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The quantum thermal Hall effect in a six-terminal graphene device subjected to a thermal gradient
and a perpendicular magnetic field is theoretically studied. We find that, when the Dirac-point
energy is far away from the Fermi energy, the Hall thermal resistance has well quantized plateaus
and the longitudinal thermal resistance is zero at low temperature. On the other hand, when the
Dirac-point energy is near the Fermi energy, a fine structure with a negative Hall-Lorentz number
is exhibited in which the Wiedemann-Franz law is violated. This fine structure has a good scaling
behavior and the analytical scaling functions are also obtained.

PACS numbers: 73.43.-f, 73.50.Lw, 72.80.Vp

I. INTRODUCTION

Since first discovered in 1879, the Hall-type effect1–4

has always been a fascinating topic in condensed mat-
ter physics. It describes the phenomenon of a transverse
bias induced by a longitudinal current. The Hall effect is
the generation of transverse voltage from the longitudinal
electric current in the presence of a magnetic field. Since
then, a series of Hall related effects have been discov-
ered including the quantum Hall effect (QHE),1 spin Hall
effect,2 anomalous Hall effect,3 quantum spin Hall effect4

etc, and many fascinating properties were revealed. Tak-
ing QHE as an example, the conductance is quantized
with integer plateaus due to the Landau levels in the pres-
ence of a magnetic field.1 Apart from the electric charge
transport, the thermal transport has received more and
more attention in recent years. Generally speaking, the
thermal conductance and thermoelectric coefficient are
more sensitive to details of device like the density of
states etc,5,6 so they can provide more information such
as the derivative of transmission coefficient with respect
to energy. But in the early days, they were paid little at-
tention to and even often neglected because of the exper-
imental difficulties. With the development of microfab-
rication technology and low-temperature measurement
technology, however, the thermal transport becomes fea-
sible nowadays.7–9 For instance, the Nernst effect, a Hall-
type effect in which a transverse voltage is generated by a
longitudinal thermal current, has been observed in many
systems, including high-Tc superconductivity,7 graphite8

etc, and the spin Seebeck effect10 was also discovered re-
cently.

In recent years, another research topic that has been
extensively investigated is the graphene.11 The graphene
is an ideal two-dimensional material of monolayer hexag-
onal lattice of carbon atoms,12 and has a unique lin-
ear dispersion of low-lying energy leading to many pe-
culiar properties. For instance, its quasi-particles show a
relativistic-like behavior and its Hall plateaus locate at
the half-integer values.11

In this paper, we study the thermal Hall effect (THE)
in graphene. Similar to the Hall effect, THE is the gener-

ation of transverse temperature difference resulting from
a longitudinal thermal current.13–17 In general, for the
classical case, Wiedemann-Franz (WF) law is obeyed in
which the ratio of thermal conductivity κ to electrical
conductivity σ remains a constant: Lxy = κxy/(σxyT ) =
π2k2B/(3e

2)(≡ L0), where T is absolute temperature,
subscript {xy} indicates the transverse direction, and
Lxy is named Hall-Lorentz number. But in the quan-
tum system or in the presence of various interactions, the
WF law may not be held. Recently, THE and quantum
THE (QTHE) have generated a great deal of interest, and
have been widely studied within various systems includ-
ing high-Tc superconductivity,15 impurity-doped iron16,
doped graphene17 etc. In this paper, we consider a six-
terminal graphene Hall bar subjected to a perpendicular
magnetic field and a longitudinal thermal gradient (see
the inset in Fig. 1d). Due to the thermal gradient, a
longitudinal thermal current flows through the device, in
which high energy carriers flow from left to right while
the low energy ones flow in the opposite direction. So the
high and low energy carriers are deflected toward the op-
posite transverse edges in this case, accordingly a trans-
verse temperature difference is exhibited. The results
clearly show that the QTHE emerges at low temperature
and the Hall thermal resistance has quantized plateaus
with the plateaus values being at half-integer, which are
robust against the disorder. Moreover, while the Dirac
point is near the Fermi energy, both the Hall and longi-
tudinal thermal resistances exhibit a fine structure with
a negative Hall-Lorentz number.

The rest of this paper is organized as follows. In Sec.
II, we describe the model and give the details of our cal-
culation. In Sec. III, we show the numerical results of
QTHE along with discussions. Finally, the conclusion is
presented in Sec. IV.

