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2Departamento de Qúımica, Cinvestav, Av. IPN 2508,

Col. San Pedro Zacatenco, México DF 07360 México
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Recently several variants of a new orbital-free density functional for the total Ne-electron kinetic
energy (KE) have been proposed. These are based on a systematically constructed (Ne−1)-electron
conditional probability function and Monte Carlo evaluation of the associated conditional expec-
tation of the KE operator in the case of the homogeneous electron gas. Because the resulting
functionals depend on n lnn (n = the electron number density), they have been interpreted as being
the leading term in a Shannon information power expression for the non-von Weizsäcker part of the
total KE. We show that these functionals violate known positivity constraints, are inconsistent with
known results for the correlation energy of the homogeneous electron gas, and that the Shannon
information power interpretation also violates known constraints. We consider both the full KE and
Kohn-Sham KE cases. Possible corrections and extensions are considered, including a possible new
form for parametrization.

PACS numbers: 31.15.ec, 89.70.Cf, 71.10.Ca, 31.15.E-,71.15Mb

I. INTRODUCTION AND BASICS

In density functional theory1–5, one of the key chal-
lenges to direct implementation of the variational princi-
ple is the Ne-electron kinetic energy in state Ψ,

T [nΨ] = 〈Ψ|T̂ |Ψ〉 (1)

with n(r) the electron number density (normalized to
Ne). The notation is a reminder of the difficulty: T is in-
deed a functional of n but the general functional form is
unknown. Analysis of this problem from an information
theory-based decomposition of T [nΨ] has been considered
sporadically over the history of DFT, beginning appar-
ently with Sears, Parr, and Dinur6 in 1980. A survey
through 2001 is found in Sect. 3 of Ref. 7.
The information-theoretical decomposition begins

from writing the Ne-body density as

NeΨ
∗(r1 . . . rNe

)Ψ(r1 . . . rNe
) = n(r1)f(r2 . . . rNe

‖r1) .
(2)

(This and similar factorizations have a long history8,9.)
The positive-definite form of T (in Hartree atomic units)
then decomposes into

T [Ψ] =
1

8

∫

dτNe

|∇1nf |
2

nf

= TW [n]

+
1

8

∫

dr1

∫

dτNe−1

|∇1f(τNe−1‖r1)|
2

f(τNe−1‖r1)
, (3)

where dτNe
= dr1 . . . drNe

and the vonWeizsäcker kinetic
energy10 is

TW [n] =
1

8

∫

dr
|∇n(r)|2

n(r)
≡

∫

dr tW [n(r)] . (4)

The von Weizsäcker term is identified with the Fisher
information entropy, a measure of localization. The re-
maining, non-local contribution is called the correlation
part in Ref. 11 or the kinetic correlation term in Refs.
12,13 and is discussed in terms of the Shannon informa-
tion entropy.
When used variationally, this factorization has a di-

rect interpretation11,13 in terms of Levy-Lieb constrained
search14,15 DFT. In notation essentially parallel with that
of Refs. 11,13, the electronic total energy is

E[n, f ] = TW [n] +

∫

dr1n(r1)vext(r1)

+Kcorr[n] + Ecorr[n]

Kcorr[n] + Ecorr[n] = min
f

Γ[f, n]

Γ[f, n] :=
1

8

∫

dr1n(r1)

∫

dτNe−1

|∇1f(τNe−1)|
2

f(τNe−1)

+
(Ne − 1)

2

∫

dr1n(r1)

×

∫

dτNe−1

f(τNe−1)

|r1 − r2|
. (5)

Here Kcorr and Ecorr correspond in order to the terms
on the RHS of the definition of Γ[f, n] and vext is the ex-
ternal potential, usually the nuclear-electron attraction.
Observe that, by construction,

Kcorr ≥ 0 . (6)

Remarks: (i) Despite the useful notation, Kcorr is not
the conventional correlation kinetic energy, T−TRHF ≥ 0
with TRHF the restricted Hartree-Fock KE and T the to-
tal KE. Nor is Kcorr the DFT correlation kinetic energy,
which is Tc,DFT = T − Ts, with Ts the Kohn-Sham KE
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as defined below at Eq. (11). Instead Kcorr = T −TW . It
is useful to keept this in mind. At various points in the
discussion, we point out which correlation energy is being
calculated. (ii) The (|∇1f |

