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Abstract: We derive from first principles an accurate homogenized description of periodic 

metamaterials made of magnetodielectric inclusions, highlighting and overcoming relevant 

limitations of standard homogenization methods. We obtain closed-form expressions for the 

effective constitutive parameters, pointing out the relevance of inherent spatial dispersion 

effects, present even in the long-wavelength limit. Our results clarify the limitations of quasi-

static homogenization models, restore the physical meaning of homogenized metamaterial 

parameters and outline the reasons behind magnetoelectric coupling effects that may arise also 

in the case of center-symmetric inclusions. 
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1. Introduction and Motivation 

The electromagnetic homogenization of natural and artificial materials has a long-standing 

tradition [1]-[7] and several theories are available to define macroscopic averaged quantities that 

represent the effective constitutive parameters of periodic or random collections of molecules or 

inclusions. The same way in which we define permittivity and permeability of natural materials, 

by averaging out irrelevant microscopic field fluctuations at the atomic or molecular level, also 

in the field of artificial materials and mixtures homogenization and mixing rules have been put 
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forward over the years to avoid solving for the complex electromagnetic interaction among a 

large number of inclusions [7]. Homogenized descriptions of natural and artificial materials can 

hold only in the long-wavelength regime, i.e., for effective wavelengths and averaged field 

variations much larger than the material granularity. Within these limits, such descriptions have 

proven to be accurate and of great advantage for analysis and design purposes. 

With the advent of metamaterials [8], i.e., artificial materials with anomalous and exotic 

electromagnetic response, the necessity of more advanced concepts and improved 

homogenization models has become evident, since often the topological and/or resonant 

properties of the inclusions and building blocks do not allow a description of their properties in 

terms of simple averaging procedures. Often, the exotic metamaterial properties are inherently 

based on these anomalous features, which cannot be captured by simple homogenization 

schemes inspired to natural materials. The necessity for improved models has been outlined in 

several recent papers on the topic [9]-[26], which describe different approaches to the problem.  

The simplest homogenization technique consists in retrieving the effective parameters from the 

scattering properties of a metamaterial sample. The Nicholson-Ross-Weir (NRW) retrieval 

method postulates the equivalence between a complex metamaterial array and a uniform slab of 

same thickness with unknown constitutive parameters, usually limited to permittivity and 

permeability [27]-[29]. This approach, appealing for its simplicity, often provides constitutive 

parameters with nonphysical frequency dispersion, in particular near the inclusion resonances, 

yielding complex values of permittivity and permeability that violate basic passivity and 

causality constraints [30]. The typical presence of “anti-resonant” artifacts in the dispersion of 

the effective constitutive parameters, wrong sign of their imaginary parts, wrong slope of their 

real part and inherent dependence of these parameters on the metamaterial boundaries and 
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excitation [31] are all clear signs of the inadequacy of this approach when applied to resonant 

artificial materials, as more extensively discussed in [32]. 

In the recent literature, these anomalies have been generically related to strong spatial dispersion, 

which should be taken into account in more refined homogenization models. In this context, 

analytical and semi-analytical methods have been put forward to address the homogenization in a 

more rigorous fashion. Generalized Clausius-Mossotti techniques have been extended to the case 

of complex inclusions, including bianisotropic effects, possible presence of spatial dispersion 

and accurate modeling of the inclusion interaction [14]-[22]. As another successful approach, 

averaging a planar sheet of inclusions and then considering the mutual interaction among parallel 

layers as a Bloch lattice has also been proposed [9]-[13]. In these schemes too, however, spatial 

dispersion can often generate artifacts and dependence of the extracted effective parameters on 

the choice of excitation and boundary conditions, effects that are not easily explained on clear 

physical grounds. 

In order to circumvent these issues, a rigorous approach to the homogenization of periodic arrays 

of dielectric inclusions [23]-[26] has been put forward based on the Floquet representation used 

in optical crystals [33], i.e., by introducing a single generalized permittivity tensor that includes 

all the polarization effects, including artificial magnetism, bianisotropy and higher-order spatial 

dispersion effects. This technique is limited to dielectric-only periodic metamaterials and the 

single-permittivity representation may often make challenging to relate weak spatial dispersion 

effects in the generalized permittivity tensor to artificial magnetic or bianisotropic effects. It may 

be more desirable to describe these effects in terms of local permeability or chirality parameters 

[34], whenever possible. In addition, the spatial dispersion properties of the generalized 
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permittivity tensor makes more challenging to apply usual boundary conditions and dispersion 

relations valid for local metamaterials. 

In most circumstances, for frequencies well below the inclusion resonances, for which both the 

background wavelength and the effective guided wavelength are significantly larger than the 

average array granularity, local constitutive parameters should be sufficient to characterize the 

metamaterial response, and spatial dispersion effects may be negligible [35]. In this paper, we 

develop from first-principles a new homogenization theory that combines the advantages of 

currently available homogenization schemes, without their drawbacks and limitations: we extend 

the rigorous approach of Floquet-based theories [23],[33] to magnetodielectric metamaterials 

and, proposing a different averaging scheme, we combine it with the generality of retrieval 

techniques and with the convenience of local homogenization schemes, extending their validity 

and applicability to resonant metamaterials. We develop a self-consistent Floquet 

homogenization theory for metamaterial arrays formed by arbitrary electric and magnetic 

inclusions, which can rigorously take into account the complex wave interaction among 

inclusions, and which does not depend on the form of excitation, converging to a local model in 

the long-wavelength limit. 

Our analysis clarifies limits and approximations of other homogenization techniques, 

highlighting the reasons and physical mechanisms behind artifacts and nonphysical dispersion of 

homogenized parameters and showing that a rigorous analysis of the array coupling inherently 

requires considering frequency and spatial dispersion effects at the lattice level, even when 

higher-order multipolar interaction or bianisotropic effects within the unit cell are negligible. 

These effects modify the usual form of effective constitutive models and are associated with a 

direct manifestation of the finite phase velocity with respect to the array period, which becomes 



5 

 

particularly relevant for more densely packed, and possibly resonant, metamaterials. Our 

findings establish the foundations of a new, physically meaningful description of a wide class of 

metamaterials, in particular when the density of inclusions is not small and classic 

homogenization models, like Clausius-Mossotti relations [7], lose their accuracy even in the long 

wavelength regime. 

The paper is organized as follows: in Section 2, a Floquet-based homogenization approach on the 

model of [23],[33] is generalized to the presence of electric and magnetic materials and arbitrary 

sources. This generalization is particularly important, since it will allow defining, for the first 

time to our knowledge, metamaterial constitutive parameters that inherently do not depend on the 

form and nature of excitation. In addition, we introduce a Taylor expansion of the polarization 

and magnetization currents to derive a self-consistent definition of averaged fields, which is able 

to extract weak spatial dispersion effects and allows an averaged local description in the long-

wavelength limit. In Section 3, closed-form expressions for the new effective constitutive 

parameters are derived, highlighting the mentioned advantages of independence on the applied 

sources and on the wave vector in the long-wavelength limit. In Section 4, this general theory is 

applied to the special circumstance of absence of impressed sources, showing that in this case the 

general constitutive relations may be written in terms of equivalent constitutive parameters, 

which coincide with those obtainable using simple retrieval procedures. This alternative model is 

shown to hide inherent spatial dispersion effects and nonphysical features, and its use should be 

limited to the solution of practical scattering problems in absence of impressed sources. This 

discussion will highlight the limitations and inherent approximations of other homogenization 

schemes and will provide physical insights into the more rigorous averaged description of 

metamaterials introduced here. Sections 5 and 6 analyze the homogenization model in the long-
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wavelength and in the resonant limits, regions of special interest for metamaterial applications. 

Finally, Section 7 validates our theory with numerical examples and further discussions. 

 

2. General Homogenization Theory for Periodic Magnetodielectric Metamaterials 

In this section, as the first objective of this paper, we develop from first-principles a general 

homogenization theory for periodic arrays of arbitrarily shaped dielectric, magnetic and/or 

conducting inclusions, extending the rigorous Floquet approach commonly used in optical 

crystals [33] and dielectric metamaterials [23] to arbitrary inclusions and arbitrary form of 

excitation. We also define a new averaging procedure by using a Taylor expansion of the 

microscopic field variations, which will allow defining constitutive parameters that have local 

properties in the long-wavelength limit. For simplicity of notation, we assume here a cubic lattice 

with period d , but extension to arbitrary lattices may also be envisioned. 

