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Using the microscopic tight-binding equations we derive the effective Hamiltonian for the two-layer
hybrid structure comprised of the two-dimensional HgTe quantum well-based topological insulator
(TI) coupled to the s-wave isotropic superconductor (SC) and show that it contains terms describing
mixing of the TI subband branches by the superconducting correlations induced by the proximity
effect. We find that the proximity effect breaks down the rotational symmetry of the TI spectrum.
We show that the edge states not only acquire the gap, as follows from the standard theory, but
can also become localized by the Andreev-backscattering mechanism in a small coupling regime. In
a strong coupling regime the edge states merge with the bulk states, and the TI transforms into an
anisotropic narrow-gap semiconductor.
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I. INTRODUCTION

A topological insulator (TI), a material in which the electronic spectrum possesses an energy gap in the bulk but
has the special, so-called topologically protected, edge (surface) states falling into this gap, is one of the focal points
of current condensed matter studies.1–4 Topological insulators hold high technological promise since due to the ability
of their topologically protected edge states to carry nearly dissipationless current they can be utilized in integrated
circuits. Thus the question how robust the edge states are with respect to hybridization with the electronic states in
the leads has become one of the focal points of current TI-related research.

Three dimensional (3D) TI have the Dirac spectrum with the finite mass in the bulk while the spectrum of the
surface states is massless.2,5–10 Two-dimensional (2D) TI has the gapless helical edge states.1,11,12 The surface states
in 3D TI and the edge states in 2D TI are topologically protected and are robust against all time-reversal-invariant
local perturbations.2 It was shown experimentally that 2D TI-state appears in HgTe/CdTe quantum wells (QW).13,14

The TI in three-dimensional (3D) materials was found in Bi1−xSbx, Bi2Se3 and so on.7–10

Of special interest are the states that develop at the interface between a TI and an s-wave superconductor (SC),
like, e.g., in Fig. 1, where the proximity effect generates a superconducting pairing. it was shown that at the
interface of 3D TI coupled to s-wave superconductor px + ipy-superconducting state appears but without time-
reversal symmetry breaking.15 Numerical calculations showed that the proximity of the superconductor leads to
a significant renormalization of the original parameters of the effective model describing the surface states of a
topological insulator.16 For 2D topological insulator coupled to s-wave superconductor it is known that the momentum-
independent gap enters in the edge spectrum.17–21

Two-dimensional TIs have a unique property: their parameters can be tuned over wide ranges of their values by the
appropriate choice of the QW width d.13 In particular, the main parameter of 2D TI, the gap in the bulk spectrum,
M , can be changed from zero up to room temperature energy scale. Phenomenological treatment of the proximity
effect is based on the assumption that the gap M in the bulk spectrum of TI is much larger than the characteristics
energy of the induced superconducting correlations. Unfortunately numerical calculations do not give the answer how
the spectrum of the TI-SC system develops in this regime.20,21 In what follows we will focus on the gaps M of the
order of the energy of superconducting correlations.

In this Paper we investigate the effect of superconducting correlations on the topologically protected edge states
and the bulk spectrum in the 2D topological insulator brought into a contact with the SC layer, see Fig. 1, and
show the emergence of the SC correlations in the TI similarly to what was observed in GaAs containing a two-
dimensional electron gas.22,23 Ordinarily, the effective Hamiltonian of the TI in question is constructed from the
symmetry considerations, see e.g., Ref. 17–19, and has the trivial structure of the induced superconducting potentials.
We demonstrate that the symmetry reasons suggest the additional non-diagonal (in the subband space) terms in the
Hamiltonian. Moreover, using the microscopic tight-binding equations we derive analytically the additional terms in
the effective Hamiltonian of the TI describing coupling to the s-wave isotropic superconductor (SC) placed on top of it.
These terms become especially important in the case where the bare gap parameterM of the TI becomes comparable
to the characteristic energy of the induced superconducting correlations. We show, further, that the interplay of the
superconducting and “topological” interactions is essential and results in several effects, in particular, the collapse of
the topological order in TI. We find that while “topologicaly protected” edge states can ensure undisturbed propagation
of the charge (spin) carriers, superconducting correlations can block the edge current causing a peculiar localization
effect.