2/f) term has been studied by
Ayers16 in the context of a bounding sequence of gener-
alized von Weizsäcker type terms.
Reduction of this formulation to a local functional was

begun by Ghiringhelli and Delle Site17. They presented
a Monte Carlo sampling of Eq. (5) for a model f(τNe−1)
constructed from necessary conditions on the Ne-fermion
wave function. The Monte Carlo sampling was done for
the homogeneous electron gas (HEG) over a finite range
of densities. From those calculations they proposed (see
Ref. 17 at Eq. (12)) that for slowly-varying densities a
new functional “ready for OFDFT-based codes” is

TGDS08[n] = TW [n] +

∫

drn(r)[A1 +B1 lnn(r)] (7)

with A1 = 0.860±0.022 and B1 = 0.224±0.012. In what
follows, we refer to this functional and the associated
paper as GDS08.
In the Erratum to Ref. 11, the GDS08 form was ratio-

nalized as being the leading-order term of a more general
form, namely

Kcorr,SIP = ξ exp
{m

3
S
}

, 0 < m < 2

S[σ] := −

∫

drσ(r) ln σ(r)

σ(r) :=
n(r)

Ne
, (8)

with ξ a constant. Such a form was introduced in Refs.
18,19 with the signs as shown. (Somewhat confusingly,
the Erratum to Ref. 11 has the sign in the exponent
wrong at both Eqs. (3) and (4). The corresponding sign
in Eq. (23) of Ref. 11 is correct.) The quantity S is rec-
ognized as the Shannon information and Kcorr,SIP with
m = 2 is recognized as the Shannon information power.
We focus on the DFT aspects and do not discuss the
information-theoretical aspects further.
To improve upon GDS08, Ref. 13 refined the trial con-

ditional probability function to model the behavior of
high-density fermion pairing. From a Monte Carlo pro-
cedure closely analogous with that of GDS08, they ob-
tained what we denote as the GHDS10 functional,

TGHDS10[n] =TW + TTF

+

∫

drn(r)[A2 +B2 lnn(r)] . (9)

The constants are A2 = 1.02 and B2 = 0.163 (after
combining like terms in Eq. (34) of Ref. 13). Here the
Thomas-Fermi KE is

TTF [n] := c0

∫

drn5/3(r)

c0 :=
3

10
(3π2)2/3 ≈ 2.8712 (10)

One other introductory point is needed. Commonly
the objective of orbital-free kinetic energy approximation
development is to replace the explicitly orbital-dependent
Kohn-Sham kinetic energy

Ts[{φi}
N
i=1] =

1

2

N
∑

i=1

∫

dr∇φ∗

i (r)∇φi(r)

≡

∫

drts[n(r)] , (11)

not the full Ne-body KE T . Though there is mention
in the works by Delle Site and co-workers about OFKE
approximations to Ts, (e.g. introduction to Ref. 17, dis-
cussion toward the end of Section 2 of Ref. 12, as well as
the suggestive quotation above about existing OFDFT
codes), the GDS08 functional17 is for the full T , not
Ts

20. The same is true for the GHDS10 functional; see
page 3 of Ref. 13. We return to issues of Ts briefly below.

II. POSITIVITY AND THE GDS08 AND

GHDS10 FUNCTIONALS

There are several positivity problems with Eqs. (7),
(8), and (9). We consider numerical values first, then
formal properties.

A. Quantitative Behavior

If the GDS08 functional is a reasonable approximation
for the total KE T [n] of the HEG, then the conventional
correlation KE it yields for the HEG

Tc,GDS08[n] = TGDS08[n]− TTF [n] (12)

should be reasonable. (Observe that TTF = TRHF for
the HEG.) Fig. 1 shows the HEG kinetic energy per elec-
tron for the Thomas-Fermi model and for GDS08, Eq.
(7), with the published values17 of A1, B1. The Thomas-
Fermi values always are above those from Eq. (7), hence
the correlation kinetic energy produced by Eq. (12) is
negative, i.e. Tc,GDS08 for the HEG has the wrong sign.
Because the values of A1, B1 were obtained over the
range 0.04 ≤ n ≤ 1.4 (see Fig. 2 of Ref. 17), a fairer
assessment is to consider Eq. (12) only on that domain.
But even there the imputed Tc,GDS08 is negative.
The GDS08 and GHDS10 functional form suggests

consideration of high densities. For roughly n ≥ 1.9,
the asymptotic expansion in rs of the HEG correlation
energy is a fair approximation21 which improves as the
density increases. The asymptotic correlation KE density
from that expansion is

tc,asymp = 0.0103 lnn+ 0.02066 (13)