The most general description of a periodic array in its linear operation may be developed, 

without loss of generality, in the Fourier domain [33]. Our goal is to derive the general form of 

macroscopic constitutive relations for any arbitrary pair ( ),ω β , relating spatially averaged field 

quantities that vary as i i te e ω⋅ −β r . Only a limited set of eigenvectors β  are supported by the array 

at a given frequency ω  in absence of impressed sources. These correspond to the eigenmodes of 

the system, which are usually the focus of homogenization theories and will be analyzed in detail 

in Section 4. However, an average description of the array as a bulk material should not depend 

on the possible presence of impressed embedded sources or on the relative local amplitude of 

electric and magnetic fields. Therefore, we assume here the presence of impressed sources with 

arbitrary i i te e ω⋅ −β r  plane-wave like dependence, uniformly distributed all over the array. This 
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ensures an averaged space-time distribution of the induced fields with the same i i te e ω⋅ −β r  

dependence, in which the variables ω ,β  are independent of each other. In practice, it may be 

challenging to realize a distribution of uniformly impressed sources with plane-wave dependence 

within a metamaterial array, so this excitation should be interpreted as a test excitation to isolate 

the metamaterial response in the Fourier domain, or as a specific Fourier component of 

embedded sources with localized space-time distribution. We will specialize these results to 

eigenmodal propagation (source-free scenario) in Section 4. 

In the most general case, the microscopic [37] field distribution at any point in the array satisfies 

( ) ( ) ( )
( ) ( ) ( )

0

0

i
ext

i
ext

i i e

i i e

ωμ ω

ωε ω

⋅

⋅

∇× = + −

∇× = − − +

β r

β r

E r H r M r K

H r E r P r J
, (1) 

where ( )E r , ( )H r  are the local electric and magnetic fields, ( )P r  is the local polarization 

vector, ( )M r  is the local magnetization vector, extJ  and extK  are complex vectors of 

independently impressed distributed electric and magnetic current density sources with explicit 

plane-wave dependence ie ⋅β r , and 0ε , 0μ  are the background permittivity and permeability, 

respectively. Due to the linearity of the problem, we have suppressed in (1) a common i te ω−  time 

dependence. In the presence of electric or magnetic conductors, the induced current densities 

indJ , indK  are implicitly embedded in ( ) ( ) /indi ω=P r J r   and ( ) ( ) /indi ω=M r K r  in Eq. (1). 

The distributed impressed source distributions may also be seen as sustaining impressed fields 

with the same i i te e ω⋅ −β r  plane-wave dependence and complex amplitudes satisfying 

0

0

ext ext ext

ext ext ext

i i
i i

ωμ
ωε

× = −
× = − +

β E H K
β H E J

. (2) 
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Notice that the arbitrary choice of extJ  and extK  in (1) implies that the complex amplitudes of 

impressed fields extE  and  extH  are independent of each other. This will be very important to 

ensure the general validity of the effective homogenization model proposed here, as discussed 

below.  

Due to the periodicity of the crystal, we may write Eq. (1) in the i i te e ω⋅ −β r  Fourier domain 

0

0

ext

ext

i i i
i i i

ωμ ω
ωε ω

× = + −
× = − − +

β E H M K
β H E P J

, (3) 

where the bar denotes the averaging operation ( )3

1 i

V
e d

d
− ⋅= ∫ β rE E r r , and similarly for all the 

other vectors in Eq. (3). This averaging procedure, consistent with [33],[23], filters out the 

dominant contribution to the local field ( )E r , varying as ie ⋅β rE , of interest for a macroscopic 

homogenized description of the array. Eq. (3) relates the complex amplitudes of the spatially 

averaged macroscopic [37] field quantities, which all vary with an implicit i i te e ω⋅ −β r  space-time 

dependence due to the chosen form of impressed excitation and the linearity of the problem. 

Inspecting Eq. (3), one may be tempted to define spatially averaged displacement vectors as 

0μ= +B H M  and 0ε= +D E P , and the associated constitutive relations g= ⋅B μ H , g= ⋅D ε E , 

which would generalize the metamaterial homogenization approach used in [33],[23] to the case 

of magnetodielectric materials. However, this macroscopic description has several shortcomings: 

the permittivity gε  and permeability gμ  respectively coincide with 0ε  and 0μ  when the 

inclusions are formed, at the microscopic level, by purely magnetic ( ( ) = =P r P 0 ) or dielectric 

( ( ) = =M r M 0 ) materials, respectively. This implies that artificial magnetic or polarization 

effects, stemming from the rotation of electric or magnetic polarization respectively, remain 
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hidden as spatial dispersion effects in the permittivity gε  or permeability gμ  tensors. In 

particular, gε  coincides with the generalized permittivity defined in [23] in the case of dielectric- 

only or conducting inclusions. This description, therefore, cannot converge to a local constitutive 

model in the long-wavelength limit in the presence of common artificial magnetic or dielectric 

effects. For instance, in the case of a metamaterial formed by conducting split-ring resonators 

[25], this model would predict ( ) = =M r M 0 , 0g μ=μ I  (with I  being the identity matrix), 

despite the evident presence of magnetic effects, which remain hidden in the weak spatial 

dispersion of gε . We propose in the next subsection a different averaging scheme that takes 

these effects into account and provides a homogenized description converging to a local model in 

the long-wavelength limit. 

a) Multipolar expansion 

In order to overcome the issue outlined above, we assume that the unit cell is sufficiently smaller 

than the wavelength of operation to ensure that the induced microscopic polarization and 

magnetization vectors slowly vary within each unit cell, as usual in metamaterials. In such 

circumstances, it is possible to expand P  in Taylor series around the origin of each unit cell, to 

obtain [38] 

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

3

3

0

1

2 21

...
6 2 3

...
2 2

i

V

V V V

V V

m
EeE

E E E

e d
d

id i d d

d d d

i
iωμ ω

− ⋅= =

×⎡ ⎤
+ × − ⋅ + +⎡ ⎤⎢ ⎥⎣ ⎦

⎢ ⎥= =⎢ ⎥⎡ ⎤× + ×⎡ ⎤ ⎡ ⎤× × ⎣ ⎦ ⎣ ⎦− × × + × ⋅ +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⋅× ′= − − ⋅ + × × − +⎢ ⎥
⎣ ⎦

∫

∫ ∫ ∫

∫ ∫

β rP P r r

r P r βP r r β r rP r P r r r

r P r r r r P rr P r r ββ r β β r

β Qβ M β βP Q P β

, (4) 
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where 
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represent the first electric and magnetic multipole moments associated with the induced electric 

polarization distribution ( )P r . In particular, EP , EM  are the fist-order contribution to the 

electric and magnetic dipole moments, respectively; e
EQ , m

EQ  are the electric and magnetic 

quadrupole moment contributions; E′P  is the third-order contribution to the electric dipole 

moment. The subscript E  for all these quantities indicates the microscopic electrical origin of 

these multipole moments, all stemming from the electric polarization ( )P r . We can apply 

analogous considerations to the microscopic induced magnetization ( )M r  

0

...
2 2

e
HmH

H H H
i

iωε ω
⎡ ⎤⋅× ′= + − ⋅ + × × + +⎢ ⎥
⎣ ⎦

β Qβ P β βM M Q M β , (6) 

with analogous definitions for the corresponding multipole moments: 
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and the subscript H  refers to the microscopic magnetic origin of these multipole moments. It 

should be stressed that for dielectric-only or conducting metamaterials the quantities in (7) are all 

zero, since ( ) =M r 0 . This does not mean that magnetic effects are excluded, as the rotation of 

( )P r  can produce artificial magnetic effects captured by EM  in (5). Dual considerations apply 

to magnetic-only inclusions. 