II. MODEL AND METHOD

In the tight-binding representation, the six-terminal
graphene device (see inset of Fig. 1d) can be described by

the Hamiltonian:18,19 H =
∑
i εia

†
iai −

∑
〈ij〉 te

iφija†iaj ,
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FIG. 1: (color online) (a) is the Hall thermal resistance
Rxy(h/kB) vs. the Dirac-point energy E0. (b)-(d) respec-
tively show the dimensionless thermal resistance Rxy, Rxx,
and thermal conductance κxy vs. E0 at different tempera-
tures. The parameters are N = 50, L = 50, φ = 0.007 and the
legend is for all panels. The inset of panel (d) is the schematic
diagram for the six-terminal graphene device.

where a†i (ai) denotes the creation (annihilation) operator
at the site i, and εi is the on-site energy (i.e. the energy
of Dirac point). While in the absence of disorder, we set
εi ≡ E0 for any site i. The second term in Hamiltonian
describes the nearest neighbor hopping with t being the
hopping energy. In the presence of magnetic field B,
a phase φij is added in the hopping term.18,19 In the
calculation we used the zigzag edge graphene ribbon. We
point that the results are the same for the armchair edge
(see Fig.4) and other chiral edges.

The heat flux flowing to the terminal n can be calcu-
lated from the Landauer-Büttiker-type formula:20

Qn = (1/h)
∑
m

∫
(E − eVn)Tnm(E)[fn(E)− fm(E)]dE

(1)
where Tnm(E) represents the transmission coefficient of
electron from terminal m to terminal n at energy E,
and it can be calculated through the equation Tnm(E) =
Tr[ΓnGrΓmGa] where Γn(E) = i[Σr

n(E)−Σa
n(E)] and

Green’s function Gr(E) = [Ga(E)]† = {EI − HC −∑
n Σr

n}−1. Here HC is the Hamiltonian of the central
region (see the dotted box in inset of Fig. 1d) and Σr,a

n

is the self-energy due to the coupling of the terminal n.
The size of central region is specified by the width N
and length 2N + L. In Fig. 1(d), the schematic dia-
gram of graphene device has N = 3 and L = 3. Be-
sides, fn(E) = 1/{exp[(E− eVn)/kB(T +Tn)] + 1} is the
Fermi distribution function in terminal n with chemical
potential eVn and temperature (T + Tn). In the linear
response regime, it can be expanded around the Fermi
energy EF = 0 and temperature T as:

fn(E) = f0(E)− e∂f0
∂E

Vn +
∂f0
∂T

Tn (2)

where f0 = 1/{exp[E/kBT ]+1} is the Fermi distribution
under zero bias and zero thermal gradient. The charge
current flowing to the terminal n can also be obtained
from the Landauer-Büttiker formula:21

In = (e/h)
∑
m

∫
Tnm(E)[fn(E)− fm(E)]dE (3)

In our simulation, a thermal gradient ∆T is applied
between terminals 1 and 4, so that T1/4 = ±∆T/2, and
a longitudinal thermal current flows via the chiral edge
modes. The boundary conditions for the transverse ter-
minals are Qn = 0 (n = 2, 3, 5, 6) because they are the
temperature probes. We assume there is no net charge
current existing in the device, thus In = 0 (n = 1, . . . , 6).
Finally, by using Eqs.(1), (2) and (3) combined with
these boundary conditions, all thermal-gradient-induced
voltages Vn and temperature Tn as well as longitudi-
nal thermal current Q can be obtained. Specifically,
the longitudinal and Hall thermal resistances are defined
as: Rxx = (T2 − T3)/Q and Rxy = (T2 − T6)/Q with
Q ≡ Q1 = −Q4. Furthermore, the Hall thermal con-
ductance reads κxy = Rxy/(R

2
xx + R2

xy). In the follow-
ing calculation, we use t ≈ 2.75eV as energy unit, and
3h/(π2k2BT ) as dimensionless thermal resistance unit.
The size N and L are chosen to be N = 50, L = 50 with
the central region being approximately 21.2× 37nm2. In
fact, all results are insensitive to the size, except when it
is very small. The magnetic field is represented by the
parameter 2φ which is the magnetic flux in a honeycomb
lattice.18,19

