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Si nanowires have attracted considerable attention as promising candidates for electronic, ther-
moelectric, photonic, and photovoltaic devices, yet there appears to be only limited understanding
of the underlying electronic and excitonic structures on all pertinent energy scales. Using atomistic
pseudopotential calculations of single-particle as well as many-body states, we have identified re-
markable properties of Si nanowires in three energy scales: (i) In the ”high energy” ∼1 eV scale, we
find an unusual electronic state crossover whereby the nature of the lowest unoccupied molecular
orbital (LUMO) state changes its symmetry with wire diameters for [001]-oriented wires but not for
[011]-oriented wires. This change leads to orbitally-allowed transitions becoming orbitally-forbidden
below a certain critical diameter for [001] wires. (ii) In the ”intermediate energy” ∼10−1 eV scale,
we describe the excitonic binding, finding that in [001] wires the diameter (D) dependence of exci-
tonic gap scales as 1/D1.9, not as 1/D1 as expected. The exciton binding energy increases from 52
meV at D=7.6 nm, to 85 meV at D=3.3 nm and 128 meV at D=2.2 nm. (iii) In the ”low energy”
∼10−3 eV scale, we describe dark/bright excitonic states and predict how orbitally-allowed tran-
sitions (in scale (i)) become spin-forbidden due to the electron-hole exchange interaction, whereas
the spin-allowed states in the orbitally-forbidden diameter region remain dark. The diameter de-
pendence of the fine-structure splitting of excitonic states scales as 1/D2.3 in [001] wires and as
1/D2.6 in [011] wires. Surface-polarization effects are found to significantly enhance electron-hole
Coulomb interaction, but have a small effect on the exchange fine-structure splitting. The present
work provides a roadmap for a variety of electronic and optical effects in Si nanowires that can guide
spectroscopic studies.

PACS numbers: 78.67.Lt, 73.21.Hb, 71.35.Cc, 78.20.Bh

Si nanowires have attracted considerable interest as promising candidate structures for electronic,1,2

thermoelectric,3,4 photonic,5,6 and photovoltaic devices,7–11 reflected by numerous papers on growth,12–14 structural
characterization,15 transport16,17 and optical15,18–23 properties. Yet, there appears to be limited understanding of
the underlying electronic and excitonic properties. Such understanding would span three energy scales: (i) in the
”high energy” ∼1 eV scale one needs to understand the nature of confined energy levels and their dependence on
wire orientation and diameter (single-particle physics); (ii) in the ”intermediate energy” ∼10−1 eV scale one needs to
understand the screened electron-hole Coulomb attraction which determines the exciton binding energy (many-body
physics); and finally (iii) in the ”low energy” ∼10−3 eV scale one encounters the electron-hole exchange interaction
which splits the excitonic states into bright/dark states (many-body physics).
Current calculations and experiments on Si wires provide only limited understanding of the electronic and excitonic

structures on all of these energy scales. On the theoretical side, in the ∼1 eV energy scale (i), density functional
theory (DFT) calculations, which are computationally restricted to small-diameter wires, reported band structures for
different wire orientations.24–27 Since in DFT the bulk band gaps are often underestimated (by 60%) and the effective
masses are overestimated (by 40%), the description of quantum confinement effects in nanowires is questionable.
The semiempirical tight-binding method28 was also used to probe scale (i). In the ∼10−1 eV energy scale (ii) the
Bethe-Salpeter Equation (BSE) within the GW method was used to describe excitonic absorption,29,30 yet GW-BSE
calculations are computationally rather expensive, so large-diameter wires (>1.5 nm) were not considered and the
spin-orbit (SO) coupling effect was generally ignored.29,30 In the ∼10−3 eV energy scale (iii), the understanding is
still dominated by simple exchange singlet-triplet splitting model based on two single-particle levels.30,31 Furthermore,
in an indirect-gap system such as Si the dark states are not only exchange-induced, but are affected by the symmetry
of band-edge states and by intervalley coupling in the conduction bands.32,33