Using the previous expansions, in the general magnetodielectric case we may write Eq. (3) as 

0
0

0
0

2 2

2 2

e mH
H H H H ext

m eE
E E E E ext

i ii i i

i ii i i

ω μ
ε

ω ε
μ

⎡ ⎤ ⎛ ⎞′× − − × + ⋅ = + − ⋅ −⎢ ⎥ ⎜ ⎟
⎝ ⎠⎣ ⎦

⎡ ⎤ ⎡ ⎤′× − − × − ⋅ = − + − ⋅ +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

P β ββ E β M Q H M Q K

M β ββ H β P Q E P Q J
, (8) 

in which we have neglected the effects of higher order multipole moments (beyond the electric 

and magnetic quadrupole moments) in Eqs. (4),(6). 

b) Definition of averaged fields 

Eq. (8) ensures that, by correcting the definition of the averaged fields as 
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e
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m
av H H

ii

ii

i

i

ε

μ

ε

μ

′= − − × + ⋅ +

′= − − × − ⋅ +

= + − ⋅ +

= + − ⋅ +
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, (9) 

the macroscopic (averaged) Maxwell’s equations take the expected usual form 

av av ext

av av ext

i i
i i

ω
ω

× = −
× = − +

β E B K
β H D J

 (10)  

for any arbitrary pair ( ),ω β . Different from the simple spatial averaging in (3), this averaging 

solves the issues outlined above and ensures the proper representation of artificial electric and 

magnetic effects, making sure that the constitutive relations tend to local parameters in the long-

wavelength limit, even in presence of artificial magnetic or polarization effects. This averaging 

procedure, based on a rigorous first-principle approach, constitutes a general framework that 

properly takes into account weak forms of spatial dispersion associated with artificial magnetism 

and polarization, at the basis of common metamaterial effects, and it allows their description in a 

local sense in the long-wavelength limit. Eq. (9) shows that the proper expression for averaged 

electric and magnetic fields avE  and avH  is obtained after correcting the spatial averages E  and 

H  for the possible presence of these artificial effects, associated with the rotation of ( )P r  and 

( )M r . This ensures that these effects are correctly attributed to local constitutive parameters 

(permeability and permittivity, respectively) in the long-wavelength limit. In the special case of 

dielectric-only and conducting inclusions ( ) =M r 0 , av =E E  and 0av μ=B H , ensuring that 

( )E r  and ( )B r  are the direct source fields, consistent with the homogenization of optical 
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crystals and dielectric metamaterials [33],[23]. Still, instead of defining a generalized 

permittivity tensor gε , as in [23], the definition of average magnetic field avH  (9) ensures that 

artificial magnetic effects are correctly associated to local permeability, consistent with [34]. 

Conversely, if only magnetization is present at the microscopic level ( ) =P r 0 , then av =H H  

and 0av ε=D E  are the source fields, as considered and discussed in [25]. Eq. (9) represents a 

generalization of these two scenarios to the general case of magnetodielectric inclusions, for 

which both averaged fields avE , avH  need to be corrected for the possible presence of artificial 

electric and magnetic effects, respectively. This is the only way to ensure that these weak spatial 

dispersion effects are properly taken into account within a homogenized description that 

converges to a local model in the long-wavelength limit. 

c) Relations between averaged fields in the long-wavelength limit 

In the general case, the constitutive relations among the averaged displacement vectors avD , avB  

and the averaged field vectors avE , avH  explicitly depend on β , implying that strong spatial 

dispersion effects associated with higher-order multipole contributions may be in general 

present. In the long-wavelength limit of interest here, however, it is expected that the 

distributions of ( )P r , ( )M r  may be described exclusively in terms of electric and magnetic 

dipole moments, which is the case when the unit cell is sufficiently smaller than the wavelength 

of operation, and the inclusions are not too densely packed. In such circumstances, the explicit 

effects of spatial dispersion disappear in Eq. (9): 
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av E
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av H

ε
μ

ε
μ

= −
= −
= +
= +
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H H M
D E P
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, (11) 

and the constitutive model relating averaged displacement and field vectors may be written in the 

local form 

0 0

0 0

av av E H av av

av av H E av av

ε ε
μ μ

= + + = +
= + + = +

D E P P E P
B H M M H M

, (12) 

where we have combined averaged polarization and magnetization stemming from electric and 

magnetic microscopic effects into avP  and avM  [39]. 

Combining Eq. (12) and (2) into (10), we can write a general relation between averaged and 

external fields and averaged polarization and magnetization vectors, 

( ) ( )
( ) ( )

0

0

av ext av ext av

av ext av ext av

i i i

i i i

ωμ ω
ωε ω

× − = − +

× − = − − −

β E E H H M

β H H E E P
. (13) 

These equations may be further manipulated to yield 

( )

( )

2 2
0 0 0 0

0 0

2 2 0
0 0

0 0 0

av av
av ext

av av
av ext

k k k

kk k

η
ε μ

μ η ε

⎡ ⎤+ × × − = − + ×⎣ ⎦

⎡ ⎤+ × × − = − − ×⎣ ⎦

P Mβ β E E β

M Pβ β H H β
, (14) 

where 0 0 0k ω ε μ=  and 0 0 0/η μ ε= . 

Henceforth, for simplicity of notation we consider only averaged and impressed field 

distributions that are transverse-electromagnetic (TEM) waves propagating along the direction β̂  

(where the hat indicates a unit vector) [40]. A more general tensorial notation may be used for 
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arbitrary propagation, but is not adopted here in the interest of notational simplicity. In this 

situation, Eq. (14) may be compactly written as follows, 

2
0 0

02 2 2 2
0 0 0 0

2
0 0

2 2 2 2
0 0 0 0 0

ˆ

ˆ

av av
av ext

av av
av ext

k k
k k

k k
k k

β η
β ε β μ

β
β μ β η ε

= + − ×
− −

= + + ×
− −

P ME E β

M PβH H
, (15) 

where β = β . This is a very general result, which relates averaged and impressed fields for any 

arbitrary ( ),ω β  pair and holds for any metamaterial array and any combination of electric and 

magnetic excitations. Observe that, analogous to the way both electric and magnetic induced 

currents contribute to electric and magnetic averaged polarization in (12), both averaged 

polarization and magnetization vectors contribute to averaged electric and magnetic fields. In 

other words, an inherent form of magnetoelectric coupling at the unit cell level stems from weak 

spatial dispersion effects when 0β ≠ , associated with finite phase velocity across each unit cell. 

These effects are neglected in quasi-static homogenization methods.  

Eq. (15) defines a general relation among averaged and impressed fields, which is independent of 

the specific nature of the metamaterial inclusions. In the following section, we introduce the 

inclusion into the picture, and we use this result to define the first-principle effective constitutive 

model of an arbitrary metamaterial array. 

 

3. Effective Constitutive Parameters 

After having established the proper definition of averaged fields and their general relations, we 

are now ready to derive a macroscopic homogenized description of the array, once we relate 

averaged polarization and magnetization vectors to the local fields, as a function of the specific 
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inclusion geometry. Since we are assuming that dipolar terms are dominant [39], we may 

compactly describe the unit cell response in terms of its polarizability coefficients, which relate 

the induced electric and magnetic dipole moments in the unit cell 3
000 avd=p P  and 3

000 avd=m M  

to the local fields at its center, 

000 0 0 0

000 0 0
0

ˆ

ˆ
e loc em loc

loc
m loc em

ε α ε α η

μ α μ α
η

= − ×

×= −

p E β H

β Em H
, (16) 

where eα , mα  and emα  are the electric, magnetic and magnetoelectric polarizability coefficients, 

respectively. All these coefficients have dimensions of an inverse volume, and they are 

considered scalar here due to the assumptions of TEM propagation and isotropic unit cell. In 

addition, in writing Eq. (16) we have implicitly assumed that the inclusions are reciprocal [41]. 

The fields locE  and locH  represent the local fields at the unit cell center in absence of the 

inclusion. They are due to the superposition of the impressed fields extE , extH  and the induced 

fields scattered from the rest of the array: 

000 000
0

0 0

000 000

0 0 0

ˆ

ˆ

loc array ext em ext

em
loc array ext ext

C C

CC

η
ε μ

μ η ε

= + = − × +

= + = + × +

p mE E E β E

m pH H H β H
. (17) 

The interaction constants C  and emC  may be evaluated using the dipolar radiation from the 

generic unit cell at ( ), ,lmn ld md nd=r  and applying the Floquet condition 000
lmni

lmn e ⋅= β rp p ,  

000
lmni

lmn e ⋅= β rm m : 
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where ( )ee lmnG r  and ( )em lmnG r  are the electric and magnetoelectric dyadic Green’s functions 

[43] and p̂ , m̂  are unit vectors oriented along 000p  and 000m , respectively. Fast converging 

expressions for these summations are available in [15]-[16],[20]. 