This expression is properly positive for n > 0.135, a
density far below the range for which the asymptotic
expansion is accurate. The GDS08 functional has that
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FIG. 1: Kinetic energy per electron.

asymptotic form but because the constants are quite
different, GDS08 goes negative at a much lower density,
n < 0.0215; again see Fig. 1. Such failure of positivity is
suggestive of an N-representability problem22 with the
specific form of f used in Ref. 17 at least for this density
range. In retrospect, an N-representability problem
might have been expected, since the form for f used in
GDS08 is identical for bosons and fermions. Recognition
of that difficulty is one way to formulate the motivation
for GHDS1013.

Similarly the GHDS10 KE, Eq. (9) goes negative for
an HEG density such that

lnn = −(A2 + c0 n
2/3)/B2 (14)

which has a solution ncrit,1 ≈ 0.00152. The density
range for which the MC calculations were done to
determine A2 and B2 is not reported in Ref. 13 but Fig.
1 of that paper shows that 0.01 or 0.02 apparently was
the lowest density used. The failure of N-representability
therefore is below the expected range of valid densities
for the GHDS10 functional.

In Fig. 2, we compare the GHDS10, GDS08, and
Ceperley-Alder correlation kinetic23 energies. The CA
values were obtained from the parametrization in Ref.
24, which used essentially the same virial relation as
used just above for the asymptotic correlation KE. Note
that neither GHDS10 nor GDS08 resembles the exact
result even qualitatively, except in the limited sense that
the exact result is dominantly logarithmic.

These behaviors draw attention to the range of den-
sities over which the GDS08 and GHDS10 fits were ob-
tained, 0.04 ≤ n ≤ 1.4 e/au3 for the former, 0.01−0.02 ≤
n ≤ 2.0 e/au3 for the latter. In terms of the Wigner-
Seitz radius, these ranges are 0.55 ≤ rs ≤ 1.81 and
0.49 ≤ rs ≤ 2.88, respectively. Compared to metallic
equilibrium, these are rather high densities, especially for
GDS08. Insight comes from the text of Ref. 17, which
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FIG. 2: Correlation kinetic energy per electron for GDS08,
GHDS10, and the parametrized Ceperley-Alder Monte Carlo
results. See text.

says that densities 0.04, 0.2, and 1.0 e/au3 correspond
approximately to Na, Ti, and Pt, respectively. That cor-
respondence is not the conventional choice of valence elec-
trons only. If one works back to the effective number of
valence electrons25

Zval = 11.2055
nA

ρm
(15)

with ρm the mass density in gm/cm3, A the atomic mass,
and n in e/au3, the three densities quoted give Zval =
10.6, 23.84, and 102.1, respectively. More typical val-
ues for determining the appropriate equivalent HEG for
those three elements would be Zval = 1, 3, and 2 (or
4), which give densities 0.0038, 0.0025, and 0.0019 (or
0.0039), respectively. Of course, developers of approxi-
mate functionals may choose the domain in which fitting
to results on the HEG is done. The point here is that
the failures identified above are in the range of realistic
equilibrium metallic densities, whereas the GDS08 fitting
range and much of the GHDS10 fitting range correspond
to compressions of 10-200 or more.

Returning to Fig. 2, note that the CA correlation ki-
netic energy density tc has almost logarithmic depen-
dence on the density, at least qualitatively similar to the
GDS10 functional, as remarked above. Hence we can use
the parametrized CA form for tc given in Ref. 24 to re-
parametrize the GHDS10 total KE functional, Eq. (9).

Our values of parameters are Ã2 = 0.61434 × 10−1 and
B̃2 = 0.61317× 10−2. Closer inspection of Fig. 2 shows
that the CA tc depends non-linearly on lnn, hence we fit
to a total KE functional with a quadratic term,

TTKV ln[n] = TW + TTF

+

∫

drn(r)[A3 +B3 lnn(r) + C3 ln
2 n(r)] . (16)

The resulting parameters are A3 = 0.45960 × 10−1,
B3 = 0.65545× 10−2, and B3 = 0.23131× 10−3.
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Table I compares the valence kinetic energy per
atom delivered by the GDS08, GHDS10, GHDS10 re-
parametrized, TKVln, and second-order gradient ap-
proximate functionals to the Kohn-Sham value for two
crystalline systems. The approximate functional values
are from evaluation at the KS valence density. The
KS calculations used numerical atomic orbitals as im-
plemented in the Siesta code26 with Troulier-Martins
non-local pseudopotentials27, and the Perdew, Burke and
Ernzerhof28 exchange-correlation functional.