On the experimental side, scanning tunneling spectroscopy has been employed to evaluate the size-dependent
quasiparticle band gaps in the scale (i). The gap increases from 1.1 eV at D=7.0 nm to 3.5 eV at D=1.3 nm.15 As
to scale (ii) and (iii), available photoluminescence spectra for Si nanowires show a complicated profile with relatively
weak intensity compared to porous Si, broad peaks (the narrowest reported linewidth ν ∼ 85 meV at 7 K),21 and long
carrier decay time on the order of 1-103µs.20,34 These properties are strongly dependent on the wire size, morphology
and surface passivation.14,19,22,23 In this situation theoretical studies on excitonic properties of Si wires were usually
compared to experimental results for porous Si,29,30 which has a yet poorly understood morphology and interface.
Here we describe via explicit atomistic pseudopotential calculations a comprehensive analysis of Si nanowires along

the [001] and [011] growth direction on all three energy scales. In scale (i) we find an unusual electronic state
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crossover whereby the nature of the lowest unoccupied molecular orbital (LUMO) state changes its symmetry with
wire diameter for [001] wires but not for [011]. This symmetry change leads to orbitally-allowed transitions becoming
orbitally-forbidden below a certain critical diameter for [001] wires. In scale (ii) we describe the excitonic states
of Si wires for different sizes and orientations, predicting the symmetry and polarization of the first few excitonic
peaks. In [001] wires, the electronic state crossover noted above leads to distinct polarization behaviors of excitons
for different diameter regions, whereas for [011] wires the excitonic structure is much simpler and the bright exciton
is always polarized along the wire growth direction. In scale (iii) we predict how orbitally-allowed transitions (in
scale (i)) become spin-forbidden due to the electron-hole exchange interaction, whereas spin-allowed states in the
orbitally-forbidden diameter region are still dark. We also discussed the effect of surface-polarization induced by the
dielectric mismatch between Si wire and the surrounding material. This study provides a roadmap for a variety of
optical effects in Si nanowires that can guide spectroscopic studies of such systems.
Method. The single-particle electronic energies and wavefunctions (scale (i)) are calculated via the atomistic

pseudopotential method described in Ref. 35. Briefly, the nanowire system is described by solving the Schrödinger
equation:
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∑
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vα(r−Rn,α) +
∑

α

V SO
α ]ψi(r) = ǫiψi(r), (1)

where the Hamiltonian consists of the kinetic-energy (first term), the nanocrystal potential (second term), and the spin-
orbit operator (third term). The nanocrystal potential specifies the atomistic symmetry as well as the mesoscopic shape
and size of nanostructures, and is represented as a superposition of screened atomic pseudopotentials vα(r −Rn,α)
centered at the atom sites Rn,α. vα(r −Rn,α) and V

SO
α are fitted to accurately reproduce the properties of bulk Si

(band gap, critical energy levels, effective masses, deformation potentials, and spin-orbit splittings), thus correcting
the well-known ”DFT errors” for semiconductors. The Hamiltonian is diagonalized iteratively by expanding the
wavefunction (ψi(r) in Eq. 1) in plane waves, and selectively calculating band-edge states via the folded spectrum
method.36,37 The pseudopotential method naturally includes the effects of atomistic symmetry, quantum confinement,
spin-orbit coupling, multiband coupling, and intervalley coupling (the last two originating from the lack of translational
symmetry in nanostructures). Here the Si wires are constructed with circular cross-sections (except as noted) along
the [001] and [011] direction and are embedded in a matrix material having a (variable) wide gap, mimicking various
target surface passivations. Whereas other specific passivations have been used in the literature such as atomistic
hydrogen H termination, we prefer here to capture a range of possible passivations by using a generic one.
The many-body excitonic properties (scale (ii) and (iii) above) are calculated within the framework of the screened

configuration-interaction (CI) approach.38 The exciton wavefunctions |Θ(ν)〉 are expanded in terms of linear combi-
nations of Slater determinants |Φhi,ej 〉 (corresponding to the hi-ej electron-hole pair) constructed from the antisym-
metrized products of single-particle wavefunctions ψi(r) obtained from Eq. 1:

|Θ(ν)〉 =
∑

hi,ej

C(ν)(hi, ej)|Φhi,ej 〉, (2)

where the coefficients C(ν)(hi, ej) are the eigenstates of the CI Hamiltonian constructed by using the electron-hole
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j
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The eigenvalues are energies of excitons, EX . The Jhiej ,h
′

i
e′
j
and Khiej ,h

′

i
e′
j
are calculated by using the single-particle

orbitals ψi(r):
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The screening for these integrals is described by a position-dependent and size-dependent screening function ε(r1, r2),
which gives a physically smooth transition from short range (unscreened) to long range (screened).38 To describe the
electron-hole interaction for excitons, in the CI calculations the wires are periodically expanded along the growth
direction with a length of ∼11 nm, which is more than twice of the exciton Bohr radius of bulk Si (∼4.9 nm). We use
a large enough number of single-particle valence (>40) and conduction (>40) band states to converge our CI basis:
the calculated excitonic energies EX have a residual convergence error of less than 0.2 meV.
The optical absorption spectra including excitonic effect are calculated with the CI eigenstates of Eq. 3 by using

Fermi’s golden rule:

I(E) =
∑

ν

|Mν |
2exp[−(

E − Eν

σ
)2], (6)

where Mν =
∑

hi,ej
C(ν)(hi, ej) < ψhi

|P̂|ψej >, is the dipole transition matrix, Eν is the exciton energy and the

broadening of spectral lines, σ is chosen as 50 µeV. The exciton decay lifetime (τν) is calculated according to:39

1

τν
=

4αEνn|Mν |
2

m2
0~c

2
(7)

where n is the refractive index (∼ 4.0 for photon energies of 1-2 eV for Si),40 α is the fine-structure constant, m0 is
the electron rest mass, and c is the velocity of light.
The dielectric mismatch between the nanostructure (dielectric constant ǫin) and its surrounding material (ǫout)

will create image charges at the surface.41 This leads to two additional contributions to the energies of excitons: (i)

the self-energy correction (Σpol
i ) of an electron (hole) in the single-particle state i, originating from the interaction

between the electron (hole) and its own image charge; (ii) the Coulomb (exchange) interaction correction (Upol
hiej ,h

′

i
e′
j

),

originating from the mutual interaction of electron and hole, mediated by their image charges. The self-energy term
is evaluated in first-order perturbation theory by:

Σpol
i =

∫
|ψi(r)|

2Σ(r)dr, (8)

where ψi(r) is the single-particle wavefunction from Eq. 1 and the surface-polarization potential, Σ(r) is numerically
calculated as in Ref. 42. The Coulomb (exchange) interaction term is calculated via the electrostatic potential,

Ωpol
ej ,e

′

j

(r),

Upol
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′

i
e′
j

= e2
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σ

∫
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i
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ej ,e
′

j

(r)dr, (9)

where Ωpol
ej ,e

′

j

(r) is the solution of the generalized Poisson equation,

∇ · ǫ(r)∇[Ωdir
ej ,e

′

j
(r) + Ωpol

ej ,e
′

j

(r)] = −4πe2
∑

σ

ψ∗

ej
(r, σ)ψe′

j
(r, σ), (10)

where the macroscopic dielectric constant ǫ(r) changes smoothly from ǫin to ǫout at the wire surface. Ωdir
ej ,e

′

j
(r)

corresponds to the electrostatic potential excluding the surface-polarization effect, and is the solution of the Poisson
equation,

ǫ(r)∇2Ωdir
ej ,e

′

j
(r) = −4πe2

∑

σ

ψ∗

ej
(r, σ)ψe′

j
(r, σ). (11)

Eq. 10 and 11 are solved in real-space by using a finite-difference discretization of the gradient operator and a
conjugate-gradient minimization algorithm.42,43

