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We study different quantum phases in integer spin systems with on-site D2h = D2 ⊗ Z2 and
translation symmetry. We find four distinct non-trivial phases in S = 1 spin chains despite they all
have the same symmetry. All the four phases have gapped bulk excitations, doubly-degenerate end
states and the doubly-degenerate entanglement spectrum. These non-trivial phases are examples of
symmetry protected topological (SPT) phases introduced by Gu and Wen. One of the SPT phases
corresponds to the Haldane phase and the other three are new. These four SPT phases can be
distinguished experimentally by their different response of the end states to weak external magnetic
fields. According to Chen-Gu-Wen classification, the D2h symmetric spin chain can have totally 64
SPT phases that do not break the symmetry. Here we constructed seven nontrivial phases from the
seven classes of nontrivial projective representations of D2h group. Four of these are found in S = 1
spin chains and studied in this paper.

PACS numbers: 75.10.Pq, 64.70.Tg

I. INTRODUCTION

Topological order was introduced to distinguish dif-
ferent phases which can not be separated by symmetry
breaking orders.1 Using a definition of phase and phase
transition based on local unitary transformations, Ref. 2
shows that what topological order really describes is ac-
tually the pattern of long range entanglements in gapped
quantum systems.
For a long time, the Haldane phase3 for S = 1 spin

chains was regarded as a simple example of topological
order. The existence of string order (or hidden Z2 ⊗ Z2

symmetry breaking), nearly degenerate end states and
gapped excitations were considered as the hallmark of
the Haldane phase.4 However, it was shown that even af-
ter we break the spin rotation symmetry which destroy
the string order and gap the end states, the Haldane
phase can still exist (i.e. is still distinct from the triv-
ial phase). Furthermore, it was shown that the Haldane
phase has no long range entanglements.5,6 In fact, all 1D
gapped ground state has no long range entanglements.7

Thus there are no intrinsic topologically ordered states
in gapped 1D systems.6 This raises a question: what is
the order in the Haldane phase?
It turns out that when Hamiltonians have some sym-

metries, even short range entangled states with the same
symmetry can belong to different phases.2,5 Such phases
are called ‘symmetry protected topological (SPT) phases’
by Gu and Wen.5 In fact, the Haldane phase is not
an intrinsically topologically ordered phase, but actually
an example of SPT phase protected by translation and
SO(3) spin rotation symmetries. This result is supported
by a recent realization that the existence of the Haldane
phase requires symmetry (such as parity, time reversal,
or spin rotational symmetry).5,8 In other words, if the
necessary symmetries are absent, the Haldane phase can
continuously connect to the trivial phase without any
phase transition. We would like to mention that the
topological insulators10–15 are not intrinsically topolog-

ically ordered phases either. They are other examples of
SPT phases protected by time reversal symmetry.
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FIG. 1. (Color online) The phase diagram of model (1). The
transition between the Neel phase and the SPT phases are
second order, and the transition between T0 and Tx is first
order.

In this paper, we will study new SPT phases of a spin-
chain protected by translational symmetry and on-site
D2h = D2 ⊗ Z2 symmetry, where D2 is a point group
composed by discrete spin rotations, and Z2 is generated
by the time reversal operation T . Here we assume that
the physical spin forms a linear representation of D2 and
T 2 = 1. To see an example of the new SPT phases, we
study a simple spin-1 model with those symmetries

H =
∑

i

[

cos θSx,iSx,i+1 + sin θ[cosφ(Sy,iSy,i+1 (1)

+Sz,iSz,i+1) + sinφ(Sxz,iSxz,i+1 + Sxy,iSxy,i+1)]
]

.

where Smn = SmSn + SnSm (m,n = x, y, z). As shown
in Fig. 1, this model has three phases, the Neel phase,
the T0 phase and the Tx phase. The Neel phase breaks
the D2h symmetry, and the other two phases do not
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break any symmetry. We can use sublattice spin mag-
netization as an order parameter to distinguish the Neel
phase. However, the remaining two phases cannot be dis-
tinguished through local order parameter such as sublat-
tice spin magnetization. Further, in the both phases, the
entanglement spectrum9 is doubly degenerate, so both
of them are nontrivial. However, the entanglement spec-
trum is not a good order parameter to separate them.
Therefore, we need a new tool to distinguish these two
non-trivial phases that cannot be described by symmetry
breaking and the entanglement spectrum. It turns out
that the new tool is the projective representation of the
symmetry group. The two phases can be distinguished
since their doubly degenerate end states form different
projective representations of D2h. This has a physical
consequence: the doubly degenerate end states respond
differently to weak external magnetic field.

To be more precise, the doubly degenerate end states
can be viewed as an effective spin-1/2 spin with asym-
metric g-factors: gx and gy and gz describing the coupling
of the end spin to external magnetic field in x, y and z
directions. We find that gx, gy, gz 6= 0 in the T0-phase
and gx 6= 0, gy = gz = 0 in the Tx-phase. We would
like to stress that such a property is robust against any
perturbations that do not break the D2h symmetry (the
perturbation may even break the translation symmetry).

The D2h symmetric 1D spin system have very rich
quantum phases. It is shown that it can have 64 different
gapped phases that do not break the D2h and the trans-
lation symmetry.16 In fact, it is the projective representa-
tion theory that allow one to find all the non-trivial SPT
phases beyond the symmetry breaking description. In
this paper, we will not study all of them. We will only use
8 classes of projective representations of the D2h group
to construct 8 gapped no-symmetry-breaking phases, one
is trivial and the other 7 are nontrivial SPT phases. We
find that four of the 7 SPT phases (labeled as T0, Tx, Ty
and Tz) can be realized in S = 1 spin chain. Here T0 is
the usual Haldane phase (because it includes the Heisen-
berg point), and Tx, Ty, Tz are new SPT phases. The
states in different SPT phases cannot be smoothly con-
nected to each other without explicitly breaking the D2h

symmetry in the Hamiltonian. The remaining three SPT
phases cannot be realized for S = 1 chains, we will not
focus on them in the present paper.

The four SPT phases are experimentally distinguish-
able due to the different behaviors of their end states. In
the T0 phase, the end states can be considered as spin-
1/2 free spins. So weak magnetic field couples to the
end spins and lifts the ground state degeneracy at lin-
ear order. However, in Tx phase, the end states can no
longer be considered as a normal spin-1/2 spin because
it behaves differently under time reversal. As mentioned
above, its g-factors gy, gz = 0, which means that By and
Bz can not split the degenerate ground states in Tx phase
at linear order. Similarly, the end states of Ty (or Tz)
only respond to By (or Bz). According to these proper-
ties, we propose an experimental scenario to distinguish

these four phases.
This paper is organized as the following. In section

II, we introduce the four SPT phases for the S = 1 spin
chain models. In section III, we focus on the interaction
of the end states to weak external magnetic fields and
propose an experimental method to distinguish different
SPT phases. In section IV we briefly summarize the re-
lationship between the SPT phases and the classes of
projective representations, and leave detailed derivations
to the appendix. Section V is devoted to conclusions and
discussions.

II. THE MODEL AND SPT PHASES

D2h group has eight group elements, D2h =
{E,Rx, Ry, Rz, T, RxT,RyT,RzT }, which is a direct
product of the 180◦ spin rotation group D2 = {E,Rx =
e−iπSx , Ry = e−iπSy , Rz = e−iπSz} and time reversal
symmetry group Z2 = {E, T }. Note that T inverts the
spin (Sx, Sy, Sz) → (−Sx,−Sy,−Sz) and is anti-unitary.
D2h has eight 1-d linear representations (as shown in
Tab. VI in appendix B). Since T is anti-unitary, the bases
|φ〉 and i|φ〉 have different time reversal parity. This sub-
tle property yields more than one SPT phases.
The most general Hamiltonian for an S = 1 spin chain

with D2h symmetry and with only nearest neighbor in-
teraction is given by

HD2h
=
∑

i

[a1S
2
x,iS

2
x,j + a2(S

2
x,iS

2
y,j + S2

y,iS
2
x,j)

+a3S
2
y,iS

2
y,j + a4(S

2
x,iS

2
z,j + S2

z,iS
2
x,j)

+a5S
2
z,iS

2
z,j + a6(S

2
y,iS

2
z,j + S2

z,iS
2
y,j)