If we use the DFT definition of correlation kinetic
energy, Tc,DFT [n] = T [n] − Ts[n] ≥ 0, the result should
be approximately the value from the third term in Eq.
(16). This is the value shown in the table as T estim

c .
Consistent with the positivity discussion above, GDS08
strongly underestimates the valence KE, with a negative
value for Li, and a negative Tc for Al. In contrast,
GHDS10 strongly overestimates the valence KE, with
the result that predicted Tc is too large by a factor of
roughly 2-3.

As might be expected, both the re-parametrized
GHDS10 and new TKVln functionals predict reasonable
valence total KEs. They would not be expected to be
applicable for all-electron densities however. There are
formal problems with constraints (discussed in the next
Subsection) and there is the problem that the TW +TTF

functional in these two forms strongly over-estimates the
non-interacting (KS) KE, so that the third term would
have to be spuriously negative.

B. Formal Issues

There also is a formal problem with the forms of both
the GDS08 and GHDS10 functionals. Levy, Perdew, and
Sahni29 (LPS hereafter) studied

G[n] :=Kcorr[n] + Ecorr

− 1
2

∫

dr1dr2n(r1)n(r2)/r12 (17)

and showed that δG/δn ≥ 0. They also showed that

δKcorr

δn
=

1

8

∫

dτNe−1

|∇1f(τNe−1)|
2

f(τNe−1)

+
1

8

∫

dr1n(r1)
δ

δn

∫

dτNe−1

|∇1f(τNe−1)|
2

f(τNe−1)
.

≥ 0 (18)

The first term of this expression is itself manifestly
positive. It corresponds to the third term on the
right-hand side of LPS Eq. (17). The LPS argument also
provides a proof that the second term of our Eq. (18) is
positive. Simply take the kinetic energy contribution to
the second term on the right-hand side of their Eq. (17).

The corresponding terms from TGDS08[n] are

vcorr,GDS08 =
δ(TGDS08 − TW )

δn

=
δ

δn

∫

drn(r)[A1 +B1 lnn(r)]

= A1 +B1 +B1 lnn . (19)

For the published values of A1, B1, at sufficiently small
densities

ncrit,2 = exp(−(1 +A1/B1)) = 0.0079 , (20)

this potential goes negative. Once again, however, the
critical density is outside the range of the GDS08 Monte
Carlo data fit.

But a focus on the range of valid densities begs the
question of the meaning of the constant shift A1 +B1 in
the potential. That shift cannot be correct. LPS showed
that the potential vcorr is part of the effective potential
for a one-body eigenvalue problem for the square root
of the density. The eigenvalue for that problem is the
negative of the ionization potential. Therefore the zero
of the potential must be zero, not the constant A1 + B1

in Eq. (19). If we eliminate that potential shift, then the
critical density below which the potential from a KE of
the form

∫

n lnn goes negative is just

ncrit,2 = 1 . (21)

Essentially the same arguments can be made with re-
gard to the GHDS10 correlation potential, which is

vcorr,GHDS10 =
δ(TGHDS10 − TW )

δn

=
δ

δn

∫

drn(r)[c0n
2/3(r) +A2 +B2 lnn(r)]

=
5

3
n2/3 +A2 +B2 +B2 lnn . (22)

We eschew obvious detail.

Next, consider the Shannon information power form,
Eq. (8). First, the change of variables, n to σ = n/Ne,
introduces size-extensivity difficulties via the highly non-
linear explicit Ne dependence. Second, though it might
seem plausible, it is not true that σ ≤ 1. A counter-
example is a hydrogenic density for a neutral atom,
Ne = Z, which satisfies the Kato cusp condition4,30–33.
(sufficiently close to the nucleus n(r) ∝ 1 − 2Z|r|+ . . .).
Such a spherical density is

nH(r) =
N4

e

π
exp(−2Ner) (23)

This density integrates to Ne over R
3, as it should,

but even for Ne = 2 has a maximum value ≈ 5.093, or
σ ≤ 2.54.