In the following we first present results for [001] wires from the above (i), (ii), and (iii) energy scales, and then show
results for [011] wires. We then discuss the effects of dielectric mismatch on exciton binding and exchange interaction.
A. The eV energy scale: single-particle states. Bulk Si has six equivalent conduction band valleys ∆X (along

the Γ-X direction), from which the LUMO of wires derives. The confinement plane of [001] wires contains four of these
six ∆X valleys, folded to the Γ̄ point of the wire Brillouin-zone. For [001] wires belonging to the D2d point group,
symmetry analysis52 indicates that these four ∆X -derived states correspond to the A1, B1, and E representation, where
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both A1 and B1 are nondegenerate and E is doubly degenerate. The highest occupied molecular orbital (HOMO)
always has nondegenerate B2 symmetry for all wire sizes. Fig. 1(a) and 2 show evolution of the LUMO and HOMO
state when the wire diameter is varied. At large diameter D = 7.6 nm, as quantum confinement and intervalley
coupling are negligible, the splitting between A1, B1, and E is tiny, leaving all LUMO states practically degenerate.
With decreasing diameters, the enhanced intervalley coupling lifts the degeneracy of these four states. This makes
the B1 state the lowest-energy one at diameter D = 3.3 nm to D ∼ 2.5 nm (see Fig. 2). For lower diameters, the
A1 state becomes the LUMO (e.g. D = 2.2 nm in Fig. 1(a)). In contrast to the LUMO, the HOMO keeps the B2

symmetry for all the diameters. These HOMO and LUMO states have characteristic wavefunctions corresponding to
their specific symmetries, as shown in the right part of Fig. 1.
The switching of symmetry of the LUMO state with diameter has a strong effect on the optical properties of these

wires. Table I shows the direct product 〈h|Pi|e〉 for electron-hole dipole transition matrix elements, in terms of the
irreducible representations of the D2d group (|e〉 = A1; B1; E and |h〉 = B2). The dipole operator Pi consists of
two components: P001 representing photon polarized along the wire axis (along-wire), belonging to B2 representation
and P110 representing photon polarized perpendicular to the wire axis (in-plane), belonging to E representation. Any
direct product having a symmetric A1 representation is orbitally-allowed.44 Thus, among all the HOMO→LUMO
transitions for [001] wires, B2→A1 with the photon polarization P001 (along-wire) and B2→E with P110 (in-plane)
are orbitally-allowed, whereas B2→B1 is orbitally-forbidden. This symmetry analysis is consistent with our numerical
calculations of the oscillator strength depicted in Fig. 1(b). At diameter D = 7.6 nm, we can see both B2→A1 (along-
wire polarized) and B2→E (in-plane polarized) transitions are orbitally-allowed, whereas the B2→B1 transition is
orbitally-forbidden. With decreasing diameters, the LUMO symmetry changes from degenerate A1+B1+E (at D = 7.7
nm) to B1 (at D = 3.3 nm) and finally to A1 (at D = 2.2 nm). The optical transitions (Fig. 1(b)) show corresponding
changes in polarization. At D = 3.3 nm the orbitally-forbidden B2→B1 transition is below the orbitally-allowed
B2→A1 and B2→E transitions, and then at D = 2.2 nm the orbitally-allowed B2→A1 transition emerges as the
lowest-energy one with along-wire polarization. We also checked the above calculations for wires with square cross-
section (also belonging to the D2d point group) and obtain exactly the same symmetry-change sequence for the LUMO
state. This indicates that the symmetry-change does not depend on slight modifications of the wire surface. It is an
intrinsic property of the wire D2d symmetry, which originates from the competition between quantum confinement
and intervalley coupling. Thus, we predict a confinement-induced electronic state crossover with diameter changes in
[001] Si wires. As shown below, this will result in corresponding transitions between different excitonic states.
B. Intermediate energy scale: exitonic states. Based on the group theory Table II describes how single-