+b1Sx,iSx,j + b2Syz,iSyz,j + c1Sy,iSy,j

+c2Sxz,iSxz,j + d1Sz,iSz,j + d2Sxy,iSxy,j

+e1S
2
x,i + e2S

2
y,i + e3S

2
z,i]. (2)

where j = i + 1, Smn = SmSn + SnSm (m,n = x, y, z)
and a1, a2, ..., e1, e2, e3 are constants. We are interested
in the parameter regions within which the excitations are
gapped and the ground states respect the D2h symmetry.
In general, for 1D systems with translation symmetry

and on-site symmetry group G, a gapped ground state
that does not break any symmetry can be approximately
written as a matrix product state (MPS)

|ψ〉 =
∑

{m1,...,mN}
Tr(Am1 ...AmN )|m1...mN 〉, (3)

which varies in the following way under the symmetry
group

∑

m′

u(g)mm′Am′

= α(g)M(g)†AmM(g) (4)

where g ∈ G is a group element, and α(g)/M(g) is
its linear/projective representation matrix. Thus it is
concluded that the SPT phases are classified by (ω, α),
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where ω is the element of the second cohomology group
H2(G,U(1)) (which describe different classes of projec-
tive representations of the symmetry group G).6

So in our case, the ground state can be generally writ-
ten in forms of MPS shown in Eq. (3). The requirement
|ψ〉 being invariant under D2h is equivalent to the condi-
tion in Eq. (4). The main task of this paper is to try to
find different kinds of states that satisfy this condition.
In this paper, we only consider the case α(g) = 1. The
full classification (with a different approach from this pa-
per) is given in Ref. 16.

Let us first consider the on-site terms in (2). When
|e1|, |e2| or |e3| is large, the ground state of HD2h

is sim-
ple. For instance, when e3 → −∞, the ground state is a
long-range ordered state which breaks the D2h symme-
try; when e3 → ∞, the ground state is a product state
|ψ〉 =

∏

i⊗|0〉i, which is trivial.17 Since we are interested
in the nontrivial SPT phases, we will set e1 = e2 = e3 = 0
in the following discussion.

A. Exactly solvable models

The Affleck Kennedy Lieb Tasaki (AKLT) model18 is
an exactly solvable model with SO(3) symmetry that
falls in the Haldane phase. The AKLT model contains
all the physical properties of the Haldane phase and all
other states in this phase can smoothly deform into the
AKLT state. Since the ground state wave function of this
exactly solvable model is a simple matrix product (sMP)
state19 and is known in advance, so studying this model
is relatively easy and helps to understand the physics of
the Haldane phase.

In this section, we will introduce four classes of exactly
solvable models that have D2h symmetry. Analogous to
the AKLT state, the ground states of these exactly solv-
able models are nontrivial sMP states satisfying Eq. (4).
We will show that different classes of sMP states can not
be smoothly connected, which indicates that each class
corresponds to a phase.

The first example is a direct generalization of the
AKLT model. The ground state of AKLT state is rep-
resented by Ax = σx, A

y = σy, A
z = σz, which has

SO(3) symmetry. When generalized to D2h symmetry,
we obtain

Ax = aσx, Ay = bσy, Az = cσz, (5)

where a, b, c are nonzero real numbers (the same below).
When a = b = c = 1, the above state reduces to the
AKLT state. For this reason, we say that this model also
belongs to the Haldane phase. We label this phase as
T0. Similar to the AKLT model, the parent Hamiltonian
of above state is composed by projectors (for details see

appendix A and B)

H0 =
∑

i

[

(
1

4
+ b2c2γ)Sx,iSx,j + (

1

4
+ a2c2γ)Sy,iSy,j

+(
1

4
+ a2b2γ)Sz,iSz,j + (

1

4
− b2c2γ)Syz,iSyz,j

+(
1

4
− a2c2γ)Sxz,iSxz,j + (

1

4
− a2b2γ)Sxy,iSxy,j

]

+ h0. (6)

where γ = 1
2(a4+b4+c4) and

h0 = −
∑

i

[c4γ(S2
x,iS

2
y,j + S2

y,iS
2
x,j) + b4γ(S2

x,iS
2
z,j

+S2
z,iS

2
x,j) + a4γ(S2

y,iS
2
z,j + S2

z,iS
2
y,j)].

At open boundary condition, the Hamiltonian (6) has
exactly four-fold degenerate ground states independent
on the chain length. The uniqueness of the ground state
can be proved following the AKLT model.18 The above
exactly solvable model is frustration free, that is, the
expectation value of the Hamiltonian is minimized locally
in the ground states. The excitations are gapped and all
correlation functions of local operators are short ranged.
Furthermore, if a, b, c are normalized a2 + b2 + c2 = 1,
then it is easily checked that

∑

m

Am(Am)† = I,
∑

m

(Am)†Λ2Am = Λ2,

here Λ = I, indicating that the entanglement spectrum
of the ground states is doubly degenerate. This informs
that state (5) is nontrivial. Actually, the models at the
vicinity of (6) (the phase T0) have very similar properties
unless gap closing (second order phase transition) or level
crossing (first order phase transition) happens.
Now we consider another example of sMP state,

Ax = iaσx, Ay = bσy, Az = cσz. (7)

Above sMP state is also invariant under D2h group. As
will be shown later, it can not be continuously connected
to Eq. (5) without breaking the D2h symmetry. This
means that it belongs to another phase which we label
as Tx phase. The parent Hamiltonian of (7) is given by

Hx =
∑

i

[

(
1

4
+ b2c2γ)Sx,iSx,j + (

1

4
− a2c2γ)Sy,iSy,j

+(
1

4
− a2b2γ)Sz,iSz,j + (

1

4
− b2c2γ)Syz,iSyz,j

+(
1

4
+ a2c2γ)Sxz,iSxz,j + (

1

4
+ a2b2γ)Sxy,iSxy,j

]

+ h0. (8)

Similarly, the third example

Ax = aσx, Ay = ibσy, Az = cσz (9)
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belongs to the Ty phase and its parent Hamiltonian is

Hy =
∑

i

[

(
1

4
− b2c2γ)Sx,iSx,j + (

1

4
+ a2c2γ)Sy,iSy,j

+(
1

4
− a2b2γ)Sz,iSz,j + (

1

4
+ b2c2γ)Syz,iSyz,j

+(
1

4
− a2c2γ)Sxz,iSxz,j + (

1

4
+ a2b2γ)Sxy,iSxy,j

]

+ h0. (10)

The last example

Ax = aσx, Ay = bσy, Az = icσz (11)

belongs to the Tz phase with its parent Hamiltonian given
by

Hz =
∑

i

[

(
1

4
− b2c2γ)Sx,iSx,j + (

1

4
− a2c2γ)Sy,iSy,j

+(
1

4
+ a2b2γ)Sz,iSz,j + (

1

4
+ b2c2γ)Syz,iSyz,j

+(
1

4
+ a2c2γ)Sxz,iSxz,j + (

1

4
− a2b2γ)Sxy,iSxy,j

]

+ h0. (12)

Above we have given four special models that belong
to different SPT phases. In the next subsection, we will
show that if one keeps the D2h symmetry, phase transi-
tions must happen when connecting these models.

B. transitions between different SPT phases

In order to justify the four SPT phase, we will use
numerical method to study more general Hamiltonians.
The method we adopt is one version of the tensor renor-
malization group approach developed in 1D by G. Vidal20

and later generalized to 2D by T. Xiang et.al.21 In this
method, the ground state is approximated by a MPS. For
an arbitrarily initialized state, we can act the (infinites-
imal) imaginary time evolution operator U(δτ) = e−Hδτ

for infinite times, finally obtaining the fixed point ma-
trix Am. If the dimension D of Am is not too small,
the corresponding MPS is very close to the true ground
state. In 1D, the ground state energy, correlation func-
tions, density matrix, and entanglement spectrum can be
calculated directly from the matrix Am.
We have checked our tensor RG method by the simple

transverse Ising model H =
∑

i σ
z
i σ

z
i+1 + Bσx

i . From
analytic result, the transition point is at B = 1. Our
numerical result shows a high accuracy for this transition
point, with an error less than 1% when we setD = 16. So
we can use the tensor RG method to distinguish different
SPT phases given in last section.
Noticing that h0 is a common term in the four exactly

solvable models, which indicates that it is unimportant
and can be dropped. This can be numerically verified.
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FIG. 2. (Color online) (a) The energy curve E(η), (b) The
first and second derivatives of E(η). All these curves are
smooth, indicating that these states are in the same phase.