This little example illustrates an underlying difficulty
with using a Shannon entropy form such as Eq. (8) in
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TABLE I: Comparison of approximate and Kohn-Sham valence kinetic energies (eV) per atom for two solids. See text.

GDS08 GHDS10 GHDS10(repar) TKVln SGA Ts T
estim

c

bcc-Li (a=3.44Å) -6.257 9.221 4.085 3.760 3.007 3.626 0.527
fcc-Al (a=4.05Å) 5.271 57.532 25.492 24.351 21.346 22.102 2.067

DFT. A physical σ as defined above is not a probabil-
ity mass function for a discrete random variable. Hence,
such a σ is not bounded by unity and therefore the Shan-
non entropy S(σ) is not of one sign for all possible σ.
This point was recognized by Sears, Parr, and Dinur6.
The consequence, once again, is positivity violation for
vcorr, even though the contribution to the total KE given
by Eq. (8) is positive. This follows from

vcorr,SIP =
δKcorr,SIP

δn

=
m

3
Kcorr,SIP

δS

δn
. (24)

Since S has the same form as TGDS08, the same kind
of non-positivity problems will arise, except at different
critical densities.

III. RE-INTERPRETATION?

The Monte Carlo minimization which yielded the
GDS08 and GHDS10 functionals was for the HEG, so
one may ask if, after all, those functionals can be inter-
preted as an approximation for the Kohn-Sham KE Ts,
not T . It is straightforward to see that this interpretation
is not workable. The difficulty is exposed via an exact
result called the Pauli KE decomposition34–37, to wit

Ts[n] = TW [n] + Tθ[n]

Tθ[n] ≥ 0 . (25)

Critically for the present discussion, it is known that the
Pauli potential must be positive semi-definite29,37,38:

vθ([n]; r) = δTθ[n]/δn(r) ≥ 0 , ∀ r . (26)

These conditions have been shown39,40 to be important to
the construction of reasonable approximations to Ts. But
the GDS08, GHDS10, and Shannon information power
functionals violate the Pauli potential constraint for the
same reason that they violate the LPS constraint dis-
cussed above. And the GDS08 and GHDS10 functionals
also violate Pauli KE positivity for sufficiently small den-
sities.

IV. POSSIBLE MODIFICATIONS

All acceptable densities n satisfy relatively mild
conditions41, to wit:

n(r) > 0 almost everywhere
∫

dr|∇
√

n(r)|2 < ∞

∫

drn3(r) < ∞ . (27)

The essential point is that every physical density has a
maximum (it may be a supremum, that does not matter
for the level of this discussion). Denote that maximum,
which is clearly a functional of n, as M [n] = maxn. If
we suppose, on practical grounds regarding the density
properties just listed, that there is an upper bound Nm

to M [n], then we have Nm ≥ M [n] for all acceptable
densities. Remarks: [i] We have disallowed delta-function
and other singular densities. This restriction includes the
conventional Thomas-Fermi atom. However, Parr and
Ghosh42 have shown that imposition of conditions akin
to Eqs. (27) on the TF atom gives physically plausible
results with a non-singular density. [ii] Note that Nm is
a density, not a number. With this definition, redefine

σ := n/Nm ≤ 1 , (28)

whence S[σ] ≥ 0 in Eq. (8). This redefinition also gets
rid of, or at least hides, the size-extensivity problem in
the original σ definition.

However, the leading-order argument about the Shan-
non information power S summarized above still may fail
because the correlation potential vcorr,1 from S itself (not
from the full Kcorr) is

vcorr,1 = −
1

Nm
(lnσ + 1)

> 0 for n < Nm exp(−1) . (29)

(The index on vcorr,1 is simply to distinguish this result
from similar ones that follow.) Once again the range
of allowed densities is restricted, a violation of the
universality of the functional. In practice, one might
argue that Nm may be large, e.g. of the order of N4

e per
unit volume for the hydrogenic density just mentioned,
and the restriction then might not be too severe. But
that argument is difficult to use in practice, since Nm

cannot be determined a priori.

