackif§The number of val-  tween the bulk region and the vacuﬂgf‘c = 0. In the arm-
ley Hall edge states branches in each propagation direistion chair termination boti andK’ valleys appear at the same

i lt
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Zigzag ABC

projected 1D momentum and the Hall edge states are annihi-
lated. This observation is helpful in distinguishing edgd a
kink states in ribbons with internal electric field sign ches.

For biased ABA multilayer zigzag ribbons the system also -
has conducting edge states, but their pattern is more com-<
plex than in the ABC case. (Bulk and edge ribbon bands
can in general be distinguished by their dependence onmibbo
width.1°) In ABA stacked trilayer ribbons an external bias in-
creases the number of bulk channels, while it opens a bulk gar
in the ABC casg®22:23

E/t

C. ABC stacked zigzag and armchair multilayer ribbons with
kink states

We have just seen that a biased bilayer and ABC trilayer kav3/n kavB/n
graphene ribbons are gapped in the bulk but have metallic val

ley Hall edge states crossing the Fermi level when they haveIG. 3: (Color online)Upper Panel: Band structure of bilayer, tri-
a zigzag edge termination. Now we consider ribbons with dayer and tetralayer graphene zigzag ribbons with an éteftéld
electric field sign change at the ribbon center that is exgaect Sign change at the ribbon center. We can clearly observethree
to produceN 1D channels in each valley. In these ribbons,and four 1D valley Hall kink ;tates with a common sign of vétpc
the regions near the ribbon border will show valley Hall edgeIOCatecj around the valley point. The branches which coarfto

tat imilar to th tin a bil ith if | wavefunctions localized at the ribbon center are plotteceth The
states similar to those presentin a bilayer with a uniforee€l . ,p0 - pranches that cross the bulk gap are doubly-degenedate

tric field. In Fig. 3 we plot the band structures of bilayer, gates) ower Panel: Band structure of bilayer, trilayer and tetralayer
trilayer and tetralayer ribbons with zigzag edge termovai  graphene armchair ribbons with an electric field sign chaatgbe
subject to a step-like interlayer potential discussedezarl ribbon center. As in the zigzag case we can clearly identity three

In zigzag terminated ribbon geometries eandK’ mo-  and four three 1D kink state branches. In armchair edges wetio
mentum projections appear at the two valley points located &ind 1D edge state channels.
k= 211/3a, 411/3aand can therefore easily be distinguisiéd.
In agreement with the continuum model analysis presented in
Sec. Il, we sed\ bands of confined kink states with a well . . : .
defined propagation direction for each vallépr K’ crossing k ~ 0 where bo_th right and left going states.coeX|st with simi-
the Fermi level. Each valley has doubly degenerate addition I‘."“ Bloch functlpn wave vectors. In armchair gdges we do not
metallic edge state branches, with a velocity oppositedbdh find edge Iocahzed states crossing the Fermi level as we had
the confined states. In the uniformly biased case, edgesstat&ound for the zigzag terminated systems.
in a given valley that are localized on opposite edges have op
posite propagation directions, whereas they propagateein t

same direction when a kink is present. For ribbons with inver . SUMMARY AND CONCLUSIONS
sion symmetry at the ribbon center, the co-propagating edge
state channels are degenerate. External electric fields between layers give rise to gaps

As mentioned previously, the projection of the 2D bandsat the carrier neutrality point in bilayer and ABC multilaye
of graphene to obtain the ribbon band structure pl&esd graphene systems leading to quantum valley Hall effect with
K’ valleys at the same momentum in the armchair edge casfN/2] chiral edge states in zigzag edge terminations. Wehav
Therefore, unlike the case of the zigzag ribbons, it is nst po shown that in addition 1D transport channels appear along
sible to identify valley labels from ribbon band structutetp.  lines where the sign of the inversion symmetry breaking po-
In the case of edge states, these difference eliminatesthe ltential changes. This finding generalizes results obtgimed
channels completely. As we see in in Fig. 3 this is not theviously for the bilaye? and monolayer casé$.1® The num-
case for ribbon states which appear to be as robust in arnier of these metallic 1D kink state branches is proportitmal
chair and zigzag directions. When the electric field profile h the number of layerdl and can be related to the bulk valley
sharp spatial variation, there is a barely visible gap apgni  Hall conductivity?!. The states we have considered arise at
similar to the one found in direction of graphene under a-stagthe boundary between two regions with opposite valley Hall
gering potentidt*. This gap size decreases quickly when theconductivity. Because the Hall conductivity changes sign i
potential variation at the domain becomes smoother. opposite directions in the two valleys both produce 1D kink

In the band structures of bilayer, trilayer and tetralayerstates and they propagate in opposite directions.
graphene armchair ribbons subject to a kink step bias around Similar valley Hall effect considerations suggest thatkin
the ribbon center, one can clearly identify two, three and fo states should occur at boundaries between ribbons with dif-
1D states for each propagation direction, corresponding téerent thicknesses. Oum-orbital tight-binding model cal-
confined states at the domain wall for wave vectors aroundulations for ribbons with a trilayer/tetralayer boundénd



that the interface electronic structure depends on whéitleer
stacking sequences is ABC or ABA. Bulk valley Hall effect
values are also unreliable at the edge; in particular we fiat t
edge states are absent in multilayer armchair terminaked ri
bons, as found earlier in the bilayer or monolayer case. This
finding is perhaps expected since the 1D momentum projec-
tion does not distinguish valleys in this case. It is the stbu
ness of the kink states at internal electric field sign change
that is perhaps the surprise. It is important to determirie if
persists in the presence of disorder and turns in the prepaga
tion path.
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