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First principles calculation of conductance and current flow through low-dimensional
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(Dated: June 1, 2011)

We present a novel formulation to calculate transport through disordered superconductors con-
nected between two metallic leads. An exact analytical expression for the current is derived, and
is applied to a superconducting sample described by the negative-U Hubbard model. A Monte
Carlo algorithm that includes thermal phase and amplitude fluctuations of the superconducting
order parameter is employed, and a new efficient algorithm is described. This improved routine
allows access to relatively large systems, which we demonstrate by applying it to several cases,
including superconductor-normal interfaces and Josephson junctions. Moreover, we can link the
phenomenological parameters describing these effects to the underlying microscopic variables. The
effects of decoherence and dephasing are shown to be included in the formulation, which allows the
unambiguous characterization of the Kosterlitz-Thouless transition in two-dimensional systems and
the calculation of the finite resistance due to vortex excitations in quasi one-dimensional systems.
Effects of magnetic fields can be easily included in the formalism, and are demonstrated for the
Little-Parks effect in superconducting cylinders. Furthermore, the formalism enables us to map
the local super and normal currents, and the accompanying electrical potentials, which we use to
pinpoint and visualize the emergence of resistance across the superconductor-insulator transition.

PACS numbers: 72.20.Dp, 73.23.-b, 71.10.Fd

I. INTRODUCTION

Chief amongst the remarkable effects observed in su-
perconductors is their eponymous perfect conductivity.
Within BCS theory1, where superconductivity arises due
to pairing between electrons, the effects of temperature
T , magnetic field B, and disorder are well understood: as
the pairing amplitude is suppressed by these physical pa-
rameters, the system becomes normal, and attains a finite
resistance. For low-dimensional systems, on the other
hand, it has been long understood that phase fluctuations
of the pairing amplitude play a major role in the loss of
perfect conductance2. In two-dimensional systems, for
example, it has been demonstrated3 that as the temper-
ature increases there is a critical temperature TKT where
vortices and anti-vortices unbind and proliferate through
the system, leading to the loss of global phase coher-
ence and superconductivity, even though the pairing am-
plitude remain finite. Indications of such a Berezinsky-
Kosterlitz-Thouless (BKT) transition have been observed
in Josephson-junction arrays4, in superconducting (SC)
thin films5, and possibly in high-Tc cuprates6.

In recent years there has been a reinvigoration of re-
search into low-dimensional superconductors. This has
been motivated by intriguing experimental observations
of electronic transport through disordered SC thin films,
such as a huge magnetoresistance peak7 and a “super-
insulator” phase8, and by the technological progress in
producing two-dimensional superconductors in the in-
terface between two oxides9 and in making ultra-thin
cuprate superconductors10. Many of these observations
are not yet satisfactory explained, chiefly because there
is no theory that can calculate the current, even numer-
ically, through a disordered superconductor, based on a

microscopic model.

The calculation of the resistance within the BCS
picture, usually based on the Bogoliubov-de Gennes
(BdG) mean-field approach, is straightforward. Blon-
der, Tinkham, and Klapwijk (BTK)11 studied the re-
flectance and transmission at a metal-superconductor
junction, and an analogous study was performed at
superconductor-metal-superconductor junctions12. Sim-
ilar approaches13 utilized the Buttiker-Landauer pic-
ture14,15 for non-interacting Cooper pairs to study scat-
tering through a SC region. (A difficulty with the direct
application of the BdG formalism is the non-conservation
of charge, which can be overcome by studying a nor-
mal ring containing a SC segment16.) An alternative
approach near to the BCS critical temperature is to use
a scaling assumption for the conductivity17. The current
through diffusive normal metal-superconductor struc-
tures has also been calculated using a Keldysh scattering
matrix theory18. All these approaches neglect phase fluc-
tuations so cannot be used to study two-dimensional su-
perconductors that exhibit a BKT-like transition at low
temperatures.

The resistance of low-dimensional superconductors can
also be calculated using phenomenological models. The
conductivity of uniform systems can be probed analyt-
ically by studying phase slips across the sample within
the Ginzburg-Landau approach19,20. Thermally excited
phase slips explain both non-linear conductivity and vor-
tex creep induced resistance21, whilst quantum activated
phase slips can drive SC wires insulating22. However,
phenomenological calculations are neither underpinned
by a microscopic model nor include Coulomb repulsion
or disorder except for the introduction of a phenomeno-
logical normal state resistance.
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FIG. 1: (Color online) A schematic of the experimental setup
within the negative-U Hubbard model. The left and right-
hand metallic leads are shown in blue, from which electrons
can tunnel through the barriers shown by the gray links into
the central, possibly disordered SC region which is shown in
red.

Here we develop a new formalism to calculate the cur-
rent and its spatial distribution in a superconductor tak-
ing into account phase fluctuations in the presence of dis-
order, finite T and B, and Coulomb repulsion. The ap-
proach we detail here is based on the Landauer-Buttiker
scheme14,15, where one attaches metallic leads to the
sample, and then calculate its conductance. The lead-
superconductor tunneling barriers ensure that the con-
ductance of the system is always finite, even in the SC
phase. A previous attempt using the quantum Monte
Carlo approach to calculate current in disordered sys-
tems employed the fluctuation-dissipation theorem via
the current-current correlation function23.

The Landauer formula14,15 is a widely adopted method
to calculate the current through a mesoscopic sam-
ple that contains non-interacting particles. Meir and
Wingreen24 have generalized the formula to produce an
exact expression for the current through any interacting
region attached to non-interacting leads, which has been
successfully applied to a wide range of systems. Follow-
ing this approach, we partition the system into the three
parts shown in Fig. 1: the left-hand lead, the central
interacting region, here a superconductor, and the right-
hand lead. In the leads the natural particle basis set are
electrons, and in the sample the natural basis set are Bo-
goliubons. To circumvent this mismatch of particle basis
sets we reformulate the Meir-Wingreen formula in a Bo-
goliubon basis set to derive an exact analytical expres-
sion for the current flow through a possibly SC region,
attached to two metallic leads.

Having derived a general, exact formula, the SC region
is then modeled by a generalized negative-U Hubbard
model based on the lattice shown in Fig. 1. Introduc-
ing two local auxiliary fields (which reduce to the local
density and gap at zero temperature), we decouple the
interacting fermions. While the conductance formula is

exact, in order to evaluate correlation functions, while in-
tegrating exactly over the fermions, we neglect quantum
fluctuations of the auxiliary parameters, and integrate
numerically over their thermal fluctuations25,26 using a
Monte Carlo method. A significant advantage of the for-
malism is that it allows us to construct current and po-
tential maps of the system. These enable us to diagnose
the microscopic features that increase the resistance of
the sample. This paper details the new procedure and
presents a number of applications of the formalism for
simple systems, where one can compare with existing
theories and shed light on several phenomena. These
calculations represent the first ab initio studies of these
effects, and so allow us to provide the first link between
the phenomenological parameters often used to describe
them and the underlying microscopic variables. More-
over, we go further and study regimes not accessible by
the phenomenological models.

The paper is organized as follows: in Sec. II we first
derive an exact analytical expression for the current
through a SC region. Using this expression, in Sec. III
we describe the approximation, numerical procedure, and
outline improvements to the auxiliary field approach that
allows us to study large systems. Having developed the
new formula for the current and accompanying computa-
tional tool, it is imperative to carefully test it against a
series of known results. Therefore, in Sec. IV A we study
superconductor-normal interfaces in clean systems, and
compare with the BTK transmission formulae, while in
Sec. IV B we study the temperature dependent current
in a Josephson junction. In Sec. IV C we describe how
effects of decoherence and dephasing are manifested in
the formalism. We investigate the temperature depen-
dence of resistance in Sec. IV D in which we uncover the
temperature dependence of the resistance that charac-
terizes the BKT transition in two dimensions and vor-
tex excitations in quasi one-dimensional systems. We
then, in Sec. IV E, apply an external magnetic field to
probe the Little-Parks effect. Finally, we demonstrate
how to construct current and potential maps for the sys-
tem, and use them to study the microscopic behavior
at the superconductor-insulator transition in Sec. IV F.
The details of the analytical derivation and the numerical
procedure are described in the appendices.