III. NUMERICAL RESULTS AND
DISCUSSIONS

We first study the Hall and longitudinal thermal resis-
tances, Rxy and Rxx, at different temperatures T . Three
features are clearly revealed from Fig.1(a-c). First, when
|E0 − EF | > 5kBT at low temperatures, Rxy is well
quantized exhibiting QTHE due to the Landau levels
and chiral edge states. Second, when E0 is near the
Fermi energy EF = 0, both Rxy and Rxx have fine
structures which will be discussed in detail in the next
paragraph. Third, with the increase of temperature,
Rxy reduces monotonously and the quantized plateaus
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become smeared. The plateaus finally disappear when
kBT reaches room temperature (e.g., kBT = 0.01t).
This can be seen more clearly in Fig. 1(b) where Rxy
is in the unit of 3h/(π2k2BT ) so that it is dimensionless.
In the low temperature regime, due to the linear low-
lying energy dispersion Rxy has quantized plateaus at
half-integer values instead of integer values in the usual
two-dimensional electron gas (2DEG).13 In particular, at
these plateaus the WF law is satisfied that Lxy = L0,14

because of the absence of backscattering. In the high
temperature regime, however, the quantization charac-
teristics vanishes and no plateaus can be observed any
more. Besides, due to particle-hole symmetry, we have
Rxy(−E0) = −Rxy(E0) regardless of T , magnetic flux
φ, and the device size. For the longitudinal thermal re-
sistance Rxx, on the other hand, the symmetry becomes
even, i.e, Rxx(E0) = Rxx(−E0). From Fig. 1(c) we see
that Rxx exhibits a symmetric double peak structure and
Rxx 6= 0 at E0 = 0. At low temperatures the sharp peak
is located in the vicinity of E0 = 0. It becomes broad-
ened with the peak position shifted away from E0 = 0 as
temperature increases. The peak value is a constant up
to kBT = 0.01t (corresponding to room temperature).
Upon further increasing the temperature, the peak value
starts to decrease. Next, let us examine the behavior of
Hall thermal conductance κxy at different temperatures
[see Fig. 1(d)]. Similar to Rxy, at low T κxy also ex-
hibits quantized plateau that is eventually destroyed as
the temperature approaching to room temperature. We
note that although the quantized plateaus disappear, the
values of κxy do not change much indicating the fact that
the THE still exists although QTHE has been completely
destroyed. Furthermore in the high T regime, we have
the asymptotic behavior κxy ∝ E2

0 . This is because the
thermal conductance is sensitive to the occupied particle
number n and for graphene we have n ∝ E2

0 due to linear
low-lying energy dispersion.

Let us further examine the fine structure of the Hall
and longitudinal resistances in detail. For this purpose
we zoom in Fig.1(b) and 1(c) and plot them in Figs. 2(a)
and 2(b), respectively. We can see clearly that Rxy does
not drop monotonously from 1 to −1 when E0 passes
through EF = 0 with the carriers changing from the
electrons to holes. Specifically, with the increase of E0,
Rxy first increases and then drops after reaching a max-
imum value. It then quickly drops to a negative value
in the region E0 < 0. Finally Rxy increases again and
reaches Rxy = 0 at E0 = 0. For E0 > 0, the behav-
ior of Rxy obeys the relation Rxy(−E0) = −Rxy(E0).
In particular Rxy is positive in the vicinity of origin.
Within this regime, the WF law is clearly violated with
its Hall-Lorentz number Lxy < 0. Here the negative Lxy
originates from the electron- and hole-like edge states
propagating in opposite directions,14 and the unique ze-
roth Landau level which has both electron- and hole-
like behaviors. This feature shows essential difference
in comparison with the usual 2DEG, in which Lxy is al-
ways positive,13 even if the system has both electron and
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FIG. 2: (color online) (a) and (b) are, respectively, the mag-
nifications of Fig. 1(b) and 1(c) around the origin E0 = 0. (c)
is the result of (a) after scaling using kBT as dimensionless
parameter (i.e., Rxy vs. E0/kBT ), while (d) is the same scal-
ing result of (b). The parameters and legend are the same as
in Fig. 1. The dotted curves in (c) and (b) are the scaling
functions.

hole. This fine structure indicates that non-interaction
graphene resembles the interaction two-dimensional elec-
tron gas in the fractional quantum Hall regime. For Rxx,
as seen in Fig.2(b), two peaks emerge regardless of tem-
perature. This double peak structure seem be analogous
to that in the disorder 2DEG.13 But now the double peak
structure can survive in the clean graphene device due to
the upstream propagating electron- and hole-like edge
states. Of more importance, Rxx still has non-zero value
even at E0 = 0 in which the density of state is actually
0.