For this purpose, we add a perturbation to the models,
such as (8),

H(η) = Hx − ηh0, (13)

where η ∈ [0, 1]. As shown in Fig. 2, the ground state en-
ergy E(η) and its derivatives E′(η), E′′(η) are all smooth
functions, indicating that all the Hamiltonians H(η) be-
long to the same phase. Using the same method, one can
also check that the Hamiltonians (with D2h symmetry)
in the vicinity of an exactly solvable model fall in the
same phase. For instance, the Heisenberg model and H0

in (6) are in the same phase.
Now a question is whether the ground states of dif-

ferent exactly solvable models can be smoothly trans-
formed into each other. For this end, we consider a more
realistic model (1) which connects two exactly solvable
models, such as H0 and Hx. We are interested in the
anti-ferromagnetic cases and will focus on the parame-
ter region θ, φ ∈ [0, π2 ]. The point (π4 , 0) is the Heisen-
berg model. From the result of the last paragraph, the
Heisenberg model is in the same phase as (6), and sim-
ilarly (π4 ,

π
2 ) is in the same phase as (8). If these two

points cannot be smoothly connected (i.e.,if gap closing
or level crossing will unavoidably happen), then (6) and
(8) belong to different phases.
Using the tensor RG method, we can calculate the

ground state energy of (1) and the phase diagram is
shown in Fig. 1. When θ is less then 0.21π, the ground
state is Neel ordered. When θ increases, a second order
phase transition occurs and we enter the SPT phases.
Fig. 3 shows the entanglement spectrum, the energy
curve and its first and second derivatives at φ = π

8 (or

φ = 3π
8 ), which illustrates this transition. Near the tran-

sition point, the trial energy decreases with increasingD,
which indicates that the ground state at the transition
point is described by a MPS with diverging dimension
D. Consequently, the ground state entanglement entropy
diverges, which is a feature of second order phase transi-
tion.
The region φ ∈ [0, π4 ) belongs to the T0 phase and

φ ∈ (π4 ,
π
2 ] belongs to the Tx phase. A first order phase

transition between them happens at φ = π
4 .

The first order phase transition occurs exactly at φ =
π
4 . This is because the whole phase diagram is symmetric
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FIG. 3. (Color online) (a) The first order derivative (line with
circles) and the second order derivative (line with crosses) of
E(θ) at φ = π

8
(or φ = 3π

8
). We have set D = 16. The doted

line is the difference tween the two biggest weights of the
entanglement spectrum Λ1−Λ2. Since E

′(θ) is continuous but
E′′(θ) is not, the transition is second order. The degeneracy of
Λ1 and Λ2 indicates that the T0 (and Tx) phase is nontrivial.
(b) The refined energy curve E(θ) near the transition point
with D = 8, 16, 24. The trial energy decreases with increasing
D, which is an evidence of the factor that at the transition
point the ground state is a MPS with infinite D. (c) The
entanglement spectrum with different D. The black circles
for D = 8, blue triangles for D = 16 and red crosses for
D = 24. At the transition point, the entanglement entropy
increases with D and diverges when D goes to infinity.

above and below the line φ = π
4 . This symmetry can be

seen in the Hamiltonian. Notice that under a unitary
matrix U , we get

U †SxU = Sx, U †SyU = −Sxz, U †SzU = Sxy, (14)

where U =





1√
2
ei

π
4 0 1√

2
e−iπ

4

0 1 0
1√
2
e−iπ

4 0 1√
2
ei

π
4



.22 This means that

Hamiltonian (1) satisfies (
∏

i ⊗Ui)
†H(θ, φ)(

∏

i ⊗Ui) =
H(θ, π2 − φ), which yields E(θ, φ) = E(θ, π2 − φ), and
their ground states are transformed by the (local) unitary
transformation

∏

i⊗Ui. But this unitary transformation
is not invariant under time reversal T , so the behavior of
the ground state also changes under time reversal. Re-
sultantly, the state after the transformation belongs to a
different phase.

The entanglement spectrum of the ground states can
also be obtained programmatically. We find that in both
T0 and Tx phases the entanglement spectrum is doubly
degenerate (see Fig. 3(a)). This shows that the T0 and
Tx phases are indeed nontrivial. Similar to the model
(1), the phase transition between T0 and Ty or between
T0 and Tz can also be illustrated.
Now we will show that first order phase transition also

exists between any two of Tx, Ty, Tz. As an example, we
consider the model that contains the transition between
Tx and Tz phases:

H =
∑

i

[
1

6
Sy,iSy,j +

5

6
Sxz,iSxz,j + cos θ(Sx,iSx,j

+Sxy,iSxy,j) + sin θ(Sz,iSz,j + Syz,iSyz,j)].

(15)

When θ = tan−1 1
5 , the above Hamiltonian is in the same

phase as Hx as shown in (13), and when θ = tan−1 5, it
is in the same phase as Hz. The ground state energy of
(15) as a function of θ can be obtained using the tensor
RG method, and the result is shown in Fig. 4. A first
order transition at θ = π

4 manifests itself. For the reason
similar to (14), the model also has a symmetry E(θ) =
E(π2 − θ).
From the above analysis, we can conclude that the four

exactly solvable models really stand for four distinct SPT
phases. All these SPT phases are protected by the D2h

symmetry. As will be shown in section IV, no more SPT
phases exist for S = 1 models with D2h symmetry. Fur-
thermore, the Eqs. (1) and (15) show that these SPT
phases can be obtained by much simpler Hamiltonians
which is hopefully realized experimentally.
Now an interesting question arises, how to distinguish

these SPT phases in a practical way? It is impossible to
distinguish these phases by linear response in the bulk
since it is gapped. However, the end ‘spins’ localized at
open boundaries may have different behaviors in different
SPT phases. In the next section, we will propose an
experimental method to detect each SPT phase.
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FIG. 4. (Color online) The ground state energy for model
(15). A first order phase transition is obvious.

III. DISTINGUISHING DIFFERENT SPT

PHASES

We expect to distinguish the four SPT phases through
their different physical properties. Experimentally, all
measurable physical quantities are response functions, or
susceptibilities. So we need to add small perturbations
and expect that (the ‘end spins’ of) different phases have
different responses. The simplest perturbation for spin
system is magnetic field H ′ = gLµBB·S̃, here S̃ =

∑

i Si,
gL is the Lande factor and µB is the Bohr magneton. We
will study the linear response to small B.
Since the states in the same phase have the same

universal properties, we will focus on the exactly solv-
able models first. For simplicity, we consider the AKLT
model, namely, H0 with a = b = c = 1. In the matrix
product state picture, the physical S = 1 spin is divided
into two J = 1/2 virtual spins. In the AKLT state, the
virtual spins pair into singlets (called valence bonds) on
each link between neighboring sites. Under open bound-
ary condition, a free J = 1/2 spin at each end remains
unpaired. The two end spins account for the exactly
four-fold degeneracy of the ground states. In this pic-
ture, it’s easy to calculate the total spin in the ground
state Hilbert space. The singlets in the bulk have no
contributions to S̃, only the two end spins j1 and j2 con-
tribute and resultantly S̃ = j1+ j2. In this sense, the end
spins can be considered as impurity spins of a paramag-
netic material. Since the total spin of an open chain is
1
2 ⊗ 1

2 = 0⊕1, we expect that the eigenvalue of S̃x, S̃y, S̃z

should be 1,−1, 0, 0. This can be verified by exact diag-
onalizing a short chain. We denote these four degenerate
ground states as |ψ1〉, |ψ2〉, |ψ3〉, |ψ4〉. Then the matrix

element of S̃m in the ground state Hilbert space is given
by

S̃αβ
m = 〈ψα|S̃m|ψβ〉, α, β = 1, 2, 3, 4 (16)

The eigenvalues of the matrices (S̃αβ) are exactly
1,−1, 0, 0 and these values are independent of the length
of the chain. Thus a small magnetic field along any di-
rection H ′ = gLµBBxSx or gLµBBySy or gLµBBzSz will

split the ground state degeneracy and give rise to a finite
magnetization.
At finite temperature, the susceptibility satisfies the

Curie law and is given by23

χ(T ) ≃ Ng2µ2
B

3kBT
, (17)

where N is the number of end spins, g =
√

J(J + 1)gL,
J = 1/2 and gL is the Lande g factor. If the spin-1 chains
in the sample are broken into long separate segments,
then N can be a considerable number. We also note
that, in real samples, the susceptibility also contains a
temperature independent part coming from the bulk.
We see that, for the AKLT model, the spin suscepti-

bility diverges at low temperature along all directions.
For a general model in the T0 phase, the divergence of
χx(T ), χy(T ), χz(T ) still holds, except that it is no longer
isotropic.