II. ANALYTICAL DERIVATION

A. Current Formula

To calculate the current for interacting particles we
start with the general formula for the current24 through
an interacting region, connected between two non-
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interacting leads

J =
ie

2h

∑

σ

∫
dε
[

Tr
{(
fL(ε)ΓL − fR(ε)ΓR

)
(Gr
σ − Ga

σ)
}

+ Tr
{

(ΓL − ΓR)G<σ
}]
. (1)

Here fχ(ε) ≡ [exp(β(ε − µχ)) + 1]−1 with χ ∈ {L,R} is
the Fermi distribution of the left (L) and right-hand (R)
leads that are held at chemical potentials µχ and reduced
temperature β ≡ 1/kBT (where kB is the Boltzmann
constant). The imposed potential difference eV ≡ ∆µ =
µL − µR between the leads drives the current J through
the system. The integral is over all electronic energies ε.
Γχij ≡ 2π

∑
a∈χ ρa(ε)YaiY

∗
aj for channels a in lead χ, and

Ya,i is the tunneling matrix element from channel a in
the the lead to site i in the sample. Finally, Gr

ijσ, Ga
ijσ,

and G<ijσ are the electronic retarded, advanced, and lesser

Green functions (in the site basis) for electrons of spin σ
in the sample calculated in the presence of the leads.

Eqn. (1) is exact, and captures, via the electronic
Green function G, all the processes that can transfer
an electron through the system. When the intermedi-
ate regime has SC correlations, some of these processes
involve Andreev scattering – absorption of an electron
pair by the condensate and a propagation of the remain-
ing hole. To expose these processes, allowing us below to
separate the SC and normal channels, it is convenient to

transform from the electron basis set (c†iσ, ciσ) with site
index i into the Bogoliubov basis set (γ†nσ, γnσ), using
the Bogoliubov-de Gennes relations ciσ =

∑
n ui(n)γnσ−

σv∗i (n)γ†n−σ (at present ui and vi are arbitrary, except for
the unitarity condition, but later on they will be deter-
mined by the actual Hamiltonian that will be used for
the SC region). The Bogoliubov basis will also allow us
to identify the low-energy excitations in the system, en-
abling us to speedup the numerical calculation by concen-
trating on these states, see App. B. The Green functions
transform from the electron basis Gσ into the energy ba-
sis set of Green functions {G>σ ,G<σ } and the family of

anomalous Green functions H>σ (m,n) = −i〈γ†m−σγ†nσ〉,
H<σ (m,n) = i〈γ†n−σγ†mσ〉, H̄>σ (m,n) = −i〈γm−σγnσ〉, and

H̄<σ (m,n) = i〈γn−σγmσ〉 according to

Gr
σ(i, j)− Ga

σ(i, j) = G>σ (i, j)− G<σ (i, j)

= ui
(
G>σ − G<σ

)
u∗j + vi

(
G>−σ − G<−σ

)
v∗j

− σv∗i
(
H>σ − H<σ

)
u∗j − σui

(
H̄>−σ − H̄<−σ

)
vj , (2)

and

G<σ (i, j)=u∗jG<σ u∗i−vjG
>
−σv∗i +σu∗jH>σ v∗i −σvjH̄

<
−σui.

(3)

Solving for the Green functions across the system in the
presence of the leads (Appendix A), leads to the final,

exact result

J =
e

h

∑

σ

∫
dε[fL(ε)− fR(ε)]×

Tr
[
(Γχu∗u + Γχv∗v)Ga

σ(Γ−χuu∗ − Γ−χvv∗)Gr
σ

+(Γχuv − Γχvu)Ga
σΓ−χv∗u∗H

r
σ + (Γχu∗v∗ − Γχv∗u∗)G†aσ Γ−χuv H†rσ

+σΓχuu∗H
a
σ(Γ−χv∗u∗−Γ−χu∗v∗)Gr

σ+σΓχvv∗H
†a
σ (Γ−χvu −Γ−χuv )G†rσ

+σ(Γχuu∗ + Γχvv∗)(Ha
σΓ−χv∗u∗H

r
σ + H†aσ Γ−χuv H†rσ )

]
, (4)

where Γχuv(m,n) = 2π
∑
i,j,a∈χ ρa(ε)YaiYajui(m)vj(n) is

now in the transformed basis set. This is written in
a form describing transmission from the left-hand side
to the right-hand side of the sample. We will show in
Sec. IV A that it therefore exposes the rise of resistance
due to the suppression of correlations between the left
and right-hand sides of the superconductor.

We note that deep in the SC regime where the SC gap
obeys ∆� Y , and in the case where the leads inject elec-
trons within the gap such that eV < 2∆, we can make a
perturbative expansion in small tunneling Y . This yields
the simple expression for the current

J =
e

h

∑

σ

∫
dε[fL(ε)− fR(ε)]×

Tr
[
(Γχu∗u + Γχv∗v)G̃a

σ(Γ−χuu∗ − Γ−χvv∗)G̃r
σ

]
. (5)

Here G̃ are the Green functions calculated in the absence
of the leads. This equation has direct Y 4 dependence
on the tunneling matrix element, with neglected higher
order contributions of order ∼ (Y/∆)6, as it describes
Cooper pairs tunneling through the contact barrier. We
shall show later that this contribution is precisely what
is predicted for the current27 according to the BTK for-
mula11, and notably, as the leads inject electrons only
into the gap, there is no normal current, but only An-
dreev processes allow the flow of current. The pertur-
bative form Eqn. (5) offers two important computational
advantages. Firstly, it is considerably less resource inten-
sive to calculate as the Green functions are diagonal so
it does not demand summations over separate variables.
Secondly, it does not require the expensive matrix inver-
sion embodied in Eqn. (A2) to find the general equation
for the current. Due to its usefulness we also note that
an analogous expression can be derived for the normal
current when injecting electrons outside of the gap

J =
e

h

∑

σ

∫
dεTr[fL(ε)(Γχu∗u + Γχv∗v)

−fR(ε)(Γχu∗u + Γχv∗v)]=Gr
σ , (6)

where = stands for the imaginary part. Since this term
represents the normal current, it has a direct Y 2 depen-
dence on the tunneling matrix element. Though they
offer a considerable computational advantage, these per-
turbative formulae cannot be used on the border of the
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superconductor-insulator transition where the supercon-
ductor gap breaks down and ∆ < Y . Therefore, un-
less specified, we use the full expression for the current,
Eqn. (4), in our numerical calculations.

B. Current and voltage maps

Eqn. (6), with a coefficient of Y 2, describes the nor-
mal current that enters and leaves the system as single
electrons, whereas Eqn. (5) with a coefficient of Y 4 corre-
sponds to a tunneling supercurrent. However, the normal
and supercurrent can interchange inside the sample. In
order to understand the microscopics behind phenomena
in the disordered superconductor it will be advantageous
to be able to probe the spatial distribution of the current
and its normal or SC nature through the sample. There-
fore, here we extend our formalism to map out the flow
of current within the sample. To calculate the current
distribution map we use the general expression for the
current crossing a single bond28,29 from site i to j

Jij =
2e

h

∑

σ

∫
dε

2π

[
tijG<σ (j, i)− tjiG<σ (i, j)

]
. (7)

Transforming again into the diagonalized basis, the local
current is

Jij =
2e

h

∑

σ

∫
dε

2π
Tr

{[
Λiju∗u−Λijv∗v

]
G<σ −

[
ΛijTuu∗−ΛijTvv∗

]
G<σ

+σ
[
ΛijTv∗u∗ − Λiju∗v∗

]
H<σ + σ

[
ΛijTuv − Λijvu

]
H̄<σ

}
, (8)

where Λijuv(m,n) = tijui(m)vj(n). As before, the normal
G< and anomalous Green functions H< are calculated in
Eqn. (A3) in the presence of the leads. Moreover we
note that the current comes in two flavors, the contri-
bution to the current from the normal Green function
G< is associated with the normal current and that from
the anomalous Green function H< gives the Cooper pair
current. In Sec. IV F we verify that this intersite current
yields the correct net conservation of charge.