On the qualitative level our results can be summarized as follows: in the absence of superconducting correlations
the edge states spectrum is linear near the Fermi surface, comprising of two counter-propagating electron and two
hole branches, respectively.2 Importantly, the edge spectrum is isotropic in a sense that it does not depend on the
orientation of the edges with respect to crystallographic axes, although the edge electronic states wave functions are
orientation dependent. Namely, there is a phase difference between the wave function components corresponding to (E)
or (H)-subbands in TI. The bulk spectrum is characterized by the gap M . At small SC-TI coupling (the quantitative
criteria will be given below) the edge-states spectrum acquire a gap Eg. Furthermore, superconducting correlations
mix the subband branches and thus turn the resulting electronic spectrum in TI (edge and bulk), anisotropic, and Eg

starts to depend on orientation of the edge. This can cause localization of the low-lying edge states since an inevitable
bending of the edge will create the regions along the edge were the edge-particle energy ε < Eg thus getting locked
between the turning points where ε = Eg. At the turning points electron and hole excitations undergo Andreev
reflection and form the localized Andreev bound edge states, see Fig. 2a. As the characteristic energy of the induced
pairing amplitude exceedsM then the gap of the continuum bulk states of TI collapses and TI behaves like the highly
anisotropic narrow-gap semiconductor.
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FIG. 1. (Color online) Sketch of the 2D topological insulator coupled to a superconductor. The thick arrows show schematically
the edge states.

II. EFFECTIVE HAMILTONIAN

The low energy Hamiltonian of the two-dimensional (2D) topological insulator formed in the HgTe QW has the
form:2,12

Ȟ =

(

Ĥ 0

0 ˆ̃H

)

, (1)

where Ĥ = ǫk + diσ̂
i, i = {1, 2, 3}; σ̂i are the Pauli matrices acting in the subband (isospin) space; ǫk = C−Dk2. We

choose the frame of reference so that ~d = (kxA,−kyA,M −Bk2). Here A, B, C, D and M are material parameters.

The lower block of the Hamiltonian, ˆ̃H = ρ̂T Ĥ∗ρ̂ = ǫk − di(−k)σ̂i, where ρ̂ = iσ̂y is the metric tensor in the spinor

space. The chosen representation for Ȟ enables us to employ the machinery of the tensor bispinor algebra developed
for Dirac Hamiltonian.

To construct the convenient form of the Bogoliubov – de Gennes (BdG) Hamiltonian describing superconductivity,
we introduce the time reversal symmetry operator,

Ť =







0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0






C = −τ̂1 ⊗ iσ̂2 C , (2)

where C is the operator of the complex conjugation and τ̂i, are the Pauli matrices acting in spin space. Then the
time-reverse of the BHZ-Hamiltonian (1) is Ť Ȟ Ť −1 = Ȟ. The BdG Hamiltonian is

HBDG =

(

Ȟ+ Ǔ ∆̌TI

∆̌+
TI

−Ȟ−Ť Ǔ Ť −1

)

, (3)

where ∆̌TI is the effective proximity induced superconducting pairing matrix coupling the spin and subband spaces.
The effective chemical potential shift appearing in the BCS theory has matrix form Ǔ . There is no reason to believe
that the matrix structure of Ǔ and ∆̌TI is necessary trivial like, e.g., in Ref. 17–19; symmetry considerations in fact
allow nontrivial shape of theses matrices. So both, ∆̌TI and Ǔ will be found below microscopically.

To proceed further we present the Hamiltonian describing the TI-SC coupling in a form:

H = Hsc +H2D +Hint . (4)
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FIG. 2. (Color online) a) A sketch of localized Andreev edge states in TI. b) Excitation spectrum in the 2D TI with proximity
induced superconducting correlations: the edge modes at one TI-edge acquired the gap while the edge modes on the opposite
edge remain gapless. Solid lines show the edge states and bulk spectrum boundaries in TI without superconducting correlations.
The parameters are chosen as: mkF t

2
a/(2π~

2M) = 1, tb =
√

|B
−
|/|B+|ta and the orientation angle ϕ = 0.

The superconducting part is

Hsc =
∑

s=↑,↓

∫

d3rΨ+
s (r) (ǫsc − µ)Ψs(r)+

∫

d3r
(

∆Ψ+
↑ (r)Ψ

+
↓ (r) + ∆∗Ψ↓(r)Ψ↑(r)

)

(5)

where, Ψ↑(↓) (Ψ+
↑(↓)) are the field annihilation (creation) operators for the state with the spin up (down), ∆ is the

superconducting gap, ǫsc is the single electron kinetic energy, and µ is the Fermi energy.