particle HOMO and LUMO states contribute to produce excitons. Here we convert single-group representations to
corresponding double-group ones adding the spin degrees of freedom. It can be seen that three groups of excitonic
states emerge from different symmetry of the LUMO state:
(1) At diameter D = 7.6 nm (Fig. 3(a)), the spin-orbit interaction splits the doubly degenerate LUMO E to Γ6+Γ6,

and also transforms the HOMO B2 to Γ6. This Γ6 ⊗ Γ6 manifold in principle should lead to two combinations of
A1⊕ A2⊕ E excitonic states, of which the doubly degenerate E state is bright and in-plane polarized. However, due
to very weak splitting of the two Γ6 states (as a result of weak SO coupling), there is strong configuration mixing
between these two Γ6 ⊗ Γ6 exciton combinations, resulting in six lower-energy dark excitonic states and two upper
bright states (in-plane polarized, labeled as transition ”4”) as described in Fig. 3(a).53

(2) At diameter D = 3.3 nm (Fig. 3(b)), the LUMO B1 state is transformed to Γ6, leading to Γ6 ⊗Γ6 = A1⊕ A2⊕
E excitonic states. The middle E state (labeled as transition ”2”) is bright with in-plane polarization.
(3) At diameter D = 2.2 nm (Fig. 3(c)), the LUMO A1 state becomes Γ7. When combined with the HOMO Γ6, it

generates the exciton combination B1⊕ B2⊕ E. The top B2 (labeled as transition ”3”) and middle E state (labeled
as transition ”2”) are bright with along-wire and in-plane polarization, respectively.
The calculated energy of the ground excitonic state (the lowest eigenvalue of Eq. 3), EX are 1.182, 1.460, and 1.764

eV for D = 7.6 nm (B2→E), 3.3nm (B2→B1), and 2.2 nm (B2→A1), respectively, as the E(1) listed in Table III. We
fit the size dependence of EX according to,

EX = Ebulk
X +

a

Dλ
, (12)

where Ebulk
X = 1.1552 eV40 and D is the diameter, finding a = 2.75 and λ = 1.90. As expected from quantum

confinement, the exciton binding energy (the energy difference between the single-particle band gap and the ground-
state excitonic energy) is significantly enhanced from bulk Si (∼15 meV)45 to Si wires, giving 52 meV (at D = 7.6
nm), 85 meV (D = 3.3 nm), and 128 meV (D = 2.2 nm).
C. Low 10−3 eV energy scale: bright/dark states vs fine-structure splittings. The absorption spectra

shown on the right-hand side of Fig. 3 describe the bright/dark excitonic states caused by the exchange interaction
and the intervalley coupling. For narrow wire of diameter D = 2.2 nm, the ground-state excitons originate from
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the orbitally-allowed B2→A1 transition. The lowest one (B1 symmetry) is dark (spin-forbidden), and higher states
are spin-allowed — the middle semibright state (E, in-plane polarized) and the highest bright state (B2, along-wire
polarized). For medium wire of diameter D = 3.3 nm, the orbitally-forbidden B2⊗B1 is lower in energy than the
other two orbitally-allowed combinations B2⊗A1 and B2⊗E and contributes to the ground-state excitons. In these
excitons, the lowest (A1) and highest (A2) states are spin-forbidden and only the middle one (E) is spin-allowed.
However even this spin-allowed state is generally dark, because it is orbitally-forbidden. At wide wire of diameter D
= 7.6 nm, the bright in-plane polarized peak (labeled as transition ”4”) comes from the B2→E transition, which gives
two spin-allowed excitons at the highest energy as mentioned. Also the exciton groups corresponding to B2→A1 and
B2→B1 (all dark states) appear as ground-state excitons owing to the degeneracy of LUMO state. The absorption
spectrum of D = 3.3 (Fig. 3(b)) and 2.2 nm (Fig. 3(c)) also shows the excited excitonic states at higher energies,
which can be attributed to B2→(A1/B1/E) transitions.
The calculated exciton fine-structure splittings are listed in Table III. These are quite distinct from the results