2 3 4 5 6 7
0

0.5

1

1.5

Length of the chain (L)

s(
L)

FIG. 5. (Color online) The eigenvalues of S̃y and S̃z are
s,−s, 0, 0. The magnitude of s exponentially decays with the
length of the chain in Tx phase. The dashed line is an expo-
nential fit. The results are obtained by exact diagonalization
and we only calculate up to seven sites.

However, in phase Tx, the end ‘spins’ have absolutely
different physical properties. We consider the model Hx

in (8), and set a = b = c = 1. Then we calculate the

eigenvalues of operators S̃x, S̃y and S̃z in the ground state
Hilbert space as before. We find that the eigenvalues of
(S̃αβ)x are still 1,−1, 0, 0, meaning that along x direc-
tion the spin-1/2 end spins still exist and χx(T ) diverges

at T = 0. The eigenvalues of (S̃αβ)y and (S̃αβ)z also
have the structure s,−s, 0, 0, but the magnitude of the
nonzero eigenvalues s exponentially decay to zero with
the increasing of the length of the chain (see Fig. 5). This
means that in y- and z-directions, there are no free spins
coupled to the magnetic field. In appendix D we will
show that this property is determined by the projective
representation carried by the virtual ‘spins’. In this case,
χy(T ) and χz(T ) are given by (17) with gy, gz ≈ 0. The
result that χx(T ) follows Curie law and χy(T ), χz(T )
has effective gy, gz ≈ 0 is a universal property of all the
models in the Tx phase.



7

Similarly, one can check that only χy(T ) follows Curie

law in Ty phase with the usual gy ≈
√

J(J + 1)gL
(gx, gz ≈ 0), and similarly only χz(T ) follows Curie law in

Tz phase with the usual gz ≈
√

J(J + 1)gL (gx, gy ≈ 0).
Therefore, by measuring the temperature dependence of
susceptibility and the effective g in x, y, z directions, we
are able to distinguish the four SPT phases.

IV. PROJECTIVE REPRESENTATIONS AND

SPT PHASES

In previous sections, we have given four SPT phases
of the model (2) and studied their physical properties.
In this section, we will explain how the D2h symmetry
supports the existence of these phases. Then we will
discuss other possible SPT phases of spin systems with
D2h symmetry.
The ground state of a gapped phase is written as (3). If

we require that the ground state MPS be invariant under
the symmetry group D2h, namely, g|ψ〉 = |ψ〉 (g ∈ D2h),
then under the action of the symmetry group the matrix
Am must vary in the following way.
1) g is unitary, g ∈ {E,Rx, Ry, Rz},

∑

m′

u(g)mm′Am′

=M(g)†AmM(g); (18)

2) g is anti-unitary, g ∈ {T,RxT,RyT,RzT },
∑

m′

u(g)mm′KAm′

=M(g)†AmM(g). (19)

Here u(g) andM(g) are representations of the symmetry
group D2h. The matrices u(g) satisfy the same multi-
plication law of D2h group and is called a linear rep-

resentation. The physical spin freedoms are linear rep-
resentations of D2h. M(g) and M(g)eiθ are equivalent
and belong to the same presentation. Up to a phase fac-
tor (which depends on the group elements), M(g) satisfy
the multiplication law of D2h, and this kind of presen-
tation is called a projective representation. The virtual
‘spins’ (and the end states) are projective representations
of D2h. More knowledge about projective representation
can be found in Ref. 6 and 24.
TheD2h group has eight 1-d linear representations (see

Tab. VI) and eight (and only eight) classes of projective
representations labeled by (111), (11-1),(1-11),(1-1-1),(-
111),(-11-1),(-1-11) and (-1-1-1) (see Tab. VII). The first
class of projective representation (111) is the eight 1-d
linear representations, which are trivial (an example of
the the corresponding trivial phase is the case e3 → ∞).
The other seven projective representations are 2-d and
nontrivial. Since states supporting different projective
representations (or virtual ‘spins’) cannot be smoothly
transformed into each other, each projective representa-
tion corresponds to a SPT phase. This means that there
should be at least seven different nontrivial SPT phases
for spin systems respectingD2h symmetry. (In fact, when

considering different α(g) there are more nontrivial SPT
phases for spin systems respecting D2h symmetry.16)
How can we obtain the projective representations?

Mathematically, finding the projective representations of
a group G is equivalent to find the linear representations
of its cover group, which is a central extension of G and
is called representation group R(G).24 The representa-
tion group R(D2h) is available in literature,24 so we can
calculate the matrix elements of all the projective repre-
sentations of D2h (see Tab. VII).
Once the matrices of the projective representations are

obtained, we can calculate the CG coefficients for de-
composing the direct product of two projective repre-
sentations. From the CG coefficients, we can construct
sMP states and their parent Hamiltonians.25 The models
(6),(8),(10) and (12) are constructed accordingly and cor-
respond to the (-1-1-1),(-1-11),(-11-1),(-111) representa-
tions respectively. From these models we can know what
kind of interactions are essential for each SPT phase.
As shown in appendix B, the remaining three SPT

phases of (1-11),(11-1),(1-1-1) cannot be realized for S =
1 spin chains. The reason is that the physical freedom is
not sufficient to support the direct product of two such
projective representations. However, these phases might
be realized in S = 1 spin ladders or S = 2 models, and
this will be our upcoming work.

V. CONCLUSION AND DISCUSSION

In summary, we have found four nontrivial SPT phases
T0, Tx, Ty, Tz of S = 1 spin chains which have on-site D2h

symmetry. These SPT phases have similar properties
as the usual Haldane phase, such as the bulk excitation
gap, short-range correlations, existence of end ‘spins’, en-
tanglement spectrum degeneracy. However, the different
projective representations of the end spin under D2h in-
dicate that they do belong to different phases. The SPT
order that distinguishes them is the class of projective
representations (or the group elements of the second co-
homology H2(D2h, U(1))) corresponding to the ground
states (or the matrices Am).
We find that different SPT phases can be distinguished

by experimental method. The magnetic susceptibilities
χx, χy, χz obey Curie law and diverge at zero tempera-
ture. In T0 phase the effective g-factors of the end spin
have the usual values for magnetic field in x-, y-, and
z-directions. But in Tx (or Ty or Tz) phase, the effective

g ≈
√

J(J + 1)gL has the usual value only for magnetic
field in x-direction (or y-direction or z-direction). The ef-
fective g = 0 [see eq. (17)] for magnetic field in the other
two directions. We suggest other numerical methods,
such as density matrix renormalization group(DMRG),
to verify the existence of these SPT phases and their dif-
ferent responses to magnetic field.
The T0 phase (or the usual Haldane phase) can be re-

alized experimentally. The antiferromagnetic Heisenberg
model, which is the microscopic Hamiltonian of many
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quantum magenets, belongs to the T0 phase. The T0
phase is robust when the continuous spin rotation sym-
metry is reduced to D2h (by small anisotropic exchang-
ing, single ion anisotropy term, easy axis term, etc.).
However, as shown in sectionII, the other three phase
Tx, Ty, Tz phases require remarkable biquadratic interac-
tions. Presently, materials with such kind of interactions
seems not found. However, if the system has spin-orbital
interaction, it is possible that the ground state belongs
to one of these nontrivial phases.
From the seven nontrivial projective representations

of D2h group, we constructed seven SPT phases. Four
of them are discussed above. The other three may be
realized in S = 1 spin ladders or spin S = 2 models and
are not discussed in the current paper. Some conclusion
in this paper can be generalized to larger spin systems
and higher dimensions.
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Appendix A: Spin chian with D2 symmetry

In appendix A, we will first study S = 1 spin systems
with D2 symmetry. The same method can be applied to
D2h case.

1. General Hamiltonian with D2 point group

symmetry

The point group D2 has only four elements, D2 =
{E,Rx, Ry, Rz}. The multiplication table is shown in
Tab. I.

TABLE I. Multiplication table of D2

E Rx Ry Rz

E E Rx Ry Rz

Rx Rx E Rz Ry

Ry Ry Rz E Rx

Rz Rz Ry Rx E

It has four 1-d linear representations, whose matrix el-
ements and bases of representations are shown in Tab. II.
From quantum mechanics, we know that the 2S+1 bases
of integer spin-S span an irreducible linear representation
space of SO(3) group. This Hilbert space is reduced into
a direct sum of 2S + 1 1-d irreducible linear representa-
tion spaces of D2. For example, when S = 1 (a vector),

the bases

|x〉 = 1√
2
(| − 1〉 − |1〉),

|y〉 = 1√
2
i(| − 1〉+ |1〉),

|z〉 = |0〉

form the B3, B2, B1 representations of D2 respectively.