The second quantization representation for the TI Hamiltonian is written in the basis of the Wannier functions for
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FIG. 3. (Color online) The edge states at the TI boundary for a weak coupling where the edge states become gapped. a)
Unperturbed edge-spectrum. b) Edge states with the proximity-induced gap. The shift of the zero point reflects the difference
in the original chemical potentials.

particles with spin s:

H2D,s =
∑

RR′,s

∑

σ,σ′=a,b

c+sR,σ

(

ǫ2D,s(Rσ,R
′σ′)+

Cδ(R,R′)δσ,σ′′

)

csR′,σ′ (6)

where ǫ2D,s(R,R
′) is the lattice representation of the BHZ-model20,21 (1) (see Appendix A). Then H2D =

∑

sH2D,s.
Finally, Hint reflects the electronic tunneling between the SC and TI:

Hint =
∑

R,s

∑

σ=a,b

(

tσ,RΨ
+
s (R)csR,σ + t∗σ,Rc

+
sR,σΨs(R)

)

,

where c↑(↓)R,a is the superposition of
∣

∣Γ6,± 1
2

〉

,
∣

∣Γ8,± 1
2

〉

and c↑(↓)R,b refers to the subband
∣

∣Γ6,± 3
2

〉

. Integrating out
the bulk superconductor variables Ψs(R) using the method, developed in Ref. 24 and 25, one obtains the effective
BdG-Hamiltonian (3) for the homogeneous tunneling amplitudes tσR = tσ, with the matrix superconducting order
parameter and the effective chemical potential shift having the form:

∆̌TI =

(

∆̂TI 0

0 ˆ̃∆TI

)

, Ǔ =

(

Û 0

0 ˆ̃U

)

. (7)
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FIG. 4. (Color online) Bulk and edge states for the intermediate coupling. a) Energy of the bulk states as function of kx, ky .

Without superconductivity, the bulk states dispersion is isotropic, E(k) = ǫ(k)±
√

A2k2 + (M −Bk2)2,2 where k =
√

k2
x + k2

y .

Superconducting correlations make it anisotropic as follows from the noncommutativity of ∆̌ and/or Ǔ with Ȟ in Eq.(3). b)
Gapped edges states. The colors for the families of the dispersion curves are the same as in Fig. 3. The parameters are chosen
as: mkF /(2π~

2)t2a/M = 1, tb =
√

|B
−
|/|B+|ta exp(iπ/6) and the orientation angle ϕ = π/2.

Here

∆̂TI = −mkF
2π~2

(

t∗2a t∗at
∗
b

t∗at
∗
b t∗2b

)

, ˆ̃∆TI = ρ̂T ∆̂TIρ̂ , (8)

Û =
m

2π~2aTI

(

|ta|2 t∗atb
tat

∗
b |tb|2

)

, ˆ̃U = ρ̂T Û ρ̂ , (9)

m and kF are the effective mass and the Fermi momentum of the bulk superconductor respectively, aTI is the
characteristic length scale of the order of the lattice constant in TI. Since ∆TI ≪ ∆, the proximity induced parameters
are independent of ∆.25 In Ref. 17–19 the potentials ∆̂TI and Û were diagonal (trivial) while the offdiagonal terms
were missed.
For numerical calculations we take typical parameters: A = 3.8 eVÅ, B = −56.2 eVÅ2, D = −38.7 eVÅ2. Without
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FIG. 5. (Color online) Energy landscape for the edge states. a) Sketch of the energy landscape along the edge (parametrized
by the coordinate ρ). The magnitude of the gap may change as a result of spatial fluctuations (like change in a shape of
the TI boundary or fluctuations in tunneling amplitudes) and the state with the energy ε would appear trapped between the
turning points where ε < Eg forming Andreev bound edge state like it is shown in Fig. 2. b) Calculated Eg as function of the

edge orientation angle ϕ for the ratio ta/tb
√

|B
−
/B+| exp(−iπ/3) equal to 1 (upper curve) and 2 (bottom curve). Such Eg

behavior can be observed in the sample shaped into a disc. c) Localized edge states in the sample shaped into a disc for energy
ǫ corresponding to the dash-dot line in Fig. 5b.

a loss of generality we take the energy-shift parameter C = 0. We do not fix M (−10meV. M < 0) and use it as
the energy unit. Our numerical and analytical calculations show the approximate symmetry relation that satisfies
the spectrum of HBDG: χE(k/χ,M/χ, ta/

√
χ, tb/

√
χ) ≈ E(k,M, ta, tb), where χ is a dimensionless scaling parameter.