Combining Eqs. (16)-(17), we may now derive a general relation between impressed fields and 

averaged polarization vectors: 
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e em m e m em
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⎛ ⎞ ⎛ ⎞
= − + + ×⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
= − + − ×⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

P ME β

M PH β
, (19) 

which, substituted in (15), provides the important relations 
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e m em e m em
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α α α μ α α α η ε
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⎡ ⎤ ⎡ ⎤′= − + − ×⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

P ME β

M PβH
. (20) 

Here we have used the reduced interaction constants 

2
0

3 2 2
0

0
3 2 2

0

1

1

int

em em

kC C
d k

kC C
d k

β

β
β

⎡ ⎤
= − ⎢ ⎥−⎣ ⎦

⎡ ⎤′ = − ⎢ ⎥−⎣ ⎦

, (21) 

which respectively coincide with ˆ ˆint⋅ ⋅p C p  and ,ˆ ˆe m⋅ ⋅p C m  derived in [23] using an alternative 

spectral-domain representation. 
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Eq. (20) represents another important result, since it shows, directly from first-principle 

considerations, that it is possible to establish a general relation between averaged electric and 

magnetic fields and averaged polarization vectors [as defined in (11)], which depends on the 

array period and the polarizability coefficients for any given pair ( ),ω β , but that is completely 

independent of the relative amplitude of the impressed sources extJ , extK . This is a relevant 

property of this homogenization theory, since a proper homogenized description of the 

metamaterial should not depend on the type and form of external excitation, as commonly 

happens in more approximate homogenization models. 

The relations (20) also show that there is an inherent form of magnetoelectric coupling (usually 

negligible in natural materials) relating avE  to the rotation of avM , and avH  to the rotation of 

avP . As expected, part of this coupling is associated with the presence of emα , which represents 

the possible bianisotropy within the unit cell, stemming from asymmetric or noncentered 

inclusions [44]. However, Eq. (20) predicts that, even when inclusions are perfectly 

centersymmetric and with no inherent bianisotropy, a form of magnetoelectric coupling is still 

expected, associated with the presence of emC′ . This additional coupling term is due to lattice 

effects and the nonzero value of β . We will discuss the implications of this coupling in more 

detail in the following. 

Using (12), we can finally write for the constitutive relations of the metamaterial array: 

( )
( )

0

0

ˆ

ˆ

e o
av av av eff av eff eff av

e o
av av av eff av eff eff av

ε ε χ χ

μ μ χ χ

= + = − + ×

= + = − − ×

D E P E β H

B H M H β E
, (22) 

with 
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=
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, (23) 

where 0 0 01/c ε μ= , ( )
1 /me effα α− = Δ , ( )

1 /em effα α− = Δ , ( )
1 /emem effα α− = Δ  and ( )2

e m emα α αΔ = +  [in 

the absence of magnetoelectric coupling at the unit cell level 0emα =  and ( ) ee effα α= , 

( ) mm effα α= ]. 

a) General properties of the effective constitutive parameters 

The expressions (23) represent general closed-form effective constitutive parameters, rigorously 

obtained from first-principle considerations. They are valid for any pair ( ),ω β  and any form of 

external excitation extJ , extK , ensuring that this homogenized description does not depend on the 

specific impressed field distribution in each unit cell, but instead represents the inherent response 

of the metamaterial as a bulk to an arbitrary electric and/or magnetic excitation. It is important to 

stress that the ratio of averaged fields /av avE H , i.e., the local wave impedance, inherently 

depends on the specific choice of impressed sources extJ , extK  as in Eq. (13) and as expected in 

presence of arbitrarily impressed sources. However, the constitutive parameters defined in Eq. 

(23) do not depend on this ratio, thus compactly describing the macroscopic polarization and 

magnetization properties of the array for arbitrary excitation. This fundamental property does 
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not apply to less rigorous homogenization models that focus only on eigenmodal propagation, as 

we discuss more extensively in Section 4. 

Effective permittivity and permeability are found in closed form as the first two expressions (23). 

These generalize the Clausius-Mosotti homogenization formulas [6]-[7],[23] by rigorously 

taking into account the coupling among the inclusions and their polarization properties. More 

importantly, this theory demonstrates the inherent presence of magnetoelectric coupling via the 

coefficients e
effχ  and o

effχ  in Eq. (22)-(23). The first portion of the bianisotropy coefficient e
effχ , 

even with respect to β , is associated with magnetoelectric effects at the inclusion level, and 

satisfies the usual reciprocity constraints for bulk materials. An additional contribution to 

bianisotropy is o
effχ , odd with respect to β , which is associated to inherent magnetoelectric 

coupling effects arising at the lattice level. These latter effects cannot be neglected in general, 

even in the case of center-symmetric inclusions, for which 0emα = , as long as 0emC′ ≠ . The 

presence of this odd bianisotropy coefficient has been pointed out theoretically and numerically 

in [21]-[22], and the present theory explains its physical nature and relevance from first-principle 

considerations: o
effχ  is a weak spatial dispersion effect associated with the finite phase velocity 

along the array, not negligible even in the long-wavelength limit as we show in the following 

numerical examples (Section 7). Its nature is associated with the inherent asymmetry introduced 

by phase propagation across a unit cell of finite size, and this explains why, at first sight, its 

occurrence in (22) does not satisfy the reciprocity relation for local bianisotropic materials. Its 

odd response with respect to β  ensures that, by reversing the direction of propagation for given 

frequency, its contribution also changes sign, ensuring that the constitutive relations (22) are 

actually describing a reciprocal medium. This shows the drastic difference between the 
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bianisotropy stemming from lattice effects o
effχ  and the one associated with magnetoelectric 

coupling at the inclusion level e
effχ . Its relevance in the homogenization of metamaterials and in 

restoring the physical meaning of their constitutive parameters is discussed in further detail in 

[32]. 

Due to the inherent properties of the summations in (18), which for real β  satisfy [15]-

[16],[20],[23] 

[ ] ( )
[ ]

3
0Im / 6

Im 0em

C k

C

π=

=
 (24) 

and the lossless conditions on the polarizability coefficients [45] 

( )
[ ]

1 1 3
0Im Im / 6

Im 0
e m

em

kα α π

α

− −⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦
=

, (25) 

it is recognized that all the constitutive parameters in (23) are real for lossless particles and real 

β , as required in lossless bianisotropic materials, ensuring power conservation. 

Before concluding this section, it is worth stressing that the closed-form expressions (23) apply 

to any plane-wave like field distribution in the homogenized material, any form of excitation, 

and any pair ( ),ω β , representing an accurate and self-consistent homogenization model for the 

array. The constitutive parameters may still be, in the general case, weakly dependent on β , as a 

symptom of spatial dispersion. However, as discussed in Section 5, the homogenized parameters 

tend to a local non-dispersive model in the long-wavelength limit (small β ). The present theory 

proves that it is possible to rigorously derive from first-principles a self-consistent constitutive 

model for metamaterials, but that in addition to artificial magnetism and polarization effects 

stemming from weak spatial dispersion, the coupling within the array requires considering an 
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additional magnetoelectric coefficient, even in the case of centersymmetric inclusions. In the 

following section, we consider the special case of eigenmodal solution, without impressed 

sources, and relate this general theory to other common eigenmodal approaches to 

homogenization. 

 

4. Eigenmodal Propagation and Equivalent Constitutive Parameters 

In the eigenmodal case, i.e., in the absence of external sources, Eq. (19) ensures that non-trivial 

solutions are available only for specific instances of ( )ωβ , satisfying the array dispersion 

relation 

( )( ) ( )( ) ( )
1 1 2 2

eme eff m eff em effC C Cα α α− − −− − = − . (26) 

The corresponding eigenvectors, also obtained solving Eq. (19), satisfy 

( )

( )

( )
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ˆ
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η α η α

−

−

+ −⋅ = = =
⋅ − −

p p
m m

, (27) 

which provides a specific constraint on the ratio /av avP M . Rearranging Eq. (22) and (13), in this 

regime we may also write 

( )

( )

0

0

0

0

1
/

1
/

eff
av av eq avo e

eff eff

eff
av av eq avo e

eff eff

i i i
c
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i i i
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μ
ω ωμ

χ χ
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ε
ω ωε

χ χ
β

× = =
−

−

× = − = −
+

−

β E H H

β H E E
, (28) 

where 0c  is the velocity of light in free-space. Eq. (28) shows that the eigenmodal propagation 

may be described in terms of equivalent permittivity and permeability parameters eqε , eqμ , 
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which embed the magnetoelectric coupling effects as a form of weak spatial dispersion. Their 

validity is strictly limited to eigenmodal propagation, since the ratio /av avP M  is in general a 

function of the impressed sources. The description of the array in terms of equivalent parameters 

is particularly attractive in absence of bianisotropic effects at the inclusion level ( 0e
em effα χ= = ), 

for which the residual magnetoelectric coupling associated with lattice effects may be embedded 

into equivalent permittivity and permeability related to the effective parameters through the 

normalization factor 0

0

1
/

o
effc
k

χ
β

− . 