Returning to the GDS08 functional from Eq. (7), even
if one shifts to σ ≤ 1 as the variable, there is still a
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positivity problem except for one special case, namely
changing the parameters to A′ = −B′ > 0. The prime is
to recognize the fact that the variable is different (σ, not
n). This choice automatically eliminates the difficulty
with the zero of vcorr discussed above, though it does
not match the Monte Carlo result from Ref. 17. Then
the counterpart of Eq. (7) is

Tcorr,2 := B′

∫

drσ(r)[−1 + lnσ(r)] (30)

which is manifestly positive. The counterpart potential
to Eq. (19) also is positive:

vcorr,2 =
B′

Nm
lnσ . (31)

Continuing with the modified definition of σ, Eq. (28),
(thus forestalling for the moment the problem of using
Nm rather than M [n]), one may ask what modification of
S in Eq. (8) would yield a properly positive-definite vcorr
as well as Tcorr. We have found one such modification.
Consider

S3[σ] := −A3

∫

drσ(r) ln(σ(r) +B3σ
2(r)) (32)

with A3 > 0, −1 < B3 < 0. Then σ2 < σ ∀r, the
argument of the logarithm is everywhere less than unity
but positive, and S3 ≥ 0. The effective potential which
results is

vcorr,3 =−
A3

Nm

{

ln(σ +B3σ
2)

+

(

1

1 +B3σ

)

(1 + 2B3σ)

}

. (33)

The choice B3 = − 1
2
gives

vcorr,3 =−
A3

Nm

{

ln(σ − 1
2
σ2)

+

(

1

1− 1
2
σ

)

(1− σ)

}

(34)

which has the interesting consequence that

vcorr,3(σ = 1) = −
A3

Nm
ln(1

2
) =

A3 ln 2

Nm

vcorr,3(σ = 0) = −
A3

Nm
ln(0) = ∞ . (35)

It is easy to show that the first term on the RHS of
Eq. (34) is smaller than the second for the entire range,
0 ≤ σ ≤ 1. Again, since Nm seems likely to scale at
least as some power of Ne, the practical effect would be
0 <
∼ vcorr,3 ≤ ∞.

Return to the Shannon information power form of
Kcorr as defined in Eq. (8), but, again, with the revised

definition of σ = n/Nm. The kinetic-correlation poten-
tial which results is

vcorr,4 =
δKcorr

δn
=

m

3Nm
Kcorr

δS

δσ

= −
m

3Nm
Kcorr[n] (lnσ + 1) (36)

which has, of course, the same limitation as vcorr,1, Eq.
(29).

An obvious question is, what happens if we use M [n],
the density maximum functional, rather than Nm?
Of course, this choice also resolves the explicit size-
extensivity problem from Ne introduced in the original
Romera and Dehesa18 type of definition. Moreover, this
modification helps show what is missing from the purely
information-theoretical formulation in a more systematic
way than the somewhat ad hoc illustration provided by
the construction of S3 , Eq. (32).

Thus, we consider a modified version of Kcorr, namely

K̄corr = ξ exp
{m

3
S̃[σ′]

}

, 0 < m < 2

S̃[σ′] := −

∫

drσ′(r) ln σ′(r)

σ′(r) :=
n(r)

M [n]
. (37)

Then the question becomes the behavior of the functional
derivatives of M [n], because vcorr now is

vcorr,5 =
δK̄corr

δn

= −
m

3
K̄corr

1

M [n]

(

1−
n

M [n]

δM

δn

)

×

{

ln

(

n

M [n]

)

+ 1

}

. (38)

In fact, we may generalize the problem into asking what
functional M[n] might be introduced as in Eq. (37),
with the redefinition σ′ := n/M, to satisfy constraints
on vcorr without stipulating that M[n] be the maximum
functional used in Eq. (37), but with the stipulation
σ′ ≤ 1.

The problem simplifies a bit if we consider a function of
n rather than a functional of n, M(n) rather than M [n]
or M[n]. Two obvious positivity constraints then follow
from Eq. (38), namely that

1−
n

M(n)

∂M

∂n
> 0 (39)

and

M(n) > exp (+1)n . (40)

That such a function exists is trivial, for example

M(n) = exp (+1)n+∆ , ∆ = constant > 0 . (41)

This trivial result, however, illustrates what we believe
to be a general fact. Introduction of M(n) has a

significant effect on the interpretation of S̃, namely
a shift away from being a straightforward Shannon
information. We have not explored the consequences
of other seemingly plausible choices of M(n) (e.g.
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M(n) = n exp (+1) + ∆exp(−αn), α > 0, ∆ > 0) to
date.