To provide an additional probe into the nature of the
superconductor-insulator transition we extend the for-
malism to map the local chemical potentials across the
sample. This should reveal any weak links and the lo-
cation of the sources of resistance in a sample. To de-
termine the local effective potential at a specific site we
add a weak link from that site to a third lead (a “tip”).
The tunneling current from the tip into the sample is then
calculated, and the chemical potential of the tip adjusted
until that current flow is zero. This chemical potential
thus corresponds to the effective local chemical potential
in that site. To calculate the current flow into the tip we
first evaluate the full Green functions G in the sample in
the presence of voltage drop between the left and right
reservoirs Eqn. (A2) but without the tip. We then use the
perturbative formula for the current, Eqn. (5), but with

one lead representing the left/right hand leads, and the
other the perturbative tip. This process is repeated for
each site in the sample (due to the perturbative nature
of the tip, this calculation can be done simultaneously
for all sites). In Sec. IV F we demonstrate how maps of
the potential can expose weak links in the sample and
help diagnose the microscopic mechanisms that give rise
to resistance.

III. MODEL AND NUMERICAL PROCEDURE

In the previous section we have developed an exact
analytical formula for the current through an arbitrary
intermediate region, which may include SC correlations.
We now use a specific model to describe this SC region
– the negative-U Hubbard model, a lattice model that
includes on-site attraction, and may include disorder, or-
bital and Zeeman magnetic fields, and even long-range
repulsive interaction (which we will not deal with in this
paper). The Hamiltonian is

ĤHubbard =
∑

i,σ

εiσc
†
iσciσ−

∑

i

Uic
†
i↑c
†
i↓ci↓ci↑

−
∑

〈i,j〉,σ

(
tijc
†
iσcjσ + t∗ijc

†
jσciσ

)
, (9)

where εiσ is the on-site energy, tij the hopping element
between adjacent sites i and j, and Ui is the onsite two-
particle attraction, taken to be uniform, i-independent,
in this paper. An orbital magnetic field can be incorpo-
rated into the phases of the hopping elements tij , while
a Zeeman field splits the spin-dependent on-site energies
εiσ. Unless noted differently, all tij ≡ t are taken be
equal. In this paper we will only deal with orbital fields.
To account for disorder, εi will be drawn from a Gaus-
sian distribution with characteristic width W . The inter-
site spacing is a. Unlike, for example, the disordered
XY model, the negative-U Hubbard model can lead to
a BCS transition, a BKT transition, or to a percolation
transition, and thus this choice is general enough not to
limit a priori the underlying physical processes. Impor-
tantly, the model includes the fermionic degrees of free-
dom which may be relevant to some of the experimental
observations.

Calculation of correlation functions, for example the
Green functions that enter the current formula, require
thermal averages. To perform the thermal average we
need to decouple the quartic interaction term so we em-
ploy the exact Hubbard-Stratonovich transformation

e−
∫ β
0

dτ
∑
i Uic

†
i↑c
†
i↓ci↓ci↑ =

∫
D∆D∆̄e

−
∫ β
0

dτ
∑
i

−|∆i(τ)|2
Ui

+∆i(τ)c†i↑c
†
i↓+∆̄i(τ)ci↓ci↑ ,

(10)

which is basically a Gaussian integration (D∆ ≡
Πτ,id∆i(τ), where the product runs over all times and
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all sites). Note that the field ∆i(τ) is just an integra-
tion variable that decouples the two-body term in the
SC channel, and should not be confused with |Ui|〈ci↓ci↑〉.
Similarly, one introduces the integration fields ρiσ(τ),

that couple to the spin density30 〈c†iσciσ〉, and leads to

an additional term −∑i,σ |Ui|ρi−σ(τ)c†iσciσ in the action

(which, in the mean-field approximation gives rise to the
Hartree-Fock contribution).

The Hubbard-Stratonovich decoupling in both the ∆
and ρ channels52 not only provides access to both soft de-
grees of freedom, but also the saddle point solution gives
the standard mean-field results for those fields, and fur-
thermore guarantees that the action expanded to Gaus-
sian order corresponds to the random phase approxima-
tion31,51. Since our main interest lies in thermal effects,
for example the thermal BKT phase transition, or ther-
mal activation of vortices, we now neglect quantum fluc-
tuations (τ dependence) of the auxiliary field ∆. One can
then write the partition function for the Hubbard model
as25,26

Z = Tr
[
e−βĤHubbard

]
=

∫
D(∆,ρ) Trf

[
e−βĤBdG(∆,ρ)

]

(11)
where the latter trace is over all fermionic degrees of free-
dom. HBdG(∆,ρ) is the Bogoliubov-de Gennes (BdG)
Hamiltonian with a given set of ∆ and ρ, where these
vectors designate the set of values of these parameters on
all lattice sites

ĤBdG =
∑

i,σ

(εi + ρi)c
†
iσciσ −

∑

〈i,j〉,σ

(
tijc
†
iσcjσ + t∗ijc

†
jσciσ

)

+
∑

i

(
∆ic

†
i↑c
†
i↓ + ∆̄ici↓ci↑

)
+
∑

i

|∆i|2 + ρ2
i

Ui
. (12)

Given the explicit form of the diagonalizable BdG
Hamiltonian, we can calculate expectation values and
correlation functions,

Tr
[
ρ̂ Ô
]

=

∫
D(∆,ρ)e−βE0

N∑

n=1

e−βEn
〈
n
∣∣∣Ô
∣∣∣n
〉
,

(13)
where the sum is taken over all positive eigenvalues
(quasi-particle excitations) of the BdG Hamiltonian. In
our simulations we calculate the current and so replace
Ô with the expression for the current in Eqn. (4). Here
E0, En and |n〉 are the ground-state energy, excitation
energies and excitation wave functions, respectively, for
the BdG Hamiltonian, for the specific configuration of
∆ and ρ. It is straightforward to see that in this case,
the saddle-point approximation of the partition function
gives rise to the mean-field BdG equations (and then ∆i

indeed corresponds to |Ui|〈ci↓ci↑〉). The calculation of
the full integral, using the (classical) Monte Carlo ap-
proach32, includes also the contributions of thermal fluc-
tuations of the amplitude and phase of the order param-
eter. In using the Monte Carlo summation we take a sta-
tistical average over different field configurations, which

introduces statistical uncertainty into our observables.
This uncertainty gives rise to the one-sigma error bars on
the numerical results in this paper. In Appendix B we
detail how we improve on contemporary methods to per-
form the Monte Carlo calculation in O(N1.9M2/3) time,
where N is the number of sites and M the order of a
Chebyshev expansion.