Classic homogenization models that aim at describing metamaterial arrays in terms of 

permittivity and permeability (see, e.g., [13]-[20]), on the model of natural materials, extract and 

define these equivalent quantities, and thus implicitly introduce a form of weak spatial dispersion 

when o
effχ  is not negligible. It is evident that this may easily translate into inconsistencies and 

lack of physical meaning in the extracted or retrieved parameters, as discussed in more detail in 

[32], and verified in several recent examples in the literature [27]-[28]. It is worth stressing that 

the equivalent parameters are inherently a function of the specific ratio /av avP M  in (27), i.e., 

they are bound to change when impressed sources are introduced that can arbitrarily modify the 

local ratio /av avP M , in sharp contrast with the general independence of the effective constitutive 

parameters (23) on the local value of /av avP M . 

a) Secondary parameters and relations between equivalent and effective descriptions 

It follows straightforwardly from (28) that the dispersion relation ( )ωβ  may be rewritten as 

2 2
eq eqβ ω μ ε= , (29) 

which, after using Eqs. (23) and (21), may be shown to coincide with Eq. (26). 
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In addition, we can define the effective characteristic impedance of the array for eigenmodal 

propagation: 

( )
( )

0 0

0 0

/

/

o e
eff effeq effav

eff o e
av eq eff eff eff

k cE
H k c

β χ χμ μ
η

ε ε β χ χ
− +

= = =
− −

. (30) 

In absence of bianisotropic effects in the inclusions 0e
em effα χ= =  and Eq. (30) becomes 

eq effav
eff

av eq eff

E
H

μ μ
η

ε ε
= = = . (31) 

Therefore, in absence of bianisotropy the eigenmodal characteristic impedance is not directly 

affected by magnetoelectric coupling at the lattice level, and the same characteristic impedance is 

obtained using either the ratio of effective or equivalent parameters. In addition, using Eq. (22) 

we may write in the general case 

( ) ( )
( ) ( )

0

0

e o
eff eff eff effav

e o
av eff eff eff eff

P
M

ε ε η χ χ
μ μ η χ χ

− + +
=

− − −
, (32) 

which, for 0e
em effα χ= = , becomes 

0

0

eqav
eff

av eq

P
M

ε ε
η

μ μ
−

=
−

. (33) 

Eqs. (29) and (33) coincide with classic retrieval procedures used to determine the effective 

permittivity and permeability of a metamaterial sample from its secondary parameters, i.e., its 

eigenmodal wave number β  and its characteristic impedance effη  [20],[29]. This means that the 

equivalent representation (28), introduced here from first-principles, exactly coincides with 

classic homogenization models based on retrieved parameters.  
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This is a very relevant finding, since it allows us to relate the present theory to classic 

homogenization schemes and shows that simple constitutive models assigned a priori may 

effectively hide weak spatial dispersion effects. In source-free problems, for which the excitation 

is placed outside the metamaterial sample, as in classic retrieval schemes, it is tempting to put 

aside the magnetoelectric coupling coefficient o
effχ , and use the equivalent parameters to model 

the array scattering. This is indeed possible, and from the scattering point of view effective and 

equivalent descriptions are equivalent in this source-free scenario, since the corresponding 

secondary parameters coincide. However, our theory shows that the equivalent representation, so 

common in standard metamaterial homogenization schemes, has a very limited physical meaning 

and it should not be used to separately describe the electric and magnetic response of a 

metamaterial, since it hides an inherent form of spatial dispersion and magnetoelectric coupling 

when o
effχ  is not negligible. It is not surprising that the frequency dispersion of the equivalent 

parameters may contain nonphysical artifacts and may not satisfy passivity, reciprocity or other 

causality constraints typical of local parameters [32]. 

As a final remark with respect to standard homogenization schemes, the relation between the 

equivalent parameters and classic retrieval techniques shows that, even at frequencies where 

spatial dispersion and o
effχ  are negligible and we can safely write 

av eq av

av eq av

ε
μ

=

=

D E

B H
, (34) 

as in a natural material, the averaged fields avE  and avH  are defined through Eq. (11) and not as 

the simple spatial averages E , H  of the microscopic fields. This means that standard retrieval 

techniques based on the local model (34) implicitly assume: 
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. (35) 

The nature of the averaged polarization currents within each unit cell, whether stemming from 

microscopic electric or magnetic effects, inherently determines the definition of the spatial 

averages used to calculate the constitutive parameters, and weak spatial dispersion effects 

associated with artificial magnetism or polarization have a different role (contributing to avE  and 

avH ) than the direct polarization and magnetization vectors (contributing to avD  and avB ). Our 

theory shows as a corollary that this is an implicit assumption of common local homogenization 

models for metamaterials. 

 

5. Long-Wavelength Limit and Convergence to a Local Model 

The effective parameters effε , effμ  and e
effχ  in (23) are even functions of β , as expected from 

reciprocity considerations. This implies that for 1dβ  they tend to local parameters, one of the 

relevant advantages of this model, compared to other Floquet approaches to homogenization 

[23],[33]. In contrast, o
effχ  is an odd function of β , which varies linearly with dβ  in the same 

long-wavelength limit. These considerations imply that the constitutive model (22) converges to 

the local relations 

ˆ

ˆ

e
av eff av eff av eff av

e
av eff av eff av eff av

ε χ κ

μ χ κ

= − × − ×

= − × + ×

D E β H β H

B H β E β E
, (36) 

where /o
eff effκ χ β=  [32] is also an even function of β , and all the effective parameters in (36) 

may be assumed local in the long-wavelength limit. Eq. (36) stresses the relevance of the 
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magnetoelectric coefficient effκ  even in this limit, which is one of the relevant results of the 

present theory, discussed in more details in [32]. 

For sufficiently long wavelength and away from the inclusion resonances, under the conditions 

0 1k d , 1dβ , this lattice effect becomes negligible: 

0emC′ , 0effκ . (37) 

Under this simple condition, and in the absence of bianisotropic effects at the inclusion level 

0emα = , the constitutive parameters (23) become 
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, (38) 

which coincide with generalized Clausius-Mossotti relations in [23]. Under condition (37) and 

0emα = , we find for the eigenmodal solution: 
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, (39) 

which coincides with Eqs. (29) and (33) for equivalent parameters. This proves that eqε  and eqμ , 

as well as the retrieved parameters as defined in [20], are identical with effε  and effμ  when (a) 

there are no impressed sources and (b) magnetoelectric effects at the lattice level are negligible. 

If, in the very long-wavelength limit, also intC  may be assumed independent of β , then, by 

Taylor expanding its expression in terms of 0k  we get the known approximation [6] 

( )
3
0

3

1, 0
3 6int

kC j
d

ω β
π

→ = + , (40) 
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which proves that Eqs. (38) and this homogenization method both converge to local classic 

Clausius-Mossotti formulas for periodic arrays [5]-[7] when , 0ω β → . In Section 7, we show 

that the assumptions (37) and (40) do not necessarily hold in metamaterials, even for 0 1k d < , 

and that the homogenization approach introduced here may provide results significantly different 

from quasi-static approaches. 