The scaling relation appears since M is much smaller than the energy scales one can construct form A, B and D.
In addition, M appears to be the most sensitive to the HgTe layer width: it changes with it by several orders of
magnitude while the other parameters change by ∼ 20% and their changes very slightly modify the spectrum.2

First we discuss “weak” superconductivity where superconducting correlations induced in TI can be treated pertur-
batively. In this case matrix elements of ∆̌TI and Ǔ are smaller than the gap in the continuum spectrum,M , in the bulk
of TI. In the absence of superconducting correlations ∆̌TI = 0 and Ǔ = 0, and there are two electron and two hole edge
states at each TI surface. The edge states have the linear dispersion law with the velocity s = A|

√

B+B−/B|, where
B± = B ±D. They cross the Fermi energy at k = k0 = DM/(A

√

B+B−) and k = −k0, see Fig. 3a. We denote the

wave functions of the electron and hole edge states near k = k0 as ψ(1) = (ψedge, 0̂, 0̂, 0̂)
τ and ψ(2) = (0̂, 0̂, ψedge, 0̂)

τ ,

respectively, where 0̂ is the zero spinor in the subband space,

ψedge =
e−iσ̂zϕ/2

√

2|B|

(
√

|B−|
−
√

|B+|

)

×
(

e−λ+r·n − e−λ−r·n
)

eikr·l , (10)

k is the momentum component parallel to the edge, r = (x, y), l, and n are the unit vectors directed along the TI
boundary and perpendicular to it correspondingly [l × n is aligned with the OZ axis], and ϕ is the angle between l
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and OX axis. The decay length scales of the edge states into the bulk of the topological insulators are:

λ± = λ0 ±

√

(

k − D

B
λ0

)2

+
A2

4B2
− M

B
, (11)

where λ0 = A/(2
√

B+B−). We stress that spinor components of ψedge depend on the TI-boundary orientation.
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FIG. 6. (Color online) Excitation spectrum in 2D TI for the proximity induced potentials being of the same order as the gap
in TI in the absence of a SC. The gap between the branches of the continuum spectrum collapses and TI acquires metallic
conductivity with the relativistic spectrum similar to that in graphene. Solid lines correspond to the edge states and the bulk
spectrum boundaries in TI without superconducting correlations. Parameters are chosen as: mkF/(2π~2)t2a/M = 12, ϕ = 0,

and tb =
√

|B
−
|/|B+|ta.

The dispersion law of the edge states near k = k0 within the perturbation theory taking in the account the
superconducting correlations acquires the form:

ǫ1,2(k) = (U11 + U22 ± ω(k))/2, (12)

where ω =
√

(2s(k − k0) + U11 − U22)2 + 4E2
g ; Uii, i = 1, 2 are the matrix elements of Ǔ with respect to the states
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ψ(1,2) and Eg = |(∆̌TI)12|. They can be parameterized through T± =
∣

∣

∣
ta
√

|B−| − tb
√

|B+|e±iϕ
∣

∣

∣
. So,

Eg = T+T−, (13)

the matrix elements in the see Eq.(9) become Ǔ11(22) = αT 2
+(−), and α = (kF aTI)

−1.

One now sees that the spectrum of the edge states becomes dependent upon the orientation of the boundary
orientation with respect to crystallographic axis. This resembles the spectrum that often appear in the 3D TI which
that are referred to as “strong” TI.16

There is a wealth of the possible coupling-induced behaviours of the edge states energy spectrum. If T+ = 0 or
T− = 0, then Eg = 0 as well; the situation where Eg is very small is also common. A particular picture depends
on the edge orientation angle ϕ and/or on the tunneling amplitudes, ta and tb. Shown in the Fig. 2 is the situation
where at one boundary of the TI-strip the edge states remain gapless (Eg = 0) while at the opposite boundary Eg 6= 0
and the edge states have the gap. The stripe within which the edge states are confined has a finite length (see in
Fig. 2), there are points at the edge where the TI-boundary changes its direction and, at the same time, the value of
Eg changes. At these “turning points” electron and hole edge (going in the opposite direction) states with the energy
smaller than Eg undergo the Andreev reflection and form the bound Andreev edge state, see Figs. 2,5. Illustrated in
Figs. 3-4 is the structure of the the edge state energy levels in the case where Eg is finite.
Now we discuss a general nonperturbative situation. The excitation spectrum in 2D TI accounting for the proximity

induced superconducting correlations in the case where proximity induced potentials in TI are of the same order as
the gap in TI without superconductor on top is shown in Fig. 6. The gap between the branches of the continuum
spectrum nearly closes and TI acquires effectively metallic conductivity with the relativistic spectrum similar to that
in graphene. Solid lines correspond to the edge states and bulk spectrum boundaries in TI without superconducting
correlations.