IV. APPLICATIONS

We have derived a new expression for the current flow
through a superconductor, and demonstrated how to cal-
culate the current in mesoscopic systems. Before apply-
ing it to understand and predict novel phenomena, it is
important to verify it across a variety of exemplar sys-
tems, where one can compare against well-established
theories. At the same time, as we are using ab initio
methods we present the first comparison between the un-
derlying microscopic variables and the phenomenological
parameters often used to describe these effects. As the
main novelty of the approach is the inclusion of ther-
mal fluctuations, we pay particular attention to verifying
the formalism in two dimensions, especially looking for
signatures of the BKT transition driven by phase fluctu-
ations. In Sec. IV A we probe the current through a clean
superconductor, and check that we can recover the BTK
results for the contact resistance. A key effect in such
systems is Josephson tunneling, so in Sec. IV B we study
the temperature dependence of the resistance of a single
Josephson junction. Dephasing (by temperature averag-
ing) and decoherence (by electron-electron interactions)
are studied in Sec. IV C. In Sec. IV D we examine the
temperature dependence of the resistance in the vicinity
of the BKT transition and compare to analytical results.
In Sec. IV E we introduce finite magnetic field (flux) and
probe the Little-Parks effect in the presence of disorder.
Finally, in Sec. IV F we demonstrate how plotting maps
of the current and potential across the system can illu-
minate the microscopic processes at the superconductor-
insulator transition, finding that the rise in resistance is
driven by the emergence of weak links. Throughout we
use an attractive interaction of U = 1.6t to describe the
SC region. To avoid the Van Hove singularity at half
filling33 we study systems at an average 38.7% filling, ex-
cept for Sec. IV C where we focus on wires with a low
filling fraction of 20%. All the calculations were carried
out in the linear response regime, with a small potential
difference of eV = 0.02t. These parameters gave a typical
superconducting order parameter at T = 0 of ∆ = 0.32t.
Systems were typically two-dimensional, so a single lat-
tice site thick, 12 lattice sites wide, and 48 lattice sites
long.
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FIG. 2: (Color online) The variation of conductance G with
the average superconducting order parameter U〈c↑c↓〉 as the
interaction strength is increased. The normal current is shown
in blue and the supercurrent in red. The numerical results are
shown with error bars, and BTK theory by the solid line. The
green line denotes the chemical potential difference across the
sample. The upper plot (a) is at “zero” temperature, with no
thermal or quantum fluctuations, and the lower (b) at T =
0.01t, showing a marked difference between the mean-field
BTK formula and the numerical data that include thermal
fluctuations.

A. Clean systems

Well below the BKT transition, where thermal fluc-
tuations of the pair amplitude and phase may be ne-
glected, the resistance through a clean SC region is
solely due to the contact resistance at the two inter-
faces. This resistance has been calculated by Blonder,
Tinkham and Klapwijk (BTK)11. By assigning a tun-
neling strength 1/Z to the barriers, BTK have shown
that if the intermediate sample is in the normal state,
then the current is purely due to electrons tunneling
across the barrier, and the transmission coefficient is
given by 1/Z211. On the other hand, if the sample
is in the SC state, then the SC gap, ∆, inhibits elec-
trons from directly tunneling into it. Instead, these elec-
trons Andreev tunnel accompanied by a hole. For a
large barrier Z � 1 the transmission coefficient becomes
∆2/4Z4(∆2−E2)11, where E is the electron energy. Elec-
trons with an energy outside of the gap can either tun-
nel alone with a corresponding normal transmission co-
efficient (E +

√
E2 −∆2)/(2Z2

√
E2 −∆2), or Andreev

tunnel with accompanying hole, and have a transmission
coefficient of ∆2/4Z4(E2 − ∆2). We first compare the
results of our numerical calculations to these BTK for-
mulae, and then demonstrate that for the simple case of
a single SC site, the BTK results can be derived ana-

lytically from our current formula. Secondly we go be-
yond the low temperature regime accessible with stan-
dard theory by studying the situation at higher temper-
ature where fluctuations become important.

To verify that the model recovers the correct behavior
at the tunneling barrier we focus on the weak coupling
limit. In this limit, once a Cooper pair tunnels through
the first barrier, it has an equal probability of continuing
to either the left or the right lead, an consequently the
current through the double barrier will be half that of a
single barrier27. For a long enough system the finite bias
and temperature smear any Fabry-Perot type interfer-
ence. To study the effect of the changing order parame-
ter ∆, we focus first on a low temperature system, where
∆ is indeed equal to the pair correlation |U |〈ci↓ci↑〉, vary
the interaction strength U , and monitor the various com-
ponents of the tunneling current. For a pristine system
with W = 0, all of the resistance stems from the two tun-
neling barriers, and we verified that the current flow was
independent of the length of the SC region. A relatively
large potential bias of eV = 0.1t was applied across the
leads. This allows us to explore all tunneling processes,
either for ∆ < eV or ∆ > eV by changing the interac-
tion parameter U and as a result ∆. Our results for the
conductance are depicted in Fig. 2(a), and has Z ≈ 1.4.
At ∆ = 0 the current is entirely normal. As shown in
Fig. 2(a), increasing ∆ gives rise to a resonance in the
Andreev current when E = ∆. At the same time the
normal current falls as fewer electrons can be directly
injected outside of the SC gap. As ∆ increases still fur-
ther, so that the SC gap exceeds the chemical potential
difference, resonant electrons are no longer injected into
the divergent density of states at the SC gap, and the
Andreev current falls. In agreement with the BTK cal-
culation, at large ∆ the Andreev current adopts its final
value, 1/4 of the normal ∆ = 0 conductance, and no
normal current flows.

Fig. 2(b) depicts our results for higher temperatures,
signaling the limitation of the BTK formalism. The nu-
merical results are compared to the prediction of the
BTK formalism, where the effects of temperature are
taken into account in the mean-field reduction in ∆ and
the broadening of the lead distribution function. The ev-
ident reduction of the calculated resistance, compared to
the BTK prediction, indicates the importance of thermal
fluctuations in determining the resistance. In Sec. IV D
we discuss in more detail the temperature dependence of
the resistance due to phase fluctuations.

As a last point in this section, we now demonstrate
explicitly that in the weak coupling limit Y � 1, for
the special case when the SC region consists of a single
site, the BTK results can be derived from our formalism
straightforwardly. In the linear response regime where a
potential V is put across the sample such that injected
electrons are entirely within the SC gap, we find that the
normal current is zero and we recover the analytic result
for the Andreev current, J = e2V∆2/8hZ4(∆2 − µ2),

where Z =
√
µ/πν/Y , µ is the chemical potential, and ν
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FIG. 3: (Color online) Upper : The setup to model the Joseph-
son junction. Traversing the center of the SC region is a
Josephson junction (opaque cuboid). The junction is modeled
by the reduction of the matrix hopping elements to t′ = 0.005
(brown interconnects) compared to t = 1 in the supercon-
ductor. The two metallic leads are shown in blue, and the
lead-superconductor tunneling barrier by the gray cuboids.
Lower : The variation of conductance with temperature for
the Josephson junction. Results of the numerical computation
(points) and of the theoretical model (solid lines) are shown
for a weak (green), intermediate (red), and strong (blue) cou-
pling between the two superconductors.

is the density of states at the Fermi surface. If the sample
is normal we find that there is no Andreev current, and
the normal current is J = e2V/2hZ2. These results are
what would be expected from the BTK formalism, and
coupled with the numerical results confirm that the for-
malism properly treats tunneling between the leads and
the SC sample.

B. Josephson junction

Another simple example that we wish to explore is
a single Josephson junction, which will be modeled in
the negative-U Hubbard model by an intermediate re-
gion consisting of two clean superconductors (W = 0),
between which we insert a weak link where the nearest-
neighbor hopping element t′ is small (t′ << t), see Fig. 3.
Studying this system will allow us to probe how a phase
difference across a barrier can affect the current flow

through it. We first set t′ = 0 to disconnect the left and
right-hand sides, and numerically evaluate the current
through the central region. This is by no means triv-
ial. The current formula, through the anomalous Green
function, allows an absorption of a pair from the incom-
ing lead into the condensate on one side of the barrier,
and an emission of another pair into the outgoing lead.
This current, however, will depend on the phase differ-
ence between the SC order parameter on the two sides of
the barrier. For t′ = 0, i.e. an infinite barrier, the phases
of the left and right-hand order parameter are uncorre-
lated, and thus all phase differences are degenerate in
energy. Therefore, the current vanishes, but only after
averaging over all states, which is done automatically in
our numerical procedure. In the other limit, when the
hopping matrix elements are the same as the hopping
through the rest of the superconductor, t′ = t, the phase
of the superconductor is locked so we see the standard
free SC current flow.