 

6. Spatial Dispersion and Extreme Metamaterial Parameters 

It is near the inclusion resonances that metamaterials find the most practical interest, since it is in 

this frequency range that the constitutive parameters assume extreme (very large, very low or 

negative) values. The homogenization model described here is very general, and in principle 

applicable to any value of ( ),ω β . However, the same definition of homogenized description of a 

metamaterial inherently neglects the array granularity. This is particularly relevant near these 

resonances, since, despite a small 0k d , the effective eigenmodal wavelength may become 

comparable with the period as dβ  increases. Although these resonant regions are quite limited 

in bandwidth for passive inclusions in the long-wavelength regime, it is here that the effects of 

o
effχ  and spatial dispersion are most relevant. 

a) Near-zero effective material parameters 

Limiting ourselves to the lossless scenario for clarity, consider first the low-index regime, for 

which 0dβ  for finite 0k d , of interest in a variety of applications [46]-[51]. This regime 

includes ε-near-zero, µ-near-zero and low-index metamaterials. In this frequency range, the 

eigenwave number β  passes from being imaginary to real-valued, since one of the two 

equivalent parameters crosses the real axis [see eq. (29)]. As expected, the effective parameters 



29 

 

effε , effμ  and e
effχ  in (23) are real-valued also when β  is purely imaginary, since they are even 

functions of β . On the other hand, o
effχ  is purely imaginary for imaginary β  and crosses zero 

for 0β = , due to its odd nature. This ensures that also eqε  and eqμ  are real-valued (and one of 

them negative) in Eq. (28), despite β  being imaginary. As shown in some of the following 

numerical examples, this zero-index region provides significant deviations between the 

equivalent parameters ( ),eq eqε μ  and the effective parameters ( ),eff effε μ , as a symptom of 

inherent spatial dispersion, consistent with the results in [26]. It should be stressed that in this 

region , ,em effCβ χ′  are all very close to zero, implying very long effective wavelengths and weak 

magnetoelectric coupling; however, the ratio /o
eff effχ β κ=  is not necessarily small in the 

denominator of (28) and in (36), providing relevant nonlocal effects in the equivalent parameters 

[32]. 

b) Effective parameters near the bandgap regions 

Another region of interest for metamaterial applications is the one near the edge of the lattice 

bandgaps, for which dβ π . Around this region, large positive or negative values of 

permittivity and permeability are obtained, of interest in a variety of applications [18], [52]-[53]. 

It is evident that in this scenario the inclusion interaction may become very complex, and an 

average over the unit cell may not provide much insight into the physical behavior of an 

eigenmode that flips its phase within a single unit cell. In particular, inside the bandgap the same 

definition of homogenized parameters is not meaningful, as they become complex even for 

lossless inclusions, since β  is in general complex. It is meaningful, however, to study the 

transition between the homogenization regime and the bandgap region, where extreme 
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metamaterial parameters are found. It is in this transition region that our homogenization 

technique becomes particularly important, since here weak spatial dispersion effects as in (36) 

become relevant, even in the long-wavelength limit 0 1k d < . Exactly at the bandgap edge the 

periodic properties of emC  require that 

( )/ 0emC dβ π ω= = ∀ . (41) 

For centersymmetric inclusions ( 0emα = ), this implies that the general dispersion relation (26) 

simplifies into 

( ) ( )1 1, / , / 0e mC d C dα ω π α ω π− −⎡ ⎤ ⎡ ⎤− − =⎣ ⎦ ⎣ ⎦ . (42) 

In the long-wavelength limit for which C  is small, Eq. (42) ensures that a bandgap may be 

reached exclusively near an electric or a magnetic resonance, for which one of the two 

1 0Cα − =   [54]. It follows directly from (23),(28) that at such resonance one of the equivalent 

parameters 

0eqμ μ=  (for 1
e Cα − = )  or 0eqε ε=  (for 1

m Cα − = ). (43) 

Correspondingly, using (29) the other equivalent parameter has to become 

( )
2

0 2
0

eq k d
πε ε=  (for 1

e Cα − = )  or 
( )

2

0 2
0

eq k d
πμ μ= (for 1

m Cα − = ). (44) 

For instance, if we consider the bandgap associated with a magnetic resonance 1
m Cα − = , as is the 

case for the first resonance of a dielectric inclusion (see example 2 in the following section), the 

eigenwave number β  and the corresponding effective permeability effμ  rapidly increase 
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approaching the bandgap from below. At the resonance 1
m Cα − = , 0eqε ε= , 

( )
2

0 2
0

eq k d
πμ μ= , and 

therefore, using (28) 
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c
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c
k d k d

ε χ
ε π
μ π π χ
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= −

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

. (45) 

Eq. (30) is indeed satisfied by Eq. (45), and it implies 

( )0 0 0

eff

k k d
η β π
η

= = , (46) 

which suggests that, independent of the inclusion geometry, at a magnetic bandgap edge the 

normalized characteristic impedance coincides with the normalized wave number (index of 

refraction). An analogous derivation for electric resonances 1
e Cα − =  provides the inverse of Eq. 

(46). It is evident that in this regime o
effχ  may not be neglected and its effect is indeed 

comparable, if not more important, than the effects captured by effε  and effμ . In this frequency 

range the equivalent parameters (28) lose their physical meaning and strongly diverge from the 

effective parameters (23), as discussed in further detail in [32]. 

It is evident from this discussion that regions with extreme (very large, very low or negative) 

metamaterial parameters are those for which the present homogenization technique is most 

useful, as it diverges from classic homogenization schemes applicable for natural materials and 

mixtures. It is interesting that a simple local model as in Eq. (36) can capture these effects and 

fully restore the physical meaning of effective homogenized parameters. We provide numerical 

examples in Section 7 to illustrate how this rigorous model may correctly capture the exotic 
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features of metamaterials and highlight the weak spatial dispersion effects that are usually at the 

root of inconsistencies in less rigorous homogenization models. 

 

7. Numerical Examples and Further Discussion 

In this section, we discuss the homogenization of three specific metamaterial geometries. 

Although our general formulation is applicable to lossy, bianisotropic, magnetodielectric 

inclusions, arbitrary source distribution and any choice of ( ),ω β , here we focus on 

metamaterials composed of lossless dielectric or conducting spheres and on eigenmodal 

propagation. This choice has the advantage of providing a clearer picture of the difference 

between this homogenization approach and other available techniques, tailored for eigenmodal 

excitation. In addition, the choice of center-symmetric inclusions ensures that bianisotropic 

effects can only stem from the effects captured by o
effχ . We limit our analysis to a dipolar model 

and long-wavelength regime ( )0 1k d < , usually considered safe for quasi-static homogenization 

models of metamaterials [9]-[11]. For this reason, we concentrate here on dielectric or 

conducting inclusions, since their magnetic effects are properly captured by the magnetic 

polarizability, consistent with the note in [39]. In future works we will apply our general 

multipolar approach introduced in Section 2 to arbitrary metamaterial inclusions and extend our 

numerical analysis to the presence of embedded sources and magnetodielectric inclusions [55]. 

Since we deal with spherical particles, we can use analytical closed-form expressions for eα , mα  

[56], well aware of the small causality violations introduced by this assumption, as discussed in 

[42]. The parameter /a dγ =  is introduced to define the ratio of sphere radius over lattice 

period, as a measure of the array density. 
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Figure 1a shows in logarithmic scale the amplitude of the normalized polarizability coefficients 

(thick lines for the normalized electric polarizability, thin for the magnetic one) for three 

different geometries of interest: (1, solid lines) dielectric spheres with relative permittivity 

20rε =  and permeability 1rμ = ; (2, dashed) dielectric spheres with 120rε =  and 1rμ = ; (3, 

dotted) perfectly conducting spheres. For convenience, Fig. 1b shows the ratio /e mα α , in order 

to highlight the ratio between electric and magnetic response at the inclusion level. Both plots 

show their variation as a function of ( )0k d , for the density factor 0.45γ = . The chosen 

geometries represent specific situations of interest in common metamaterial arrays: in case 1 

(solid lines), a regular array of dielectric spheres is considered, far from their individual 

resonances, but still with a good contrast compared to the background: a dominant electric 

polarization is expected all over the spectrum of interest; in case 2 (dashed), the permittivity is 

increased to support a magnetic and an electric resonance within the frequency band of interest, 

in analogy with established designs to realize negative metamaterial parameters [18]: in this case, 

more interesting features are expected in the metamaterial response near these resonances. As 

expected, the electric response is dominant for lower frequencies, but the first resonance is 

magnetic. Finally, in case 3 (dotted), conducting particles are considered, for which electric and 

magnetic responses are comparable, and for lower frequencies the electric polarizability is 

exactly twice the magnetic one. It is noticed that in all these examples, lossless conditions (25) 

strictly apply. The application of this theory to magnetodielectric spheres that support negative 

index of refraction has been considered in [32]. 