on Si quantum dots,32 due to different degeneracy and symmetry of the LUMO and HOMO states. Fig. 4 shows
the excitonic-gap dependence of the singlet-triplet splitting with no SO, ∆ST , compared with previous GW+BSE
results.30 The wire diameter dependence of ∆ST is found to scale as 1/D2.3. Previous GW+BSE calculations show
much larger excitonic-gap energies and exchange splittings than ours at the same diameters, especially for the [001]
wires. This could result from a high hydrogen coverage (high H-to-Si ratio) in their narrow wires: e.g. they used
Si25H20 at D = 0.9 nm and Si49H28 at D = 1.4 nm for [001] wires.29 The (cluster-connected) [001] wires require
more H than (linear-chain-like) [011] wires,27 and thus their electronic and excitonic properties are affected more by
H-passivation than those of [011] wires. The Si-H bonding is known to modify Si enormously and H-passivation has
been reported to result in much bigger band gaps than those with other passivations.46 In the present work, the wire
surfaces are passivated by generic large band-gap materials, and much larger diameter wires can be calculated.
We calculate the exciton decay time (τν) for the bright excitonic states. At D = 3.3 nm, τν of the transition ”2” (Fig.

3(b)) is 1963.7 µs, as expected from its low oscillator strength since it is orbitally-forbidden (though spin-allowed). At
D = 2.2 nm, τν of transition ”2” and transition ”3” (Fig. 3(c)) are 77.2 and 1.6 µs. The long decay time is consistent
with pseudodirect band-gap character of Si nanostructures and are reasonably within the range of experimentally
measured 1-103µs.20,34

Results for [011] wires. In [011] wires having the C2v point group symmetry, two of the six equivalent bulk
valleys ∆X are projected to the confinement plane, and thus at large diameters the LUMO consists of only two
degenerate states. In contrast to [001] wires, both of them belong to the A1 representation, and thus no symmetry
change of the LUMO state occurs with varying diameters. Fig. 5 shows the single-particle states and related optical
transitions at D = 3.3 nm, and Table I gives the symmetry analysis of dipole matrix elements. Despite having the
same symmetry, the two A1 electron states show different wavefunctions. The HOMO has the B1 symmetry, and thus
all interband transitions (B1→A1) have along-wire polarization, P011 (Table I), as also confirmed by the calculated
optical absorptions in Fig. 5(b).
Fig. 6 shows the excitonic structures generated from the HOMO and LUMO state. The corresponding symmetry

analysis are given in Table II. The HOMO Γ5 (from B1) state and LUMO Γ5 (from A1) state produce the exciton
combination of A1⊕ A2⊕ B1⊕ B2. Among them the B1 is a bright state with along-wire polarization, and A1, B2 are
also bright with in-plane polarization. However, in the absorption spectra of Fig. 6 (right panel) we only can observe
the bright B1 exciton (labeled as transition ”4”) with the along-wire polarization, as the semidark A1 (transition
”2”) and B2 (transition ”3”) have two-order smaller oscillator strength. The ground-state excitonic energy is 1.335
eV (Table III) and the corresponding exciton binding energy is 66 meV. Both are smaller than those of the same

size [001] wire due to weaker confinement as mentioned. The fine-structure splittings for the B1→A
(1)
1 exciton group

are listed in Table III. The excitonic-gap dependence of exchange splitting ∆ST is shown in Fig. 4. The diameter
dependence of ∆ST scales as 1/D2.6, i.e. with a larger scaling factor than that of [001] wires. The calculated exciton
decay time of the bright ”4” state in Fig. 6 is 20.9 µs.
Effects of dielectric mismatch. Because nanowires are usually surrounded by materials with small dielectric

constants (e.g. air, water, oxides, and organics), we studied the effects of dielectric mismatch by using ǫin = 11.8540

for the Si wire and ǫout = 1∼5 for the surrounding material. The calculations are performed for the [001] wire with
diameter D = 3.3 nm. Fig. 7 shows calculated surface-polarization potential Σ(r). There is a sharp transition from
positive to negative value near the wire surface, and the transition smears off with increasing ǫout. These are typical
behaviors of surface-polarization potentials, also consistent with analytic expressions.28,47,48