TABLE II. Linear representations of D2

E Rx Ry Rz bases or operators

A 1 1 1 1 |0, 0〉 S2

x, S
2

y , S
2

z

B1 1 -1 -1 1 |1, z〉 Sz Sxy

B2 1 -1 1 -1 |1, y〉 Sy Sxz

B3 1 1 -1 -1 |1, x〉 Sx Syz

Here we focus on the S = 1 model with nearest neigh-
bor interaction. The general Hamiltonian with D2 sym-
metry is given by

HD2
= HD2h

+ f1(Sx,iSyz,j + Syz,iSx,j)

+f2(Sy,iSxz,j + Sxz,iSy,j)

+f3(Sz,iSxy,j + Sxy,iSz,j). (A1)

where f1, f2, f3 are constants and HD2h
is given in (2).

The above Hamiltonian HD2
also has translational sym-

metry and spacial inversion symmetry. The additional
f1, f2, f3 terms are odd under time reversal and break
the T symmetry of HD2

. To study the SPT phases, we
need to obtain the projective representations of D2.

2. Projective representation and CG coefficients of

D2

From Ref. 24, determining the projective representa-
tion of a point group G is equivalent to determining
the linear representation of its representation group(s)
R(G) (which cover G integer times). There are two
non-isomorphism representation groups of D2, namely,
R1(D2) and R2(D2), both of which have two generators
P , Q and eight group elements. Their multiplication ta-
bles are listed in Tabs. III and IV. In the following, we
will mainly discuss the covering group R1(D2), and leave
the discussion about R2(D2) to the end of this section.
To obtain all the irreducible representations, we only

need to block diagonalize the canonical representation
matrices of the two generators P and Q. In the canonical
representation, the group space itself is also the represen-
tation space. Each group element g1 is considered as an
operator ĝ1:

ĝ1(g2) = g1g2. (A2)

here g2 and g1g2 are two vectors in the representation
space and ĝ1 becomes a matrix.
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TABLE III. Multiplication table of R1(D2). Notice that P 4 =
Q4 = E, P 2 = Q2 and QP = P 3Q.

E P 2 P 3 P Q P 2Q PQ P 3Q
E E P 2 P 3 P Q P 2Q PQ P 3Q
P 2 P 2 E P P 3 P 2Q Q P 3Q PQ
P 3 P 3 P P 2 E P 3Q PQ Q P 2Q
P P P 3 E P 2 PQ P 3Q P 2Q Q
Q Q P 2Q PQ P 3Q P 2 E P P 3

P 2Q P 2Q Q P 3Q PQ E P 2 P 3 P
PQ PQ P 3Q P 2Q Q P 3 P P 2 E
P 3Q P 3Q PQ Q P 2Q P P 3 E P 2

TABLE IV. Multiplication table of R2(D2). Notice that P 4 =
Q2 = E and QP = P 3Q.

E P 2 P 3 P Q P 2Q PQ P 3Q
E E P 2 P 3 P Q P 2Q PQ P 3Q
P 2 P 2 E P P 3 P 2Q Q P 3Q PQ
P 3 P 3 P P 2 E P 3Q PQ Q P 2Q
P P P 3 E P 2 PQ P 3Q P 2Q Q
Q Q P 2Q PQ P 3Q E P 2 P 3 P

P 2Q P 2Q Q P 3Q PQ P 2 E P P 3

PQ PQ P 3Q P 2Q Q P P 3 E P 2

P 3Q P 3Q PQ Q P 2Q P 3 P P 2 E

The canonical representation matrices of the genera-
tors of R1 can be read from table III:

P =























0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0























, Q =























0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0























,

To simultaneously block diagonalize the above matrices,
we need to identify the base vectors (or wave function) of
each irreducible representation (these base vectors form a
unitary matrix which block diagonalize P and Q simulta-
neously). In quantum mechanics, we use good quantum
numbers (eigenvalues of commuting quantities) to label
different states. For example, |S,m〉 symbols a spin state,
where S(S +1) is the eigenvalue of the Casimir operator
of SO(3) group and m the eigenvalue of the Casimir op-
erator of its subgroup SO(2). Similar method has been
applied to the representation theory of groups.26 What
we need to do is to find all the commuting quantities, or
the complete set of commuting operators (CSCO).26

The Casimir operators of discrete groups are their class
operators. For R1(D2), there are five classes (hence there
are five different irreducible linear representations), and
the corresponding five class operators are given as below:

C = {E, P 2, P + P 3, Q+ P 2Q, PQ+ P 3Q}.

The class operators commute with each other and all

other group elements. This set of class operators C is
called CSCO-I in Ref. 26. The eigenvalues of the class
operators are greatly degenerate, which can only be used
to distinguish different irreducible representations(IRs).
To distinguish the bases in each IR, we can use the class
operators of its subgroup(s). Group R1 has a cyclic sub-
group

C(s) = {E,P, P 2, P 3},

each element forms a class. The set of class operators
of the subgroup is written as C(s). The operator-set
(C,C(s)) is called CSCO-II, which can be used to dis-
tinguish all the bases if every IR occurs only once in the
reduced canonical representation.

However, in the reduced canonical representation, a d-
dimensional representation occurs d times and they have
the same eigenvalues for CSCO-II. To lift this degeneracy,
we need more commuting operators. Fortunately, we can
use the class operators of the ‘intrinsic group’ R̄1, whose
group elements are defined as follows

ˆ̄g1(g2) = g2g1. (A3)

Notice that ˆ̄g commutes with ĝ defined in (A2). The class
operators of R̄1 are identical to those of R1, C̄ = C. The
set of class operators for the intrinsic subgroup

C̄(s) = {Ē, P̄ , P̄ 2, P̄ 3}

is noted as C̄(s). The eigenvalues of C̄(s) provide a dif-
ferent set of ‘quantum numbers’ to each identical IR.

Now we obtain the complete set of class operators
(

C,C(s), C̄(s)
)

, which is called CSCO-III. The common
eigenvectors of the operators in CSCO-III are the or-
thonormal bases of the irreducible representations, and
each eigenvector has a unique ‘quantum number’.

To obtain the bases, we need to simultaneously diago-
nalize all the operators in CSCO-III and get their eigen-
vectors. Actually, we only need a few of these operators,
for example, we can choose Q+P 2Q in C, P in C(s) and
P̄ in C̄(s). The matrices of these operators of R1(D2)
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are given below:

Q+ P 2Q =























0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0























,

P =























0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0























,

P̄ =























0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0























,

Practically, we can diagonalize a linear combination
Ô = (Q + P 2Q) + aP + bP̄ , where a, b are arbitrary

constants ensuring that all the eigenvalues of Ô are non-
degenerate. From the non-degenerate eigenvectors (col-

umn vectors) of Ô, we obtain an unitary matrix U :

U =





























1√
8

1√
8

1√
8

1√
8

1
2 0 0 1

2
1√
8

1√
8

1√
8

1√
8

− 1
2 0 0 − 1

2
1√
8

1√
8

− 1√
8

− 1√
8

− 1
2 i 0 0 1

2 i
1√
8

1√
8

− 1√
8

− 1√
8

1
2 i 0 0 − 1

2 i
1√
8

− 1√
8

1√
8

− 1√
8

0 − 1
2 i − 1

2 i 0
1√
8

− 1√
8

1√
8

− 1√
8

0 1
2 i

1
2 i 0

1√
8

− 1√
8

− 1√
8

1√
8

0 − 1
2

1
2 0

1√
8

− 1√
8

− 1√
8

1√
8

0 1
2 − 1

2 0





























,

(A4)

The matrix U is the transformation that block diagonal-

izes P and Q simultaneously:

U †PU =























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −i 0 0 0
0 0 0 0 0 i 0 0
0 0 0 0 0 0 −i 0
0 0 0 0 0 0 0 i























, (A5)

U †QU =























1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 i 0 0
0 0 0 0 i 0 0 0
0 0 0 0 0 0 0 i
0 0 0 0 0 0 i 0























, (A6)

There are four 1-d IRs and one 2-d IR (which occurs
twice) in the reduced canonical representation:

P2 =

(

−i 0
0 i

)

= −iσz, Q2 =

(

0 i
i 0

)

= iσx, (A7)

So there are totally five independent representations.