III. CONCLUSIONS

To conclude, we investigated topologically protected edge states in QW of HgTe sandwiched between CdTe and
demonstrated that the s-wave isotropic superconductor placed on top of CdTe layer induces superconducting corre-
lations in the TI revealing the built in anisotropy of TI which did not affect the spectrum when superconducting
correlations were absent. The form of the edge states spectrum essentially depends on the edge orientation with
respect to crystallographic directions of the TI. Depending on the coupling between the superconductor and 2D TI,
different scenarios can be realized: (i) the edge states of the topological insulator acquire a gap, (ii) the edge states
hybridize into the Andreev localized edge state and/or (iii) the gap separating the continuum and the edge modes
collapses and TI becomes the narrowgap (anisotropic) semiconductor. Our predictions can be verified by means of,
for example, scanning tunnelling spectroscopy measurements of the spectra showed in Fig. 3 where the shift of the
zero point U11 + U22 can be tuned by the gate placed on top of the CdTe layer.
Note: After this work has been completed we became aware of the recent experiments on InAs/GaSb QW.26 which

revealed the 2D TI state.26 Since this novel TI is expected to be well described by the BHZ-model, our results apply
to InAs/GaSb QW coupled to s-wave superconductor as well.
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Appendix A: Lattice model

Microscopic description of the coupling between TI and the superconductor developed on the base of the standard
lattice regularization of the BHZ-model (1) replacing its parameters by:2

ǫk = C − 2Da−2 [2− cos kxa− cos kya] , (A1)

~d =
(

Aa−1 sin kxa,−Aa−1 sin kya,M −Ba−2 [2− cos kxa− cos kya]
)

. (A2)
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This corresponds to the quadratic Bravais lattice (with the translation vectors a1 = ax0, a2 = ay0) with two type
of states (corresponding annihilation operators are ĉaR and ĉbR) on each site replying to subband states. Therefore
the Hamiltonian describing TI in the second quantization representation in the basis of the Wannier functions for
particles with spin s, takes the form:

Ĥ2D,s =
∑

RR′,s

∑

σ,σ′=a,b

ĉ+sR,σ

(

ǫ̂2D,s(Rσ,R
′σ′) + Cδ(R,R′)δσ,σ′′

)

ĉsR′,σ′ , (A3)

where

ǫ̂2D,s(Rσ̃,R
′σ̃) = δRR′

[(

M − 4B

a2

)

σ̃ − 4D

a2

]

+

(

4B

a2
σ̃ +

4D

a2

)

(

δR+a1,R
′ + δR-a1,R′ + δR+a2,R

′ + δR-a2,R′

)

(A4a)

ǫ̂2D,↑(Ra,R
′b) = −ǫ̂2D,↓(Rb,R

′a) =
A

2a

(

δR+a2,R
′ − δR-a2,R′ − iδR+a1,R

′ + iδR-a1,R′

)

(A4b)

ǫ̂2D,↑(Rb,R
′a) = −ǫ̂2D,↓(Ra,R

′b) = −ǫ̂∗2D,↑(Ra,R
′b) . (A4c)
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14 A. Roth, C. Brüne, H. Buhmann, L.W. Molenkamp, J. Maciejko, X.-L. Qi, and S.-C. Zhang, Science 325, 294 (2009).
15 L. Fu and C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
16 T.D. Stanescu, J.D. Sau, R.M. Lutchyn, and S. Das Sarma, Phys. Rev. B 81, 241310(R) (2010).
17 Liang Fu and C.L. Kane, Phys. Rev. B 79, 161408(R) (2009).
18 J. Nilsson, A.R. Akhmerov, and C.W.J. Beenakker, Phys. Rev. Lett. 101, 120403 (2008).
19 P. Adroguer, C. Grenier, D. Carpentier, J. Cayssol, P. Degiovanni, and E. Orignac, Phys. Rev. B 82, 081303(R) (2010).
20 Hua Jiang, Lei Wang, Qing-feng Sun, and X.C. Xie, Phys. Rev. B 80, 165316 (2009).
21 Qing-Feng Sun, Yu-Xian Li, Wen Long, and Jian Wang, Phys. Rev. B 83, 115315 (2011).
22 H. Takayanagi, T. Akazaki, and J. Nitta, Phys. Rev. Lett. 75, 3533 (1995).
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