The dielectric mismatch mainly contributes two opposite terms to the exciton energies (optical bandgap): the self-
energy of the electron and the hole, which tends to increase the bandgap, and the electron-hole Coulomb interaction,

which tends to decrease the bandgap. Fig. 8 shows the surface-polarization contribution to the self-energy (Σpol
e1 +

Σpol
h1 ) and the Coulomb interaction (-Jpol

e1,h1) as a function of ǫout. Both terms are remarkably enhanced for small

values of ǫout. The correction from self-energy is significant: Σpol
e1 + Σpol

h1 reaches ∼400 meV at ǫout = 1, which
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agrees well with previous tight-binding result.28 The enhancement of the exciton binding energy is also pronounced,

as demonstrated in Ref. 47 and 48, e.g. Jpol
e1,h1 ∼ 250 meV for ǫout = 1, by comparison with Jdir

e1,h1 ∼ 60 meV. In

three-dimensional quantum dots, it was demonstrated that Σpol
e1 + Σpol

h1 and Jpol
e1,h1 tend to cancel each other, and thus

the surface-polarization has negligible effect on the optical bandgap.43 In Si wires, the cancelation is not complete
and the correction to the optical bandgap is positive. For other wires, negative (in CdSe)49 and zero (in PbSe)50

corrections were reported. The underlying mechanism is still under investigation and might be related to the different
band structures and to the electron-to-hole effective mass ratio.50

Interestingly, we do not observe substantial change of the exchange interaction after including the dielectric mis-

match, at least in our perturbative approach. The corresponding value of the exchange splitting, Kpol
e1,h1 is less than 1

µeV. This demonstrates that the exchange interaction is predominantly enhanced by spatial confinement, not by di-
electric mismatch. However, it should be mentioned that exciton localization near the wire axis induced by enhanced
exciton binding (Jpol) can lead to increased electron-hole exchange interaction. Another consequence of dielectric
mismatch is the local-field effect, which leads to a strong suppression of lights polarized perpendicular to the wire
axis within the framework of classical electromagnetic theory.51 The evaluation of these effect is beyond the scope of
this work.
Summary: We have presented a detailed study of electronic and excitonic properties on different energy scales

for Si nanowires along the [001] and [011] growth direction. In the ”high energy” single-particle energy scale, we
predict an interesting electronic state crossover signaled by the switching of symmetry of the LUMO state with wire
diameter for [001]-oriented wires (but not for [011]). This crossover leads to the formation of distinct exciton groups
at different diameter regions in [001] wires. The orbitally-forbidden low-energy transitions in the medium-diameter
region may result in a large Stokes shift, which can be probed experimentally. This result highlights the important
role of intervalley coupling in determining electronic and optical properties of indirect band-gap nanomaterials. In
the ”low energy” many-body excitonic energy scale, we describe the excitonic states of Si wires for different sizes and
orientation, and provide a systematic analysis of symmetry, polarization and fine-structure splitting of several excitonic
lines. The size dependence of excitonic band gap, exciton binding energy, and exciton lifetime are calculated. The
effects of dielectric mismatch on exciton binding energy and exchange splitting are discussed. The current study could
be helpful for gaining insight into the electronic and optical properties of Si nanowires towards future optoelectronic
applications.
Acknowledgement: L.Z. acknowledges helpful assistance on calculations from V. Popescu. This work is supported