We now model the situation with a moderately sized
central barrier. This splits the superconductor in two,
but crucially a Josephson supercurrent flows between the
two sides, thus allowing the current to flow with no addi-
tional resistance. The current J(T ) = JJ(T ) cos(φL−φR)
is maintained by the phase difference φL−φR between the
left and right-hand superconductors, and the maximum
value of the dissipationless current is the critical Joseph-
son current JJ(T ) = (π|∆|/2eRn) tanh(|∆|/2kBT )34,
where Rn is the resistance of the central barrier when
the system is in the normal state.

In order to study the thermally driven disruption of the
Josephson current numerically, it is vital that this break-
down occurs before the BKT transition occurs, which as
we show in Sec. IV D, by itself reduces the current flow
through the system. We thus use a small hopping ele-
ment for the tunneling barrier of t′ = 0.005t, which has
a large Rn and therefore small Josephson current JJ. In
Fig. 3 we show the current as a function of temperature,
in the presence of the weak link. When there is no volt-
age drop across the Josephson junction, the current JM

that flows through it is given by JM = V/R, where R
is the contact resistance to the normal leads. This cur-
rent is maintained as long as the critical Josephson cur-
rent JJ is larger than JM. As temperature is increased
thermal fluctuations will weaken the phase lock between
the two SC regions, and the critical current is reduced.
When JJ is reduced below JM, a finite voltage develops
across the Josephson junction. This drives the phase dif-
ference across the junction to increase with time, which
in turn leads to an oscillating current. This current has
a non-zero time-average1, leading to a total resistance
RJJ(T ) = R/(1−

√
1− λ2), where λ = JJ/JM < 11. This

time averaged current is exactly the quantity calculated
in our Monte Carlo procedure. Fig. 3 depicts a compar-
ison between this simple model and our full numerical
calculation, with reasonable agreement.

The critical current can be modified by varying the
resistance of the central barrier, Rn. The intermediate
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case has Rn = 0.075h/e2, the stronger coupling with
Rn = 0.06h/e2 is obtained by lowering the barrier to t′ =
0.01t, and the weaker coupling with Rn = 0.085h/e2 by
widening the original barrier (t′ = 0.005t) to four lattice
sites. This wider barrier weakens the coupling between
the superconductors so the Josephson resistance emerges
at a lower temperature. A lower barrier strengthens the
coupling so raises the temperature required for the emer-
gence of resistance. Both these regimes are consistent
with the simple model. We also verified that at very
strong coupling where the temperature required for the
breakdown of phase coherence becomes of the order of
the BKT transition temperature this simple model for
the current flow no longer captures the full physics of the
system. This study validates that our formalism can cor-
rectly model the presence of the Josephson supercurrent
across the weak link introduced into the superconductor,
and can therefore be used to model disordered systems
that may contain multiple SC grains.

C. Decoherence and dephasing

The issue of decoherence and dephasing plays a sig-
nificant role in transport at low temperatures. Here we
define decoherence as the many-body phenomenon that
leads to the loss of coherence via interactions among the
electrons or interactions with the environment. On the
other hand, dephasing can occur in a non-interacting
system, and emerges from the fact that due to the fi-
nite temperature, electrons possess a range of energies,
of the order of kBT . Electrons of different energies ac-
quire different phases along their respective trajectories,
and if these phases differ by 2π or more when their en-
ergy changes by kBT , then interference phenomena will
average out to zero.

Decoherence: The effects of decoherence due to
electron-electron interactions are more profound in one-
dimensional wires in the normal phase. Since the original
Hubbard model employed in this calculation (Eqn. (9))
is an interacting model, one expects decoherence to arise
naturally from the calculation. However, though the orig-
inal formula for the current is exact, the approximation
employed above – Eqn. (13) – does not include quantum
fluctuations. This means that it neglects the imaginary
component of the self energy which corresponds to damp-
ing due to interactions, and the resulting decoherence. In
order to test the effects of such decoherence due to many-
body interactions, we introduce into the normal Green
function for momentum k (as here we study a wire in the
normal phase), by hand, the self energy

lim
δ→0

U2

2π4

∑

p,q

n(ξp)[1− n(ξp−q)][1− n(ξk+q)]

ω + ξp − ξp−q − ξk+q − iδ
, (14)

which is the lowest order contribution to the single-
particle self-energy, and where ξp are the momentum en-
ergy eigenstates of the Hamiltonian.
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FIG. 4: (Color online) (a) The relative fall in current in a one-
dimensional sample due to the introduction of self energy at
kBT = 0.1µ. The black points show the numerical results,
and the red line highlights the expected theoretical varia-
tion with length36, where J0 is the current that flows when
impeded solely by the contact resistance. (b) The relative
change (∆J ≡ J0−J) in current as a function of temperature
in a one-dimensional normal phase sample. The black points
show the numerical results, and the red the expected model
variation. The two green dashed lines show the exp(−µ/kBT )
and T 2 behavior. (c) The changing current in the presence of
a SC phase in a two-dimensional sample. The vertical green
dashed lines show the BKT and normal phase transitions.

A similar approach36 has been applied to interacting
electrons in a continuous one-dimensional system with
repulsive contact interactions (the second order contri-
bution to the self-energy does not depend on the sign
of the interaction). In this case, it has been shown, for
wires with parabolic dispersion and chemical potential
µ, that this damping leads to a change in the distribu-
tion function and reduction in the conductivity by a fac-
tor of 1 − π2(kBT/µ)2L/12[L + ` exp(µ/kBT )]36, where
the wire length, L, is long enough that the smearing of
the Fermi surface due to scattering (that occurs over the
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relaxation length scale `36) outweighs that due to tem-
perature. For sufficiently long wires L � ` exp(µ/kBT )
the reduction in conductivity becomes length indepen-
dent 1− π2(kBT/µ)2/12.

In order to be able to compare to this theory (which
relies on the parabolic dispersion), we focus on a system
with a low filling fraction of 20%, near the bottom of the
band, and set the disorder to W = 0.1t. We employ the
perturbative expression for the current, Eqn. (6), to give
us access to long wires with L� `. In the upper panel of
Fig. 4 we show the fall in current, as a function of length,
due to the inclusion of self energy at kBT = 0.17µ, here
` ≈ 27a. The overall change of ∼ 0.5% is small due to
the Pauli blocking of scattering processes near the Fermi
energy. We see reasonable agreement with the model
over a range of length scales. The middle panel of Fig. 4
depicts the change in current with temperature for a sys-
tem of a fixed length. We highlight the agreement to
the expected variation in the fall in conductance with
temperature36. At low temperatures (kBT � µ) the
damping is severely Pauli blocked so the characteristic
damping length-scale exceeds the system length and the
current correction 1−π2(kBT/µ)2 exp(−µ/kBT )L/12` is
exponentially suppressed. As temperature increases the
Fermi liquid T 2 behavior starts to dominate the correc-
tion to the current. At high, usually unphysical temper-
atures (kBT � µ), numerics see a smaller current shift
than predicted by theory as the details of the specific
Hubbard band dispersion versus the parabolic dispersion
in which the model was developed become important.

In Fig. 4(c) we examine the effect of a SC phase on
decoherence. At low temperature the presence of the SC
gap suppresses many-body scattering processes. How-
ever, when temperature is raised above the BKT phase
transition, scattering events are possible, though have a
smaller impact on the current than in the normal phase,
due to the still finite local pair correlations. Above the
mean-field BCS phase transition the current follows the
expected parabolic profile as in the normal phase. Thus
we have demonstrated that while quantum fluctuations,
as they affect decoherence, can be taken into account in
our formalism, their effect on the current, for the range
of parameters studied here, is usually small at . 1%. We
are thus justified in neglecting them in this study.