Figure 2a shows the dispersion of normalized eigenwave number (effective index of refraction) 

for the array 1 with 0.45γ = . The figure compares the exact eigenmodal solution 0/ kβ  (solid 
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line), as obtained from Eq. (26), with various approximate solutions obtained neglecting spatial 

dispersion and magnetoelectric effects, as follows: the dashed line refers to the dispersion of 

emβ , obtained neglecting the magnetoelectric coupling term emC′ , as in Eq. (37); the dotted line 

shows CMβ , which in addition neglects the dispersion effects in intC , implying 0emC′ =  and intC  

as given by Eq. (40), coinciding with the quasi-static Clausius-Mossotti homogenization model; 

the dash-dotted line refers to eβ , obtained neglecting the magnetic polarizability effects 

associated with the magnetism of the inclusions (which is small in this geometry), but still using 

the exact intC  expression; finally the dash-dot-dot line refers to e CMβ − , which neglects the 

magnetic effects and uses Eq. (40) for intC . We consider all these approximate expressions to 

show how the different spatial and frequency dispersion terms, usually neglected in quasi-static 

homogenization models, affect the metamaterial homogenization accuracy, within the same 

dipolar approximation. As expected, all these expressions converge to the same quasi-static limit 

when ( ), 0ω β → , but the approximate expressions start deviating from the exact expression of 

β  for relatively low values of 0k d . In particular, by neglecting the magnetic polarizability of the 

particles, which in this example is orders of magnitude smaller than the electric one (see Fig. 1b), 

the dispersion of 0/e kβ  surprisingly diverges quite drastically from the exact model, implying 

that the small magnetism of these dielectric particles cannot be neglected, as one may be tempted 

after inspecting Fig. 1b. The effects of nonlocality and spatial dispersion in intC  start playing a 

role much earlier in frequency than one would generally expect for such simple topology, 

comparing CMβ  with β . In comparison, magnetoelectric coupling effects have a much weaker 

role, and start being relevant only around 0 1k d . Figure 2b, in comparison, shows the same 
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curves for the case of a less dense array, with 0.3γ = . As visible, the trend is quite similar, 

although effects of spatial dispersion are proportionally less relevant here, as the interaction 

among inclusions is weaker. In particular, magnetoelectric coupling effects associated with emC′  

are negligible all over the considered frequency range, as emβ  practically coincides with β  in 

this less dense configuration. Nonlocal effects in intC  and the influence of the small magnetic 

properties of the inclusions have still some relevant effects in this less dense scenario. 

Figure 3 shows the eigenmodal dispersion of effective constitutive parameters for this array for 

0.45γ = . The top panel compares: the effective permittivity effε  (solid black line); emε , 

calculated after neglecting the magnetoelectric coupling coefficient emC′ , as in Eq. (38) (dashed); 

locε , calculated neglecting also the effects of spatial dispersion in intC , but still considering its 

dependence on ω  for 0β =  (dash-dotted); CMε , obtained using the quasi-static expression for 

intC  given in (40) (dotted), which coincides with the Clausius-Mossotti definition for periodic 

arrays derived in [5]; finally eqε  (solid light green), defined in (28). All these expressions yield a 

purely real permittivity, as expected from the lossless assumption. However, CMε  rapidly 

diverges from the first-principle permittivity effε . The value of effε  actually decreases with 

frequency for any 0 0.65k d < , due to the small noncausal feature introduced by the dipolar 

approximations used here, particularly relevant in the case of more densely packed arrays [42]. 

Magnetoelectric coupling has very little relevance here, as emε  practically overlaps with effε , but 

the effects of spatial and frequency dispersion of the interaction constants are quite relevant, as 

seen by comparing locε  and CMε  with effε . Finally, the divergence of eqε  from the correct value 
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effε  is a symptom of non-negligible spatial dispersion and magnetoelectric coupling in the array, 

which are evidently not negligible in such dense arrays. 

In comparison, the permeability is accurately predicted by all approximate models, and even the 

local or Clausius-Mossotti approximations predict extremely well its weak dispersion, due to the 

significantly lower magnetic response of the spheres all over the frequency range of interest. 

Interestingly, only eqμ  shows a moderate deviation from effμ , which highlights how the effects 

of o
effχ  may not be neglected even in this long-wavelength regime. Finally, the value of o

effχ  

(bottom panel) becomes relevant only towards the higher end of this frequency range, explaining 

the divergence of effective and equivalent parameters. 

Figure 4 calculates the secondary effective parameters of this material, obtained using the 

different homogenization models of Fig. 3. In particular, Fig. 4a compares the exact value of 

normalized wave number 0/ kβ , as from Fig. 2a, with the approximate values 0/i i ikβ ε μ= , 

where the pedix i  stands for any of the approximate models used in Fig. 3 ( , , ,i eff em CM loc= ). 

This plot offers several interesting insights: first of all, it is noticed that effβ  follows extremely 

well the dispersion of emβ , consistent with the weak effects of emC′  on the effective parameters. 

However, both curves moderately diverge from the correct value 0/ kβ  in the range 

00.5 1k d< < , confirming that the effects of o
effχ  cannot be neglected in this frequency range. 

The Clausius-Mossotti model CMβ  fails even more substantially. Fig. 4b compares the 

corresponding values of effective characteristic impedance 0/ /i i iη η μ ε= . As noticed in the 

previous section, o
effχ  does not play a direct role in the impedance when 0e

effχ = , and therefore 

the parameters obtained neglecting emC′  yield an accurate approximation of the effective 
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impedance effη . It should be noted, however, that the relation between effη  and /av avP M  may 

not be assumed as simple as (39), due to the effects of o
effχ  for relatively larger frequencies. As 

seen in this figure and discussed in Section 4, the equivalent parameters, despite hiding the 

magnetoelectric effects, predict correct values of the secondary parameters of the array, 

consistent with (29)-(30). This ensures that their use for scattering purposes in absence of 

embedded sources is perfectly legitimate, if one avoids assigning them the physical meaning of 

local permittivity and permeability. 

In the less dense array case of Fig. 2b (not reported here for brevity), as expectable the effects of 

nonlocality and spatial dispersion are much less relevant, but still Clausius-Mossotti 

homogenization formulas would considerably deviate from the effective parameters. 

Consider now the second metamaterial of interest, composed of spheres with 120rε = , which 

support a magnetic and an electric resonance within the low frequency range considered here. 

Figure 5 shows the eigenwave number dispersion for such array with 0.45γ = , with symbols 

analogous to Fig. 2. It is immediately recognized that the exact dispersion of normalized wave 

number 0/ kβ  (solid lines) is much more intricate than in the previous example. As expected, 

0/ kβ  initially grows with frequency, until hitting the first band-gap of the array at 

( )0 0.594k d = , at the magnetic resonance frequency 1 0m Cα − − = . The narrow frequency region 

within the bandgap should be completely disregarded in terms of homogenization, since, as 

discussed above, the effects of array granularity plays a major role here. Passed the magnetic 

bandgap, a branch with imaginary wave number iiβ β=  is entered (thin solid line), which 

connects with the next real branch at ( )0 0.723k d = , at the point for which 0β = . The following 
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bandgap is then hit at the electric resonance frequency 1 0e Cα − − = , at ( )0 0.891k d = , and the 

next real branch is obtained at ( )0 0.909k d = . As seen in Fig. 5, this behavior is well described 

by approximate dispersion relations, after neglecting the effects of emC′  or the spatial dispersion 

in intC , as in emβ  and CMβ  respectively. This is due to the fact that in this array the local 

inclusion resonances dominate the array response and hide weak spatial dispersion effects at the 

lattice level. Of course, in this scenario it is not possible to neglect the magnetic effects in the 

dielectric particles, as for eβ  and e CMβ − , since this would completely miss the first magnetic 

bandgap resonance. 

The effective constitutive parameters of this array are shown in Fig. 6, with analogous symbols 

as described in Fig. 3. Even if the spatial dispersion effects are negligible in evaluating ( )β ω  in 

Fig. 5, they play a major role in the correct definition of constitutive parameters, in particular 

near the electric and magnetic resonances of the inclusions. First, it is noticed that Clausius-

Mossotti formulas completely miss the relevant magnetoelectric coupling arising near the 

bandgaps, and the permittivity especially suffers of this approximation, starting from very low 

frequencies. Towards the first (magnetic) resonance, emε  may approximate relatively well the 

effective permittivity effε , confirming that the effect of emC′  is small on the permittivity 

dispersion, dominated by the local inclusion resonances. However, the value of o
effχ  assumes 

large values near the two resonances and it cannot be neglected. Near the magnetic resonance, 

the effective permittivity experiences a sharp Lorentzian resonance, completely missed by CMε  

and even by locε , which is an evident symptom of magnetoelectric coupling in the array. In 

contrast, the various models for magnetic permeability all have good agreements with the 
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effective model (with the exception of a small resonant feature arising at the electric bandgap 

resonance of the array). In the region where β  is imaginary, immediately following the 

bandgaps, all the models correctly predict a negative effective permeability or permittivity 

region, which crosses zero at ( )0 0.723k d =  and ( )0 0.909k d = , together with the value of β . In 

this negative parameter range, as expected, o
effχ  is imaginary (dashed lines in the bottom panel), 

which ensures that the equivalent parameters are real quantities (one of them negative). 