The eight elements in R1 can be projected onto D2, as
shown in Tab. V. And the linear representations of R1

correspond to the projective representations of D2. The
four 1-d IRs correspond to the linear IRs of D2, and the
2-d IR stands for a nontrivial projective IR of D2. Up to
a phase factor, these 2-d matrices are the 180◦ rotation
operators of a spin with J = 1/2 (which is a projective
IR of SO(3) group).

TABLE V. Projection from R1(D2) to D2

R1(D2) E P Q PQ
P 2 P 3 P 2Q P 3Q

D2 E Rz Rx Ry

rotation π of J = 1/2
(up to a phase factor) I iσz iσx iσy

Now let’s look at the direct product of the projective
IRs of D2. For the 1-d linear IRs, the direct product are
still 1-d IRs, which satisfy the following law:

A× B1 = B1, A×B2 = B2, A×B3 = B3,

B1 ×B2 = B3, B1 ×B3 = B2, B2 ×B3 = B1.

The direct product of 1-d and 2-d IRs are still 2-d projec-
tive IRs of D2. The direct product of two 2-d projective
IRs is interesting. It reduces to four 1-d linear IRs. Us-
ing the CSCO-II, we can diagonalize the 4 × 4 matrices
P2 ⊗ P2 and Q2 ⊗Q2 with the following unitary matrix
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(the column vectors are just the CG coefficients):

U4 =











− 1√
2

i√
2

0 0

0 0 1√
2

1√
2

0 0 1√
2

− 1√
2

1√
2

i√
2

0 0











,

U †
4 (P2 ⊗ P2)U4 =







−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1






,

U †
4 (Q2 ⊗Q2)U4 =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1






,

These CG coefficients of the projective IRs of D2 are
analogous to the decoupling of the direct product of two
spins with J = 1/2, 1

2 ⊗ 1
2 = 1 ⊗ 0 except the 3-d IR of

spin-1 becomes a direct sum of three 1-d IRS. If we label
the bases of the 2-d projective representation of D2 as
| ↑〉, | ↓〉, then the CG coefficients are given as:

|x〉 = 1√
2
(| ↓1↓2〉 − | ↑1↑2〉),

|y〉 = i√
2
(| ↓1↓2〉+ | ↑1↑2〉),

|z〉 = 1√
2
(| ↑1↓2〉+ | ↓1↑2〉),

|singlet〉 = 1√
2
(| ↑1↓2〉 − | ↓1↑2〉), (A8)

Repeating the above procedure, we obtain the IRs of
R2(D2). The four 1-d IRs are the same as that ofR1(D2),
while the 2-d IR is given as:

P ′
2 =

(

−i 0
0 i

)

= −iσz, Q′
2 =

(

0 1
1 0

)

= σx,

(A9)

The above representation and Eq. (A7) differ only by a
gauge transformation P ′

2 = P2 and Q′
2 = iQ2, so they

belong to the same projective representation of D2. The
CG coefficients for the 2-d IRs are obtained easily:

|x〉 = 1√
2
(| ↓1↓2〉+ | ↑1↑2〉),

|y〉 = i√
2
(| ↓1↓2〉 − | ↑1↑2〉),

|z〉 = 1√
2
(| ↑1↓2〉 − | ↓1↑2〉),

|singlet〉 = 1√
2
(| ↑1↓2〉+ | ↓1↑2〉). (A10)

3. sMP state with D2 symmetry and its parent

Hamiltonian

Before studying the model with D2 symmetry, let’s
review the S = 1 AKLT model18 (which has SO(3) sym-

metry) first. The AKLT state is a sMP state given by
Ax = σx, A

y = σy , A
z = σz . The Am matrices are two

by two, meaning that the physical spin S = 1 is viewed
as symmetric combination of two J = 1/2 virtual spins
(essentially projective representations of SO(3)). Alter-
natively, we can write the state as

|φ〉 = Tr(W1W2...WN ), (A11)

where Wi = Ax|x〉i + Ay|y〉i + Az|z〉i. According to
Ref. 25, the matrices Am of a sMP state can be obtained
by

Am = BT (Cm)∗, (A12)

where B is the CG coefficient combining two virtual spins
into a singlet |0, 0〉 = Bm1m2

| 12 ,m1;
1
2 ,m2〉, and Cm is the

CG coefficient combining two virtual spins into a triplet
|1,m〉 = Cm

m1m2
| 12 ,m1;

1
2 ,m2〉.

Now we can generalize this formalism to the D2 case,
where the three states of S = 1 become a direct sum
of three IRs of D2. D2 group has a 2-dimensional non-
trivial projective representation, and the direct product
of two such projective IRs can be reduced using the CG
coefficients (B and Cx,y,z) in Eq. (A8). Similar to the
SO(3) case, we can consider the two 2-d projective IRs
as ‘virtual spins’. From eq. (A12), we can construct the
following matrix (similar sMP state has been studied in
Ref. 27)

W = aσx|x〉+ bσy|y〉+ cσz|z〉, (A13)

where a, b, c are arbitrary nonzero complex constants.
The corresponding sMP state is given by |φ〉 =
Tr(W1W2...WN ), which is invariant under the group D2.
Notice that the CG coefficients in Eq. (A10) give the
same sMP state (up to some gauge transformations). No-
tice also that (A13) is different from (5), (7), (9) or (11).
If a, b or c are to be arbitrary complex numbers, it is not
invariant under T .
The above sMP state is injective, and the parent

Hamiltonian can be obtained by projection operators.
We consider a block containing two spins, the four matrix
elements of WiWi+1 span a 4-dimensional Hilbert space.
Suppose the orthonormal bases are |ψ1,2,3,4〉i, then we
can construct a projector

Pi = 1−
4
∑

α=1

|ψα〉〈ψα|i, (A14)

and the HamiltonianH =
∑

i Pi. It can be easily checked
that the sMP state is the unique ground state of this
Hamiltonian.
The projector Pi is a nine by nine matrix that can

be written in forms of spin operators. Notice that any
Hermitian operator of site i, j can be expanded by the 81
generators of U(9) = U(3)i ⊗ U(3)j, i.e., λαiλβj (α, β =
1, ..., 9). So, we have

Pi =

9
∑

α,β=1

ξαβλαiλβj , (A15)
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where ξαβ are constants. Further, the generators of U(3)
can be written as polynomials of spin operators.

λ1 = (Sx + Sxz)/
√
2,

λ6 = (Sx − Sxz)/
√
2,

λ2 = (Sy + Syz)/
√
2,

λ7 = (Sy − Syz)/
√
2,

λ4 = S2
x − S2

y ,

λ5 = Sxy,

λ3 = (Sz + 3S2
z )/2− I,

λ8 = (3Sz − 3S2
z + 2I)/2

√
3,

λ9 =

√

2

3
I =

√

1

6
(S2

x + S2
y + S2

z ).

where Smn = SmSn+SnSm, (m,n = x, y, z) and λ1 ∼ λ8
are the Gellmann matrices of SU(3) generators. Finally,
we can write the Hamiltonian in forms of spin operators.
For simplicity, we first assume a, b, c are real numbers,
then the Hamiltonian is given in (6), which is invariant
under T . The T symmetry goes away when a, b or c
becomes an arbitrary complex number. For instance, if
a→ aeiθ, then the Hamiltonian (6) becomes

H =
∑

i

[

(
1

4
+

b2c2/2

a4 + b4 + c4
)Sx,iSx,j + (

1

4
+

cos 2θa2c2/2

a4 + b4 + c4
)Sy,iSy,j −

sin 2θa2c2/2

a4 + b4 + c4
(Sy,iSxz,j + Sxz,iSy,j)

+(
1

4
+

cos 2θa2b2/2

a4 + b4 + c4
)Sz,iSz,j +

sin 2θa2b2/2

a4 + b4 + c4
(Sz,iSxy,j + Sxy,iSz,j) + (

1

4
− cos 2θa2b2/2

a4 + b4 + c4
)Sxy,iSxy,j

+(
1

4
− b2c2/2

a4 + b4 + c4
)Syz,iSyz,j + (

1

4
− cos 2θa2c2/2

a4 + b4 + c4
)Sxz,iSxz,j

]

+ h0 (A16)

When sin 2θ 6= 0 above Hamiltonian does not have T
symmetry.
Varying the values of a, b, c, we can transform the

ground state of the above Hamiltonian into that of the
AKLT model smoothly without breaking D2 symmetry.
This means that above sMP state also belongs to the Hal-
dane phase. In appendix B we will consider the models
with additional time reversal symmetry.