by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC36-08GO28308
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FIG. 1: (color online) Single-particle band-edge energy levels (a), wavefunction amplitudes (right panel), and corresponding
optical transitions (b) for [001] Si wires of diameter D = 7.6, 3.3, and 2.2 nm. These diameters are chosen to represent three
distinct size regimes with different optical transitions. The square of wavefunctions are shown for a D = 3.3 nm wire, with
the plane intersecting the wire, perpendicular to the wire axis. The wire cross-sections are shown as blue circles. The dash
arrow-lines represent orbitally-forbidden transitions whereas the solid arrow-lines correspond to orbitally-allowed transitions.
Note that as a result of strong confinement, the oscillator strength for D = 3.3 nm and 2.2 nm are enhanced by two orders of
magnitude compared with that for D = 7.6 nm.
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FIG. 3: (color online) Many-body excitonic states generated from HOMO⊗LUMO and absorption spectra for [001] Si wires at
D = 7.6 (a), 3.3 (b), and 2.2 nm (c). The effect of spin-orbit coupling is included. Dash arrow-lines represent spin-forbidden
transitions whereas solid arrow-lines represent spin-allowed transitions. The GS refers to the ground state after electron-hole
recombination. The notations ”1”, ”2”, ”3” and ”4” mean the order of excitonic transitions from lower energy to higher
energy in individual exciton group. The transition ”1” corresponds to the ground excitonic state (excitonic gap). The effect of
dielectric mismatch on excitonic energies is neglected as noted in the Method part.
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Tables

TABLE I: Direct product of interband dipole matrix elements, 〈h|Pi|e〉 in Si [001] wires (D2d symmetry) and [011] wires (C2v

symmetry). Pi represents the dipole operator along the wire axis (P001 for [001] wires and P011 for [011] wires) and in-plane
direction (P110 for [001] and P100 for [011]). The symmetric A1 representation (dipole-allowed transition) is given in bold. For
[001] wires the LUMO A1 is allowed in P001 and E is allowed in P110. For [011] wires A1 is allowed in P011.

[001]:
〈h|P001(B2)|e〉 〈h|P110(E)|e〉
〈B2 ⊗B2 ⊗ A1〉 = A1 〈B2 ⊗ E ⊗ A1〉 = E
〈B2 ⊗B2 ⊗B1〉 = B1 〈B2 ⊗ E ⊗B1〉 = E
〈B2 ⊗B2 ⊗ E〉 = E 〈B2 ⊗ E ⊗ E〉 =

A1 ⊕A2 ⊕B1 ⊕B2

[011]:
〈h|P011(B1)|e〉 〈h|P100(A1)|e〉
〈B1 ⊗B1 ⊗ A1〉 = A1 〈B1 ⊗ A1 ⊗A1〉 = B1

TABLE II: Symmetry analysis of the excitonic states generated from HOMO and LUMO single-particle orbitals of [001] and
[011] Si wires. Single-group representations are converted to corresponding double-group representations to include the spin
degree of freedom for excitons.
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HOMO LUMO Excitons (HOMO⊗LUMO)
[001]:
D = 7.6 nm B2 −→ Γ6 E−→ Γ6 + Γ6 Γ6 ⊗ Γ6 = A1⊕ A2⊕ E
D = 3.3 nm B2 −→ Γ6 B1 −→ Γ6 Γ6 ⊗ Γ6 = A1⊕ A2⊕ E
D = 2.2 nm B2 −→ Γ6 A1 −→ Γ7 Γ6 ⊗ Γ7 = B1⊕ B2⊕ E
[011]:
D = 3.3 nm B1 −→ Γ5 A1 −→ Γ5 Γ5 ⊗ Γ5 = A1⊕ A2⊕ B1⊕ B2

TABLE III: Calculated ground-state exciton energy E(i) and exciton fine-structure splittings for [001] wires (Fig. 3) and [011]
wires (Fig. 6). E(i, i = 1, 2, 3, and 4) represent the energy of excitonic transition corresponding to the notation (1, 2, 3, and
4) in Fig. 3 and 6.

[001]: [011]:
D (nm) 7.6 3.3 2.2 3.3
E(1) (eV) 1.182 1.460 1.764 1.335
E(2)-E(1) (µeV) 21.3 238.9 399.4 3.4
E(3)-E(2) (µeV) 25.1 721.3 2668.6 20.8
E(4)-E(3) (µeV) 92.4 1017.6