Special attention should be paid to the dispersion of the equivalent permittivity eqε  in Fig. 6a 

(lighter green line). Its slope is negative all the way until the magnetic bandgap, producing an 

anti-resonant dispersion consistent with usual artifacts arising in common retrieval procedures 

near magnetic resonances [20]-[29]. It is evident that these effects are associated with o
effχ , 

hidden in the definition of equivalent permittivity. It is true that the equivalent parameters may 

describe well the secondary parameters of the array, but their physical meaning in this case 

considerably diverge from the first-principle definition of permittivity and permeability. A 

simple homogenization model based on the equivalent representation would fail to capture the 

physics of the array near the bandgap resonance, predicting 0eqε ε=  (43), when in reality the 

averaged polarization vector has a strong resonance. These effects are discussed in more detail in 

[32]. 

If the discrepancy between eqε  and effε  was expected near resonance, another transition region in 

which the equivalent parameters ,eq eqε μ  lose their physical meaning is the region near 

( )0 0.723k d = , for which 0β . As confirmed by Fig. 6a, and consistent with the analysis in 

Section 6a, in this region 
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Indeed, the correct value of effective permittivity coincides with the local value locε , since 

0β , but this value is substantially different from eqε . This is due to the fact that, although the 

magnetoelectric coefficient is near zero, the ratio /o
eff effχ β κ=  is finite, causing eqε  to diverge 

from effε  and to lose its meaning of average electric polarizability. In this near-zero index region, 

the weak spatial dispersion captured by effκ  in (36) cannot be neglected, even if the effective 

wavelength is very large. This confirms the results in [26] derived for periodic arrays of split-

ring resonators, in which the presence of non-negligible spatial dispersion effects in the long-

wavelength ( 0dβ ) scenario is discussed. 

Figure 7 shows the dispersion of the effective index of refraction and characteristic impedance 

obtained through the various parameters of Fig. 6, similar to Fig. 4. All the curves agree with 

high accuracy within the real branches, since their dispersion is dominated by the local 

resonances at the inclusion level. This example clearly shows that indeed β  and  η  for this array 

may be easily derived applying local concepts, like Clausius-Mossotti relations or simple 

retrieval procedures, since they are dominated by local resonances at the inclusion level; 

however, inferring from these secondary parameters the physical values of permittivity and 

permeability, as commonly done in standard homogenization techniques, leads to physical 

artifacts and inconsistencies [32]. 

As a third example, we consider the case of an array of conducting particles. Figure 8 shows the 

dispersion of wave numbers for 0.45γ =  (a) and 0.3γ =  (b), analogous to Fig. 2. In this case, 
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the wave numbers predicted using just electric effects of the particles are evidently incorrect, 

since the magnetic contribution for conducting particles is never negligible. Moreover, the effect 

of the coupling coefficient emC′  is particularly relevant in this conducting scenario, which shows 

significant divergence between β  and emβ , due to the relevance of the magnetic effects even at 

very low frequencies. 

Figure 9 shows the corresponding constitutive parameters for the case 0.45γ = . effε  also in this 

scenario shows a distinctly negative slope, all over the range of frequencies considered here, due 

to small noncausal features introduced by the polarizability model [42]. This is compensated by 

the positive slope of the effective permeability, which assumes, as expected, diamagnetic values 

[57]. Only the Clausius-Mossotti quasi-static model CMε  predicts a permittivity with positive 

slope, whereas all the other models consistently follow the trend of effε . To confirm the strong 

influence of o
effχ , the equivalent parameters eqε  and particularly eqμ  considerably deviate from 

the effective parameters. Figure 10, finally, shows the dispersion of the calculated wave numbers 

and characteristic impedances obtained using the effective constitutive parameters of Fig. 9. It is 

seen how all curves agree reasonably well with the exact dispersion of effη , except the quasi-

static Clausius-Mossotti formula, which neglects frequency and spatial dispersion effects of the 

interaction constants. The divergence of all the curves from the exact dispersion of β  is 

particularly striking, as a symptom of the relevance of the magnetoelectric coefficient o
effχ  in this 

example. We have also analyzed the less dense configuration 0.3γ = , as in Fig. 8b (not reported 

here for brevity), which indeed provides analogous results, but less strong variations from the 

background parameters, similar to the previous examples. 
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8. Conclusions 

We have laid out here from first-principles a general homogenization theory to define the 

effective constitutive parameters of periodic metamaterials. Our theory can describe periodic 

arrays of arbitrary inclusions within a homogenized model that has been proven not to depend on 

the external form of excitation and to preserve the physical meaning of constitutive parameters, 

overcoming and correcting several limitations and artifacts of other homogenization approaches. 

The present theory effectively combines the rigorous approach of Floquet-based homogenization 

theories with the advantages of locality and general applicability of less accurate retrieval 

techniques. We have distinguished between a rigorous and general description of metamaterials, 

based on their effective constitutive parameters, which inherently require taking into account 

weak spatial dispersion effects in the form of magnetoelectric coupling at the lattice level, and a 

simpler equivalent constitutive model, applicable only to eigenmodal propagation and consistent 

with standard retrieval techniques. Our theory shows that the commonly used equivalent 

representation can accurately capture the secondary parameters of the array, implying that in 

absence of embedded sources they can provide a reasonable description of the array for 

scattering purposes. However, they should not be used to deduce the permittivity and 

permeability of the array, as their physical meaning is severely limited by the presence of hidden 

spatial dispersion effects [32], which have been revealed here. A rigorous retrieval procedure to 

extract the first-principle effective parameters from scattering measurements will be presented in 

an upcoming paper. Although our theory is very general, the numerical results presented here 

have focused on isotropic arrays, center-symmetric inclusions, lossless dielectric materials and 

eigenmodal propagation within a dipolar model, in order to better highlight the specific effects of 
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spatial dispersion, neglected in simpler homogenization models. For space constraints, we have 

not discussed here the effects of losses, of magnetodielectric and bianisotropic inclusions, of 

impressed sources, of non-TEM propagation and of higher-order multipoles, which will be 

analyzed separately. We have applied the present theory to model finite metamaterial devices in 

[58]-[59]. 
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Figures 

 

Figure 1 – (a) Frequency dispersion of the electric (thick line) and magnetic (thin) normalized 
polarizability of the individual inclusions for the four metamaterial arrays considered in the 
following figures: (solid) dielectric spheres with permittivity 020ε ε= ; (dashed) dielectric 

spheres with 0120ε ε= ; (dotted) conducting spheres; (dash-dotted) magnetodielectric spheres 

with 020ε ε=  and 020μ μ= ; (b) Ratio of electric over magnetic polarizability for the same 
geometries. Here 0.45γ = . 
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Figure 2 – Frequency dispersion of the guided wave number, and its approximations as defined 
in the text, for an array of dielectric spheres with 020ε ε= , with (a) 0.45γ = , (b) 0.3γ = . 
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Figure 3 – (Color online): Frequency dispersion of the effective constitutive parameters, and 
their approximations as defined in the text, for the array of Fig. 2a. 
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Figure 4 – Frequency dispersion of the effective wave number and characteristic impedance 
calculated from the constitutive parameters of Fig. 3. 
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Figure 5 – Frequency dispersion of the guided wave number, and its approximations as defined 
in the text, for an array of dielectric spheres with 0120ε ε=  and 0.45γ = . The thin solid line 

corresponds to the imaginary branch of β . 
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Figure 6 – (Color online): Frequency dispersion of the effective constitutive parameters, and 
their approximations as defined in the text, for the array of Fig. 5. Dashed lines in the bottom 

panel refer to branches with imaginary values. 
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Figure 7 – (Color online): Frequency dispersion of the effective wave number and characteristic 
impedance calculated from the constitutive parameters of Fig. 6. 
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Figure 8 – Frequency dispersion of the guided wave number, and its approximations as defined 
in the text, with frequency for an array of conducting spheres, for (a) 0.45γ = , (b) 0.3γ = . 
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Figure 9 – (Color online): Frequency dispersion of the effective constitutive parameters, and 
their approximations as defined in the text, for the array of Fig. 8a. 
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Figure 10 – Frequency dispersion of the effective wave number and characteristic impedance 
calculated from the constitutive parameters of Fig. 9. 