Dephasing : Having observed decoherence in the sam-
ple we now turn to study dephasing due to thermal av-
eraging. To verify that our formalism captures this im-
portant phenomenon, we study the length dependence
of the conductance in non-interacting systems. We first
verified, for a non-interacting clean system, that the net
macroscopic current increases by 2e2/h for each new
conduction channel introduced (not shown), indepen-
dent of length. Setting the amplitude of the disorder
to W = 0.2t, we show in Fig. 5 the fall in conductance
with length at two different temperatures. At T = 0
there is an initial linear fall in conductance over length
scales smaller than the localization length ξ ≈ 93a, and
an exponential fall at greater lengths. This is in accor-
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FIG. 5: (Color online) The fall in conductance with length
in a non-interacting one-dimensional wire with disorder W =
0.2t at two different temperatures. The red trend lines show
a linear drop off in conductance with length, and green an
exponential decay.

dance with the expectations of Anderson localization37 –
for length scales below the localization length, the con-
ductance changes as a power law of the length, while
it decays exponentially when the length becomes larger
than the localization length. At kBT = 0.01t, on the
other hand, dephasing causes different parts of the sys-
tem to be incoherent with respect to the others, causing
the conductance to fall linearly with inverse length, as ex-
pected from a classical system. This observation confirms
that the formalism naturally incorporates the physics of
dephasing in disordered systems.

D. Variation of resistance with temperature

We have now verified that our formalism captures
the basic phenomena of contact resistance in Sec. IV A,
Josephson coupling in Sec. IV B, and dephasing and
decoherence in Sec. IV C. With these key tests com-
plete, we are now ideally poised to study further ef-
fects within the superconductor, starting with the tem-
perature dependence of the conductivity and its relation
to the BKT transition. With increasing temperature a
two-dimensional superconductor undergoes a BKT tran-
sition38 characterized by the emergence of vortices across
the system, leading to the loss of global phase coherence.
At a higher (“mean-field”) temperature, the SC order
is completely suppressed and the system loses the SC
correlation even locally. To study how this transition is
reflected in the current flow we performed numerical sim-
ulations on a two-dimensional SC system at several dif-
ferent temperatures. Simulations were performed for two
different levels of disorder, W = 0.1t and W = 0.2t, to
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FIG. 6: (Color online) (a) The variation of resistance with temperature for two different values of disorder calculated numerically
(points). The red solid line shows the theoretical low temperature behavior, and the blue solid line the theoretical high
temperature behavior. The dashed vertical green lines show the BKT TKT and mean-field Tc temperatures. The insets show
the variation of the superconducting order parameter U〈c↑c↓〉 renormalized by its T = 0 value. (b) The numerical results (black
points) and the deduced linear length dependence (red line) of the resistance for three different temperatures (i) T < TKT, (ii)
TKT < T < Tc, and (iii) T > Tc. The L → 0 values correspond to the contact resistance, which is eliminated in the values
plotted in (a).

determine how the transition and current flow are mod-
ified by the normal-state resistance, and extrapolated
over length to remove the effects of the contact resistance
(Fig. 6(b)).

At temperatures below the BKT transition in Fig. 6(a)
the resistance is zero as the system is in the SC state.
At temperatures above the BKT transition vortices and
anti-vortices can easily unbind, though they may be par-
tially pinned by disorder. The finite conductance G of
a sample in this case has been shown by Halperin and
Nelson21 to be given by

G = 0.37Gn(ξ+/ξc)2 , (15)

where Gn is the normal state conductance, ξc is the SC
coherence length, and ξ+ is the SC order correlation
length, which diverges at TKT. The critical behavior at
temperatures near the BKT transition T & TKT leads to
the conductance

G = 0.37Gnb
−1 exp[

√
b(Tc − TKT)/(T − TKT)] , (16)

where b is a number of order unity. At temperatures
higher than the (renormalized) mean-field critical tem-
perature Tc, the conductance is given by the Aslamasov-
Larkin theory21,39

G = 0.37Gn(Tc − TKT)/(T − TKT) . (17)

Finally, we can also estimate the crossover between these
two regimes by noting that the difference between the
Kosterlitz-Thouless and mean-field transition tempera-
tures critical regime is given by21

Tc − TKT ≈ 0.17e2Tc/~Gn . (18)

The difference between these two temperatures therefore
widens with falling normal state conductance.

In Fig. 6(a) we depict the variation of resistance with
temperature above the BKT transition, showing the two
types of dependence on temperature as is expected by
theory. At W = 0.1t we have TKT = 0.0091t, Tc = 0.11t,
Gn = 17.6e2/h, and b = 0.47, whereas at W = 0.2t
we have TKT = 0.0046t, Tc = 0.16t, Gn = 22.2e2/h,
and b = 0.26. The rising disorder reduces the normal
state resistance Gn, and also enhances the difference be-
tween the Kosterlitz-Thouless and mean-field transition
temperatures, which agrees with Eqn. (18) within 20%.
The high temperature Aslamasov-Larkin expression for
the conductance persists well above the the mean-field
critical temperature, where the insets show that the SC
state has been totally suppressed. Finally, when the tem-
perature is of the same order as the bandwidth, kBT ∼ t,
the resistance in Fig. 6(a) increases superlinearly as the
Fermi distribution becomes smeared across the whole
band structure. Thus, we have been able to demonstrate
that our formalism can calculate the resistance from a
microscopic model, allowing us, probably for the first
time, to derive the phenomenological parameters from
the model.

E. Little-Parks effect

Varying an applied magnetic field has long been an
important experimental probe of the properties of a su-
perconductor. It is therefore imperative to verify that
the current formula developed here, coupled with the
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FIG. 7: (Color online) Upper : A schematic of the cylindri-
cal wire within the negative-U Hubbard model. The left and
right-hand metallic leads are shown in blue, from which elec-
trons can tunnel through the gray toroids into the central SC
region which is shown in red. The magnetic flux threading
the cylinder is shown in green. Lower : The variation of con-
ductivity with flux. The computational points are shown in
black, (+) for T = 0.1t, where the data reasonably fit the
mean-field Little-Parks model (red solid line), and (×) for
T = 0.03t, well below the mean-field transition temperature
Tc ' 0.09t, where the numerics is best fit by the sinusoidal
blue dashed line.

Hubbard model for the superconductor, is able to ac-
curately model the effects of an applied magnetic field.
In the Hubbard model the effects of the magnetic field
are incorporated, via the Peierls substitution, into the
phases of the hopping elements, tij → tije

2πiφij/φ0 where
φ0 = hc/e is the (single-electron) quantum flux, and the
phases φij are defined such that their integral over a
closed trajectory is equal to the magnetic flux thread-
ing the surface spanned by the trajectory.

In order to check whether this procedure captures the
effect of an orbital magnetic field, we apply it to a clean
hollow cylindrical superconductor, of radius r, such as
that shown in Fig. 7, threaded by magnetic flux φ. As
demonstrated by Little and Parks41, the flux suppresses
superconductivity and the transition temperature falls
periodically with the flux. This is often probed by mea-
suring the falling conductance of the cylinder near to
the SC transition temperature41–43. The energy of elec-
trons in the cylinder increase with trapped flux φ as
~2(n + 2φ/φ0)2/2mr2, where the integer n is chosen to
minimize the energy. This results in a periodic parabolic
variation of the electron energy with flux and thus a
parabolic periodic oscillation in the SC transition tem-
perature ∆Tc = ~2(n+ 2φ/φ0)2/16mr241. Therefore, for
a cylinder held just above its SC transition temperature,

the change in the transition temperature with increasing
flux results in a similar variation of the conductance with
flux, G(φ) = [G0 −∆Gminn(n + 2Φ/φ0)2], leading to a
minima in the conductance at every half integer Cooper-
pair flux quantum φ = (n + 1/2)φ0/2. This has indeed
been observed experimentally41.