Instead, explore the formal structure of M(n). A clue
is the fact that the coefficients for the GDS08 functional,
Eq. (7), were obtained for the HEG, but that it does
not have the Thomas-Fermi contribution. (TF is intro-
duced in GHDS10 by choice of a constant.) Thus we con-
sider, as an ansatz, the von Weizsäcker plus parametrized
Thomas-Fermi model,

TWTF [n] = TW [n] + γTTF [n]

0 ≤ γ ≤ 1 . (42)

From the expansion

n1+α = n+ αn lnn+ 1
2
n(α lnn)2 + . . . (43)

with α = 2/3, we have

TTF =c0

∫

dr

(

n+
2

3
n lnn

)

+ c0

∫

dr
2

3
n lnn

∞
∑

j=1

1

(j + 1)!

(

2

3
lnn

)j

:=c0

∫

dr

(

n+
2

3
n lnn

)

+
2

3
c0

∫

drn lnnL(n) . (44)

To compare with the GDS08 form, pull out the constant
and n lnn terms and write

TWTF = TW + γc0

{

Ne +
2

3

∫

drn lnn

}

+
2

3
γc0

∫

drn lnnL(n)

= TGDS08 +∆T . (45)

The difference ∆T between parametrized WTF and
GDS08 follows by comparison with Eq. (7) as

∆T = (γc0 −A1)Ne +

(

2γc0
3

−B1

)
∫

drn lnn

+
2

3
γc0

∫

drn lnnL(n) . (46)

Unsurprisingly, for the published values17 of A1, B1, no
single value of γ will eliminate the first two terms of ∆T .
However, the choice γ = A1/c0 ≈ 3/10 will eliminate
the explicit number dependence, while γ = 0.117
will eliminate the “excess” Shannon-entropy-like term.
Either way, there is a complicated density functional left.

At least formally, the form of the function M(n) can be
recovered by this line of argument. From the definition
in Eq. (44) we have L > 0 for both n > 1 and n < 1.
For n = 0, L = 0. Therefore, when the Shannon term in
Eq. (44) goes negative, so does the L term. Then with
γ = 1, the full KE is

T [n] = TW [n] + TTF [n] + TR[n]

:= TW [n] + TTF [n] +

∫

drn(r)tR[n] (47)

with TR the (in general unknown) remainder functional.
By comparison with the last line of Eq. (44), we have

T [n] = TW [n] + c0

∫

drn

(

1 +
2

3
lnn

)

+

∫

drn(r)

{

2

3
c0 lnnL(n) + tR[n]

}

:= TW [n] + c0

∫

drn

(

1 +
2

3
lnn

)

−
2

3
c0

∫

drn(r) lnM(n)

= TW [n] + c0

∫

drn(r)

(

1 +
2

3
ln

n

M(n)

)

. (48)

The complexity ofM is evident. This may be a caution
against assuming simple forms of M(n). For example,
one might return to the HEG, assume a form of M , im-
pose positivity on the resulting vcorr, and parametrize to
the GDS08 or GHDS10 Monte Carlo results. But with-
out detailed knowledge of the behavior of M from the
structure in Eq. (48), it would be hard to know whether
the resulting approximate M was of any generality for
use in calculations.

V. CONCLUDING REMARKS

Despite the intriguing form and connection with
Monte Carlo sampled data, we have shown that the
GDS08 and GHDS10 KE functionals are limited by
violation of important positivity constraints. We have
also shown in a new way how the Shannon information
entropy form comes into the KE functional, namely
as part of the TF contribution. The von Weizsäcker
term enters as a lower bound. The remainder is a
renormalization of the Shannon term.

Finally, there is a cautionary note from the Coulomb
virial theorem. For the Ne electron with equilibrium
ground state density n0, the ground state total energy
E[n0] = −T [n0]. Finding a widely valid approximate
T [n] functional therefore would be equivalent to finding a
functional which gives the same equilibrium results (same
solution for its Euler equation) as the Hohenberg-Kohn
functional. The history of DFT shows that finding such a
functional is a truly formidable task. A more profitable
use of the information-theoretical structure may be in
building Tθ in Eq. (25) along lines parallel with the dis-
cussion of the formal structure of M(n) just given, Eq.
(48). We have this approach under investigation.
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