Appendix B: Spin Chain with D2h symmetry

In the last section we have studied the spin chain with
on-site D2 symmetry. Now we consider a S = 1 spin
chain with additional spin-inversion (or time-reversal)
symmetry. The complete on-site symmetry now becomes
D2h = {E,Rx, Ry, Rz , T, RxT,RyT,RzT }. It has eight
1-d linear real IRs, as listed in Tab. VI. Notice the time
reversal operator T = e−iπSyK is anti-unitary, so the
states |m〉 and i|m〉 (m = x, y, z) belong to different lin-
ear representations, the former is odd under T and is
noted by index u, and the latter is even under T as noted
by g. So we need to introduce six bases |x〉, |y〉, |z〉 and
i|x〉, i|y〉, i|z〉. To construct a sMP state, at least one of
the pair |x〉, i|x〉 (and also the pairs |y〉, i|y〉 and |z〉, i|z〉)
should be present in the physical bases.
To obtain the projective IRs of D2h, we need to

study the linear IRs of the representation group R(D2h),
which also has three generators P,Q,R (corresponding
to Rz, Rx, T ) satisfying P 4 = Q4 = R4 = E and

TABLE VI. Linear representations of D2h

E Rx Ry Rz T RxT RyT RzT bases operators
Ag 1 1 1 1 1 1 1 1 |0, 0〉 S2

x, S
2

y , S
2

z

B1g 1 -1 -1 1 1 -1 -1 1 i|1, z〉 Sxy

B2g 1 -1 1 -1 1 -1 1 -1 i|1, y〉 Sxz

B3g 1 1 -1 -1 1 1 -1 -1 i|1, x〉 Syz

Au 1 1 1 1 -1 -1 -1 -1 i|0, 0〉
B1u 1 -1 -1 1 -1 1 1 -1 |1, z〉 Sz

B2u 1 -1 1 -1 -1 1 -1 1 |1, y〉 Sy

B3u 1 1 -1 -1 -1 -1 1 1 |1, x〉 Sx

P 3Q = QP,Q3R = RQ,R3P = PR.24 The total number
of elements in R(D2h) is 64. It has 8 1-d representations
(corresponding to the 8 linear IRs of D2h) and 14 2-d
representations (corresponding to the 7 classes of projec-
tive IRs of D2h). To obtain the IRs of R(D2h), we only
need to know the representation matrix of the three gen-
erators P,Q,R. Using the same method given in the last
section, we obtain all the IRs of R(D2h) (see Tab. VII).

Now we give the CG coefficients that reduce the direct
product of two projective IRs into direct sum of linear
IRs of D2h.
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TABLE VII. Projective representations of D2h. The numbers α, β, γ are obtained by α = P 2, β = Q2, γ = R2. The three
generators P,Q,R of R(D2h) will project to Rz, Rx, T of D2h, respectively.

P (Rz) Q(Rx) R(T ) ... α = P 2, β = Q2, γ = R2

Ag 1 1 1 ...
B1g 1 -1 1 ...
B2g -1 -1 1 ...
B3g -1 1 1 ... 1 1 1
Au 1 1 -1 ...
B1u 1 -1 -1 ...
B2u -1 -1 -1 ...
B3u -1 1 -1 ...
E1 I iσz σy ... 1 -1 1

E2 = E1 ⊗B3g -I iσz σy ...
E3 σz I iσy ... 1 1 -1

E4 = E3 ⊗B1g σz -I iσy ...
E5 iσz σx I ... -1 1 1

E6 = E5 ⊗ Au iσz σx -I ...
E7 σz iσz iσx ... 1 -1 -1

E8 = E7 ⊗B1g σz -iσz iσx ...
E9 iσz σx iσx ... -1 1 -1

E10 = E9 ⊗ Au iσz σx -iσx ...
E11 iσz iσx σz ... -1 -1 1

E12 = E11 ⊗B3g iσz iσx -σz ...
E13 iσz iσx iσy ... -1 -1 -1

E14 = E13 ⊗Au iσz iσx -iσy ...

E1 ⊗ E1 = E2 ⊗ E2 = Ag ⊕B1g ⊕Au ⊕B1u; CAg = σx, C
B1g = σz , C

Au = iσy, C
B1u = I;

E3 ⊗ E3 = E4 ⊗ E4 = Ag ⊕B3g ⊕Au ⊕B3u; CAg = I, CB3g = iσy, C
Au = σz , C

B3u = σx;

E5 ⊗ E5 = E6 ⊗ E6 = Ag ⊕B1g ⊕B2g ⊕B3g; CAg = σx, C
B1g = iσy, C

B2g = σz, C
B3g = I;

E7 ⊗ E7 = E8 ⊗ E8 = B1g ⊕B3g ⊕B1u ⊕B3u; CB1g = σz, C
B3g = iσy, C

B1u = I, CB3u = σx;

E9 ⊗ E9 = E10 ⊗ E10 = B1g ⊕B2g ⊕Au ⊕B3u; CAu = σx, C
B3u = I, CB1g = iσy, C

B2g = σz ;

E11 ⊗ E11 = E12 ⊗ E12 = B2g ⊕B3g ⊕Au ⊕B1u; CAu = iσy, C
B1u = σx, C

B2g = I, CB3g = σz ;

E13 ⊗ E13 = E14 ⊗ E14 = Ag ⊕B2g ⊕B1u ⊕B3u; CAg = iσy, C
B2g = I, CB1u = σx, C

B3u = σz ; (B1)

and

E1 ⊗ E2 = B2g ⊕B3g ⊕B2u ⊕B3u; CB3g = σx, C
B2g = σz , C

B3u = iσy, C
B2u = I;

E3 ⊗ E4 = B1g ⊕B2g ⊕B1u ⊕B2u; CB1g = I, CB2g = iσy, C
B1u = σz , C

B2u = σx;

E5 ⊗ E6 = Au ⊕B1u ⊕B2u ⊕B3u; CAu = σx, C
B1u = iσy, C

B2u = σz, C
B3u = I;

E7 ⊗ E8 = Ag ⊕B2g ⊕Au ⊕B2u; CAg = σz , C
B2g = iσy, C

Au = I, CB2u = σx;

E9 ⊗ E10 = Ag ⊕B3g ⊕B1u ⊕B2u; CAg = σx, C
B3g = I, CB1u = iσy, C

B2u = σz;

E11 ⊗ E12 = Ag ⊕B1g ⊕B2u ⊕B3u; CAg = iσy, C
B1g = σx, C

B2u = I, CB3u = σz;

E13 ⊗ E14 = B1g ⊕B3g ⊕Au ⊕B2u; CAu = iσy, C
B2u = I, CB1g = σx, C

B3g = σz. (B2)

Here all the coefficients are chosen to be real.
Now we construct sMP states from the CG coefficients

Eqs. (B1), (B2) and (A12). Since all the CG coefficients
are real, the constructed matrices Am = BT (Cm)∗ are
also real (here B = CAg , m = B1g, B1u...B3u), and are
invariant under the anti-unitary operator K. However,
the bases |B1g〉 = i|z〉, |B2g〉 = i|y〉 or |B3g〉 = i|z〉 con-
tain a factor i, this factor i may be combined with Am

when writing the matrix W =
∑

mAm|m〉. So the defi-
nition of Am depends on the choice of base. If we choose
|m〉 = |x〉, |y〉, |z〉 as the physical bases, then Am will
absorb the factor i (if existent) and may be either real
or purely imaginary. This convention is adopted in the
main part of this paper. On the other hand, if we just
choose |m〉 = |B1g〉, |B1u〉, ...|B3u〉 as the physical bases
(and forget about the factor that some bases, such as B1g
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and B1u, are linearly dependent), then all the matrices
Am are real. In the following discussion, we will adopt
the second convention.
Notice that the combinations E5 ⊗ E5, E9 ⊗ E10,

E11 ⊗ E12, E13 ⊗ E13 contain all the bases of S = 1
(|B1〉, |B2〉, |B3〉) and the singlet state (|Ag〉), we can con-
struct sMP state using these combinations. We will study
them case by case.
1)E5 ⊗ E5

Up to an overall phase, the local matrix W is given by
W = aσx|x〉+ ibσy|y〉+ cσz |z〉, here a, b, c are real num-
bers. The Hamiltonian can be constructed using the
method given in appendix A, and the result is given in
(10).
2)E9 ⊗ E10

Up to an overall phase, the local matrix W is given by
W = aσx|x〉 + bσy|y〉 + icσz|z〉, and the Hamiltonian is
shown in (12).
3)E11 ⊗ E12

Up to an overall phase, the local matrix W is given by
W = iaσx|x〉 + bσy|y〉 + cσz |z〉, and the Hamiltonian is
given in (8).
4)E13 ⊗ E13

The local matrix W is given by W = aσx|x〉 + bσy|y〉 +
cσz |z〉, and the Hamiltonian is given in (6).
With the D2h symmetry kept, the ground states of the

above four exactly solvable models cannot be smoothly
transformed into each other, which indicates they belong
to different SPT phases (see section III).
According to Ref. 6, there should be seven SPT phases

since there are seven classes of projective representations.
However, in the other three projective IRs, the reduced

Hilbert space of the direct product of two virtual ‘spins’
only contains one of the three bases for the physical S = 1
states (notice that the singlet |Ag〉 is necessary to con-
struct a sMP state), which means that these three SPT
phases cannot be realized in S = 1 systems.