In the following, we shall give detailed explanation of
such negative Hall-Lorentz number. At first let us con-
sider the region of E0 < 0 with E0 is very close to 0.
In this region, at the finite temperature, the system has
both electron- and hole-like carriers with the filling fac-
tor νe of electron-like carriers larger than that of hole-like
carriers νh. Although the electron- and hole-like carriers
propagate in the opposite directions, the Hall electrical
conductivity σxy is always positive because of νe > νh.
However, due to the counter-propagating electron- and
hole-like carriers in graphene, the Hall thermal conduc-
tivity κxy can be negative. In order to see the negative
κxy clearly, we show the thermal-gradient-induced ter-
minal bias Vn as well as terminal temperature Tn versus
E0 in Fig.3. When a temperature difference ∆T is added
between the longitudinal terminals 1 and 4, it can induce
both temperature difference and also electrical bias be-
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FIG. 3: (color online) (a) shows the thermal-gradient-
induced terminal bias Vn vs. Dirac-point energy E0, while
(b) is the terminal temperature Tn as a function of E0.
kBT = 0.002t and other parameters are the same as in Fig.1.

tween the transverse terminals. In order to satisfy the
boundary conditions In = 0, the bias V2 (V3) needs to be
higher than the bias V6 (V5) [see Fig.3(a)], which is the
Nernst effect (a transverse voltage generated by a longi-
tudinal thermal current).6–8 As a consequence of V2 > V6
(V3 > V5) and the counter-propagating hole-like carri-
ers with the energy E < E0, the temperature T2 (T3)
has to be lower than T6 (T5) [see Fig.3(b)] to keep the
zero thermal current in all transverse terminals leading to
the negative Hall thermal conductivity κxy and negative
Hall-Lorentz number. For the E0 > 0 case, on the other
hand, situation of κxy reverses due to the symmetry of
Rxy, but the Hall-Lorentz number remains negative in
the vicinity of 0.

Next, we study the scaling of fine structure of Rxy
and Rxx. The results are shown in Fig. 2(c) and (d).
After renormalization of Rxy(Rxx) by using kBT as a di-
mensionless unit, all curves (i.e., Rxy(Rxx) vs. E0/kBT )
almost collapse together. In particular, at low T the
thermal resistance scales perfectly, while it deviates the
scaling law at large |E0| in the high T case [see Fig.2(c)
and (d)]. The general scaling functions can be analyt-
ically obtained as follows. When EF is near the Dirac
point at low temperature, Tnm can well approximately
be T12(E) = T23(E) = T34(E) = T45(E) = T56(E) =
T61(E) = 2θ(E − E0), T21(E) = T32(E) = T43(E) =
T54(E) = T65(E) = T16(E) = 2θ(E0−E), and others are
zero. This is because for E > E0 and E < E0 the carriers
are, respectively, electron- and hole-like which moves in
the clockwise and anti-clockwise direction. Here the fac-
tor 2 is the spin degeneracy. Then, by substituting these

transmission coefficients Tnm and Eq.(2) into Eqs.(1) and
(3), one can straightforwardly obtain the scaling func-
tions as:

R̃xx(E0/kBT ) = 3
{

9F 4
1 + (1− 3F0 + 3F 2

0 )F2(3F2 − π2)

+ F 2
1 [9(1− 2F0)F2 + (−2 + 3F0)π2]

}
/A

(4)

R̃xy(E0/kBT ) = π2
{

9(−1 + 2F0)F 2
1

+ (1− 3F0 + 3F 2
0 )(−6F2 + π2)

}
/A (5)

in which A = −81F 4
1 +9F 2

1 [9(2F0−1)F2 +(1−3F0)π2]−
(1 − 3F0 + 3F 2

0 )(27F 2
2 − 9F2π

2 + π4), Fi ≡ Fi(E0/kBT )
and Fi(x) =

∫∞
x
xi/[(ex + 1)(e−x + 1)] dx, (i = 0, 1, 2).

Here, both R̃xx and R̃xy are dimensionless, i.e., in the
unit of 3h/π2k2BT . By using such scaling functions,
many features can be obtained quantitatively. For in-
stance, the maximum value of Rxx(≈ 0.77187) lies at
E0/kBT ≈ ±0.23462, and at E0 = 0, it is Rxx ≈ 0.15108.
The minimum value of Rxy on the side E0 < 0 is about
−0.36709 located at E0/kBT ≈ −1.0817.
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FIG. 4: (color online) (a) is the schematic diagram for the
six-terminal armchair edge graphene ribbon device. In such a
schematic diagram the size is N = 3, L = 3. (b) shows Rxy for
both armchair edge and zigzag edge cases together, and (c) is
its magnification around the origin E0 = 0. For the armchair
edge case the parameters are N = 70, L = 50, φ = 0.007, and
for the zigzag edge case they are the same as in Fig.1(b).