In Fig. 7 we first take a cylinder held just above its
mean-field SC transition temperature at T = 0.1t > Tc '
0.09t and numerically evaluate the conductance as a func-
tion of the magnetic flux. The reasonable agreement with
the above formula (red line, with G0 = 23.5e2/h and
∆G = 2.8e2/h) demonstrates that the formalism cor-
rectly picks up the effects of an applied magnetic field.
The deviation from the parabolic predictions of mean-
field theory at every half flux quantum is due to thermal
fluctuations, which are neglected by the standard mean-
field approach. In order to explore the consequences of
thermal phase fluctuations further, we take a cylinder
held well below its mean-field SC transition temperature,
but above the Kosterlitz-Thouless transition temperature
at T = 0.03t > TKT ' 0.01t. According to conventional
mean-field theory the system is superconducting what-
ever the threaded flux, but when phase fluctuations are
taken into account, thermally excited phase slips cause
the system to have a finite resistance. As a phase fluctua-
tions are enhanced by the flux, we again see a periodically
varying conductivity, though here it is better fitted with
a sinusoidal curve. The periodically varying conductiv-
ity has a significantly lower amplitude than we saw at
higher temperature, showing that though the threaded
flux can encourage phase slips the effect is less profound
than when at the mean-field phase transition. The power
of the formalism to explore the interplay between phase
fluctuations, flux and disorder will be employed to study
recent puzzling observations7,8,42 in future publications.

F. Current distribution maps

One important feature of our formalism is the new ca-
pability to map out the flow of both super and normal
currents within a sample and the changes in chemical
potential which drive that flow. Since we can now study
the current flow around impurities in the sample and ex-
pose weak links with large potential drop, we should be
able to probe phenomena in the disordered superconduc-
tor with unprecedented detail and trace their cause back
to a microscopic mechanism. While applications of this
formalism to the outstanding problems in this field will
be described in future publications, in this section we
aim to demonstrate the usefulness of the current and
potential maps, first by further studying the Josephson
junction with a superconductor containing a central nor-
mal region, and secondly by studying the temperature
driven superconductor-insulator transition in disordered
systems. However, we will first verify our current map-
ping formalism by examining the site-by-site current con-
servation in a clean system. As the only sources and sinks
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FIG. 8: (Color online) (a) The average fractional error in

conservation of current
∑N

i=1 |∆Ji|/JiN on each site against
the fraction of total states K/N included in the calculation of
the current. (b) The changing conductance (black line) of a
Josephson junction with width Lnorm of central normal region
(left axis), and the fraction of the normal current Jnorm/Jtotal
(blue line) flowing through the central region (right axis).

of current are the two metallic leads, a consistent calcula-
tion should obey charge conservation for all of the inner
sites of the sample. In Fig. 8(a) we show the average frac-

tional error in conservation of current
∑N
i=1 |∆Ji|/JiN on

each site as we vary the number of states K included in
the calculation out of a possible N = 77 states, as pre-
scribed in the penultimate paragraph of App. B. We see
that if only 5% of states are included there is a 20% av-
erage leakage of the current. However, if we include 50%
of the states in the calculation of the current there is a
leakage of only ∼ 2%. Throughout the remainder of this
section we include 40% of the states in the calculation to
yield an average error of approximately 3%.

Having verified the conservation of current, we demon-
strate what can be learned from the current maps by
first studying a modified Josephson setup consisting of
two clean SC regions with a central normal region that
has U = 0. As expected (Fig. 8(b)) the conductance de-
creases as the length of the U = 0 region increases. At
the same time, our formalism allows us to monitor the
current flow through the system to see it change from SC
to normal in character as the intermediate normal region
is widened, as shown in Fig. 8(b). For a narrow U = 0
central region the two SC regions are phase locked and
predominantly a Josephson current flows (lower panel in
Fig. 9(a)). Due to the strong proximity effect, the system
is entirely SC with no reduction in conductance. The
electrical potential is dropped on the two contact bar-

(a) Current map for a short barrier Lnorm = a
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(b) Current map for a long barrier Lnorm = 4a
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FIG. 9: (Color online) The upper panel shows the potential
difference V (x) across the sample with total potential drop V .
The lower panel shows current maps for short (a) and long
(b) normal intermediate regions respectively. Supercurrent is
shown by cyan darts and normal current by violet pointers, ar-
row length corresponds to current magnitude and orientation
to the direction of current flow. Color density corresponds to
the order parameter U〈c↑c↓〉, which has peak value U〈c↑c↓〉0.

riers, and remain constant through the superconductor
(upper panel in Fig. 9(a)). (For the present case of two
equal contact barriers the potential in the SC is equal to
the average of the chemical potential of the two leads).
On the other hand, when the central U = 0 region is wide,
Lnorm & 4a, the two SC regions are too weakly coupled
for a Josephson current to flow, and instead a normal
current flows between the two SC regions (lower panel
in Fig. 9(b)). This, in turn, introduces a new resistor
into the sample and the conductance drops accordingly.
Now the potential drop is mostly across the Josephson
junction (upper panel in Fig. 9(b)) – the left-hand su-
perconductor adopts, approximately, the potential of the
left-hand lead and the right-hand superconductor that
of the right-hand lead. Fig. 8 depicts the dependence of
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(a) Superconductor-insulator transition
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(c) At the superconductor-insulator transition, T ≈ Tc
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(d) Insulating side of transition, T ≈ 2.3Tc
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FIG. 10: (Color online) (a) The fall in conductance across the
superconductor-insulator transition. Current maps on tun-
ing temperature from (b) a superconductor at T ≈ 0.14Tc

through to (d) an insulator at T ≈ 2.3Tc. At T ≈ Tc the
superconductor-insulator transition takes place. Supercur-
rent is shown by cyan darts and normal current by violet
pointers, arrow length corresponds to current magnitude and
orientation to the direction of current flow. Color density
corresponds to the order parameter U〈c↑c↓〉. Lines of equal
chemical potential are shown in white. In the current map
(b) three points of interest are labeled: (1) the normal state,
(2) the superconductor state, and (3) Josephson tunneling.

the fraction of the normal current, out of the total cur-
rent, that flows through the intermediate region, chang-
ing from zero, for a short normal region, to unity, for a
long one. This situation is analogous to current flowing
between SC grains in a disordered sample, and the analy-
sis can reveal whether they are coherently coupled, when
a supercurrent flows between the grains, or decoupled,
when a normal current flows. Thus the formalism can
be an important ingredient in the study of the origin of
resistance in disordered SC system, and will be used in a
subsequent publication, to study the anomalous magne-
toresistance observed in experiment44.

We give a glimpse of such an analysis in the case
of the superconductor-insulator transition in a disor-
dered superconductor with increasing temperature. For
W = 0.2t, the system displays a superconductor-
insulator transition at a temperature Tc ≈ 0.14t. In
Fig. 10(a) we show the variation of conductance across
the superconductor-insulator transition, and below it dis-
play the current distribution maps. In Fig. 10(b) at
T ≈ 0.14Tc there are weak-disorder driven fluctuations
in the SC order parameter, but an almost uniform super-
current. The potential drops mainly in the contacts, and
in the sample is equal to the average of the two leads with
small random fluctuations. In Fig. 10(d) at T ≈ 2.3Tc

the SC order parameter practically vanishes, there is no
supercurrent, and, due to the increasing resistance, only
a small normal current flows through the sample. The
potential, as expected for normal systems, decays lin-
early across the sample. At intermediate temperatures
T ≈ Tc the current map Fig. 10(c) highlights the in-
terplay of the normal and SC current. There is a rough
correlation between regions of vanishing SC order param-
eter and normal current (e.g. point (1)), on one hand,
and finite SC order parameter and supercurrent flow (e.g.
point (2)), on the other. However, at (3) a small nor-
mal region separates3 two SC regions, thereby forming
an effective Josephson, resulting in a supercurrent flow-
ing through the zero SC order region. By examining the
equi-potential lines we see that the normal regions, for
example (1), are acting as weak links whereas the poten-
tial drop over the SC regions is small. Thus the over-
all resistance of the sample is dominated by such weak
links. The current and potential maps allow us to see
the superconductor-insulator transition developing, and
we plan to investigate in details the relation of such a
percolative picture to the Kosterlitz-Thouless transition,
as was recently suggested26.