Appendix C: Invariance of the sMP state under

symmetry group

Firstly, we assume that all the operators of the sym-
metry group G are unitary. The CG-coefficients (of the
representation group) are defined as

|m〉 =
∑

α,β

Cm
αβ |α, β〉,

|singlet〉 =
∑

α,β

Bαβ |α, β〉 (C1)

where |m〉 belong to nontrivial linear IRs and |singlet〉 is
a trivial linear IR, α, β are bases of some 2-d projective
IR. We will show that the sMP state given by (A12) is in-
variant under the representation group R(G) (and hence
the symmetry group G). Suppose that g is a group ele-
ment of R(G), and u(g)/N(g),M(g) is the representation

matrix for the physical spin/virtual ‘spins’, then

ĝ|m〉 = um′m|m′〉,
ĝ|α〉 = Nα′α|α′〉,
ĝ|β〉 =Mβ′β|β′〉, (C2)

From Eqs. (C1) and (C2), we obtain
∑

m′

um′mC
m′

= NCmMT . (C3)

The complex conjugate of above equation is
∑

m′

u†mm′(C
m′

)∗ = N∗(Cm)∗M †. (C4)

Since the representation matrix u(g) (N(g),M(g))
is unitary, so the representation matrix of ĝ−1 is
[u(g)]†([N(g)]†,[M(g)]†). Replacing ĝ by ĝ−1 in
Eqs. (C2)-(C4), we obtain

∑

m′

umm′(Cm′

)∗ = NT (Cm)∗M. (C5)

Similar to (C3), we also have

B = NBMT ,

or equivalently BT =MBTNT . Thus we have

M †BT = BTNT . (C6)

From (C5) and (C6), we have

ĝ

(

∑

m

Am|m〉
)

=
∑

m,m′

um′mA
m|m′〉

=
∑

m,m′

BTum′m(Cm)∗|m′〉

=
∑

m′

BTNT (Cm′

)∗M |m′〉

=
∑

m

M †BT (Cm)∗M |m〉

=
∑

m

M †AmM |m〉. (C7)

Above equation is nothing but (4), which indicates that
the sMP state constructed by Am = BT (Cm)∗ is really
invariant under the groupR(G) (or equivalently, the sym-
metry group G).
Now we consider the case that some group elements,

such as the time reversal operator T , of G are anti-

unitary. Suppose that by properly choosing the phases
of |α〉 and |β〉, all the CG-coefficients B and Cm are real.
In this case, the anti-unitary operators behave as uni-
tary operators when acting on Am, and (C7) also holds
for anti-unitary operators.
To obtain the complete representation of the anti-

unitary operators, we introduce an unitary transforma-
tion to the bases |α〉, |β〉 of the virtual ‘spins’ so that Am

transforms into complex matrix:

|α〉 = Vα′α|α′〉,
|β〉 = Uβ′β |β′〉, (C8)
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then

|m〉 = Cm
αβ |αβ〉 = Cm

αβVα′αUβ′β |α′β′〉
= (V CmUT )α′β′ |α′β′〉 = C

′m
α′β′ |α′β′〉, (C9)

which gives C
′m = V CmUT . Similarly, we have B′ =

V BUT . Since Am = BT (Cm)∗, so we get A
′m =

UAmU †. When an unitary operator ĝu acts on A
′m|m〉,

(C7) holds as expected:

ĝu(
∑

m

A
′m|m〉) = Uĝu(

∑

m

Am|m〉)U †

=
∑

m

UM †AmMU †|m〉

=
∑

m

(M ′)†A
′mM ′|m〉,

where M ′ = UMU †. Now let us see what happens if an
anti-unitary operator ĝa acts on A

′m|m〉:

ĝa

(

∑

m

A
′m|m〉

)

= ĝa

[

U(
∑

m

Am|m〉)U †
]

= U∗ĝa

(

∑

m

Am|m〉
)

UT

=
∑

m

U∗M †AmMUT |m〉

=
∑

m

(M̃ ′)†A
′mM̃ ′|m〉,

where M̃ ′ = UMUT = U(MK)U †. Here we have used
the factor that Am are real matrices. So (C7) still holds
for anti-unitary operators, except that the representation
matrix M(ga) transforms into M̃ ′(ga) instead of M ′(ga),
or equivalently, M(ga) is replaced by M(ga)K. Thus for
an anti-unitary operator ĝ, we have

u(g)K(Am) = KM †AmMK. (C10)

This result will be used in appendix D.
Notice that to obtain a sMP state that is invariant

under a symmetry group G containing anti-unitary op-
erators, the only condition we require is that the CG co-
efficients B and Cm (for the unitary projective IRs of G)
can be transformed into real numbers by choosing proper
phases.

Appendix D: effective operators in the ground state

Hilbert space

From the projective representation, we can study the
effective operator of a usual operator (which acts on the
physical spin Hilbert space) on the ground state Hilbert
space, or equivalently, the end ‘spins’. Naturally, the
usual operator and its effective operator should vary in
the same way, or respect the same linear representation,

under the group D2h. So we will study the effective op-
erators from the symmetry point of view.
If the spin chain is long enough, the two end ‘spins’ are

free (i.e., the interaction between them are neglectable).
So we expect that the effective operators on the end
‘spins’ are single-body operators instead of two-body in-
teractions. Notice that the all the nontrivial projective
representations of D2h are 2 dimensional, we have only
three choices of the effective operators, the pauli matri-
ces. We will study them one by one.
Firstly, we study the T0 phase, which correspond to

the projective IR (-1-1-1). Under symmetry operation g,

the operator Ôm varies in the following way

M(g)†ÔmM(g) = η(g)mm′Ôm′ , (D1)

where M(g) is the projective IR for the end ‘spin’. From
the conclusion in appendix C and Tab. VII, we get
M(Rz) = iσz , M(Rx) = iσx, M(T ) = iσyK. η(g) is
a linear representation of D2h, which equals either 1 or
−1. Actually, η(g) is the parity of Ôm under g. For in-

stance, η(T ) = −1 means that Ôm has odd parity under
time reversal transformation and vice versa. After sim-
ple algebra, we obtain the correspondence in table VIII:
the operators in the same column transform in the same
way.

TABLE VIII. Correspondence between physical operators and
effective operators in T0 phase according to their transforma-
tion property (parities) under D2h.

linear IR η(g) B3u B2u B1u

operators Ôm σx σy σz

physical operators S̃x S̃y S̃z

From above table, we find that σm and S̃m (m =
x, y, z) have the same symmetry (or the same parity un-
der symmetry operations), so the former can be consid-
ered as the effective operator of the latter. Since σm is the
spin operator of the end spins, the system will response
to weak external magnetic field (along any direction) ef-
fectively through the end spins.
However, things are different in Tx phase, which cor-

responds to the projective IR (-1-11). From Tab. VII,
we can substitute M(Rz) = iσz , M(Rx) = iσx, M(T ) =
σzK into (D1) and obtain the results in table IX. Notice

TABLE IX. Correspondence between physical operators and
effective operators in Tx phase, according to their transfor-
mation property (parities) under D2h.

linear IR η(g) B3u B2g B1g

operators Ôm σx σy σz

physical operators S̃x S̃xz S̃xy

that the end ‘spin’ operator σy(σz) do not have the same

symmetry with that of S̃y(S̃z) because they have differ-
ent time reversal parities. Since there are no single-body
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effective operators correspond to S̃y and S̃z, the mod-
els in the Tx phase will not response to weak external
magnetic fields along y- and z- directions.
Similar results can be obtained for Ty and Tz phases

and will not be repeated here.
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