Here we wish to emphasize that, due to the presence
of strong magnetic field, the carriers move only along the
boundaries of sample, so that our results are independent
of the orientation of the edges of the graphene ribbon. As
an example, in Fig.4 we show the Hall thermal resistance
Rxy for the armchair edge case (see the device schemat-
ically shown in Fig.4a). Rxy in this case also exhibits
the Hall plateaus and the fine structure (see Fig.4b and
4c). For comparison, the results of zigzag edge case are
also shown in Fig.4(b) and (c). Now it can be clearly seen
that the curves collapse perfectly, including both the Hall
plateaus and the fine structure.
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FIG. 5: (color online) (a) shows Rxy vs. E0 for φ = 0.0001,
0.0002, 0.0003, 0.0005, 0.001, 0.002, 0.004, and 0.007 (along
the arrow direction), while (b) is Rxy vs. φ for E0 = −0.1t,
−0.15t, −0.2t, 0.2t, 0.15t, and 0.1t from bottom to top. The
parameters are kBT = 0.001t,N = 50, L = 50. (c) is Rxy

vs. E0 at different disorder strengths W with the parameters
being: N = 40, L = 40, φ = 0.007, kBT = 0.002t.

In Fig. 5 we examine the influence of magnetic fields
φ on the Hall thermal resistance Rxy. At zero magnetic
field (φ = 0), we have Rxy = 0 everywhere since there is
no edge state. With the increase of φ from 0, Rxy first
emerges in the vicinity of E0 = 0 and then it gradually
spreads to the whole region. For the small φ, only THE
(no QTHE) can be observed as seen in Fig. 5(a). But
for the large φ, Hall plateaus occur due to the formation
of Landau levels and edge states. Fig. 5(b) shows Rxy
versus the magnetic field φ, in which similar behaviors are
observed. In another word, we have Rxy ∝ φ at small φ,
and the plateaus of Rxy finally occur at the half-integer
values when φ is large enough.

Next, we shall examine the disorder effect onRxy. Here
the disorder is assumed to exist only in the central region
[see the dotted box in the inset of Fig. 1(d)]. In the pres-
ence of disorder, the on-site energy E0 at site i in the
central region becomes E0 + wi, where wi is uniformly
distributed in the range [−W/2,W/2] with W being the
disorder strength. In Fig. 5(c) we present the influence
of disorder on Rxy at different disorder strengths W ,
from which the results clearly show that, the quantized
plateaus of Rxy are very robust against disorder effect
owing to the topological feature of system. In particu-
lar, the lowest plateau 3h/(π2k2BT ) remains intact even
when the disorder strength reaches up to W = 2t, and
its fluctuation is nearly 0. When W increases further the
plateaus start to deteriorate, but the values of Rxy do not
decrease very much. In other words, although QTHE is

completely destroyed due to the large disorder, the THE
still exists. This is due to the following reason. Although
the disorder strongly reduces the Hall temperature dif-
ference T2 − T6, the longitudinal thermal current Q is
also strongly weakened at the same time, giving rise to a
finite value of THE even at W →∞. On the other hand,
the fine structure of Rxy with the negative Hall-Lorentz
number Lxy in the vicinity of E0 = 0 is sensitive to the
disorder, and it will be weakened as well. In particu-
lar, at a certain disorder strength W , Rxy and Lxy can
change sign, and accordingly the WF law gradually re-
covers again. In this case the carriers behave much more
like classical carriers due to the strong scattering as a
result of disorders.
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FIG. 6: (color online) Rxy (a) and κxy (b) vs. energy E0

at different temperatures for the square lattice system. The
parameters are: N = 80, L = 80, φ = 0.03.

Finally, for comparison, Rxy and κxy in a usual 2DEG
(square lattice) instead of the graphene system (hexag-
onal lattice) are shown in Fig. 6. Similarly, Rxy and
κxy also have quantized plateaus at low temperature,
and they become gradually destroyed with the increase
of kBT . On the other hand, two main differences are
observed. First, the Hall plateaus are at integer values
rather than half-integers. Second, no fine structure oc-
curs and Lxy always remains positive.13

IV. CONCLUSION

In summary, the QTHE in graphene system is theoret-
ically investigated. The quantized thermal Hall plateaus
at the half-integer values are exhibited at low tempera-
ture and they are robust against disorders. Besides, a fine
structure with a negative Hall-Lorentz number is found
when Fermi energy is near the Dirac point. Finally, all
results are insensitive to the orientation of edge and also
size of the graphene.
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