V. DISCUSSION

In this paper we have developed an exact formula
to calculate the current through a superconductor con-
nected to two non-interacting metallic leads with an
imposed potential difference. The formula was imple-
mented with a negative-U Hubbard model which in-
cluded both phase and amplitude fluctuations in the SC



14

order parameter. A new Chebyshev expansion method
allowed us to solve the model and calculate the current
in O(N1.9M2/3) time, granting access to systems of un-
precedented size. The formalism also enables the gener-
ation of current and potential maps which show exactly
where the super current and separately the normal cur-
rent flows through the system.

The formalism was used to revisit a series of well-
established results, allowing us to expose the link be-
tween the phenomenological parameters and underlying
microscopic variables. This also demonstrated the accu-
racy of the procedure, its ability to capture various phys-
ical processes relevant to superconductivity in disordered
systems, and correctly model the presence of a magnetic
field and finite temperature. These tests indicate that
the formalism and accompanying numerical solver can
robustly calculate the current through a superconductor
across a wide range of systems. In the future we plan

to report on the application of the formalism to several
outstanding questions, such as the magneto-resistance
anomaly on crossing the superconductor-insulator tran-
sition44, the Little Parks effect in nano-scale cylinders42,
and dissipation-driven phase transitions in SC wires45.
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Appendix A: Derivation of the Current Formula

The formula for the current in the Bogoliubov basis set
is

J=
ie

2h

∑

σ

∫
dε
(
Tr
{[
fL(ε)ΓL−fR(ε)ΓR

][
ui
(
G>σ −G<σ

)
u∗j+vi
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<
−σui
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. (A1)

We need to determine the Green functions across the sample, which must be calculated in the presence of the leads.
However, as the electrons in the metallic leads are non-interacting we can start from the bare electronic Green functions
for the superconductor not coupled to the leads G̃r

eσ(m,n) = δm,n/(ε− ξm + iδ) and G̃r
hσ(m,n) = δm,n/(ε+ ξm + iδ),

which have energy eigenstates ξm and δ → 0+. We then write down Dyson’s equation to self-consistently include the
leads

(
Gr
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Hr
σ
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)(
Gr
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)
. (A2)

Here gr
epχ = 1/(ε − εp + µχ + iδ) is the retarded

Green function of the non-interacting electrons in the
leads, with dispersion εp, and {up, vp} are the matri-
ces of the eigenstates multiplied by the lead plane wave
states p at the tunneling barriers. To extract the re-
tarded Green function and its anomalous counterpart
from this matrix equation one has to perform a ma-
trix inversion. The Dyson equation is for the retarded
and advanced Green functions, whereas the current for-
mula Eqn. (A1) is in terms of the lesser and greater
Green functions. To transform these into the retarded
and advanced Green functions we apply the identity
G<σ = G̃<σ + G̃r

σΣr
σG<σ + G̃r

σΣ<
σ Ga

σ+ G̃<σ Σr
σGa

σ recursively to

find G<σ = (1 + Gr
σΣr

σ)G̃<σ (1 + Σa
σGa

σ) + Gr
σΣ<

σ Ga
σ, where

Σσ is the self energy. This recursion fixes the chemical
potential of the superconductor by including tunneling to
and from the leads. This will ensure that the net number
of electrons is conserved, analogous to some extensions to
the BTK formalism27. However, as the final chemical po-
tential must be independent of the chemical potential of
the uncoupled superconductor, the term containing G̃<

must be identically zero leaving G<σ = Gr
σΣ<

σ Ga
σ, and its

greater Green function counterpart G>σ = Gr
σΣ>

σ Ga
σ. We

now extend this identity to include the anomalous Green
function and recover

(
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We can now take this, the analogous expression for the
greater Green function, and their anomalous counter-

parts, and substitute them into Eqn. (A1), which will
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yield Eqn. (4).

Appendix B: Evaluation of the Monte Carlo
Integrals

In order to evaluate the correlation functions (e.g.
Eq. 13), we need to sum over all possible spatial
configurations of the auxiliary fields ρ and {∆, ∆̄},
with each configuration carrying the weight P (ρ,∆) =
exp(−βE[ρ,∆])/Z. This distribution is sampled using
the Metropolis algorithm32, which at each step proposes a
new configuration of either the field ρ or ∆ and calculates
the resulting change in the total energy. If this change
in the energy is negative the step is accepted, whereas if
positive it is accepted with probability exp{−β(E[ρnew]−
E[ρold])} and exp{−β(E[∆new]−E[∆old])} respectively.
Since the walk over ρ is one-dimensional we choose the
step size |ρnew − ρold| to aim for 50% of the steps to be
accepted, whereas the walk over {∆, ∆̄} covers a two-
dimensional space so we choose a step size |∆new−∆old|
so that 35.2% of the steps will be accepted46. To verify
whether the effect of fluctuations in the density field, and
check the robustness of our Hubbard-Stratonovich decou-
pling scheme in Fig. 11(e) we compare the conductance
of the superconductor-insulator transition of Fig. 10 both
with density fluctuations, and secondly without den-
sity fluctuations but simply a self-consistent but static
mean-field value for the density. As the superconductor-
insulator transition is driven by fluctuations in the phase
of the SC order parameter it is expected that density fluc-
tuations will have little affect on the conductance. We
see in Fig. 11(e) that density fluctuations reduce the con-
ductance slightly, but overall the transition remains the
same. This verifies that our Hubbard Stratonovich de-
coupling scheme is robust against the inclusion of density
fluctuations. We saw similar conclusions from checking
other transitions from Sec. IV.

Central to the Monte Carlo method used to sample
the partition function is the requirement to calculate the
energy difference between two different configurations of
the auxiliary fields, {ρold,∆old} and {ρnew,∆new}. For
a lattice with N sites, to calculate the energy of each
proposed configuration requires an effort of O(N3), so
an entire sweep over the N sites that make up the fields
ρ and {∆, ∆̄} requires a computational effort of O(N4).
However, a recent method developed by Weiße47 calcu-
lates just the difference between the energy of the con-
figurations in a computationally efficient manner. For an
update to the ith site a Chebyshev expansion with the
0 ≤ m ≤ M coefficients containing 〈i|Tm(Ĥ/s)|i〉 must
be calculated, where Tm is defined by the recursion re-
lation Tm(x) = 2xTm−1(x) − Tm−2(x), T0(x) = I, and
T1(x) = x. A typical expansion contained M = 1024
terms. Previous authors47 have calculated this site-by-
site through a succession of sparse matrix-vector multi-
plications, each of cost O(NM), so for an entire sweep
over the order parameter the computational effort is
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FIG. 11: (Color online) (a) The estimate of the current with
number of Monte Carlo iterations, i, out of a total number
I = 1000. The primary y-axis shows the best estimate of
the current (blue). The secondary y-axis shows the estimated
standard deviation in this estimate (green) and idealized im-
provement in the accuracy (red). (b) The distribution of 50
separate current estimates at T = 0 (red) and T = 0.2Tc

(green) with best-fit Gaussian distributions. (c and d) The
time τ to perform a run on a 32× 32 system renormalized by
the time τ0 for a M = 512, N = 1 system. In (c) the change
with varying the system size N , where the blue line is for the
standard O(N4) method of finding all of the energy eigenval-
ues, the green is the O(N2) standard Chebyshev expansion
method47, and the blue is the O(N1.9) extended Chebyshev
approach. In (d) the two Chebyshev expansion method ap-
proaches are compared by varying the expansion order M . As
in (c), the green line is the standard O(M) approach47, and

the red line is the new O(M2/3) algorithm. In (e) we compare
the conductivity at the superconductor-insulator transition
studied in Fig. 10 with and without density fluctuations.
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O(N2M). However, here we optimize the programme so
that the entire sweep can be performed in O(N1.9M2/3)
time. Rather than follow a site-by-site approach cal-
culated with sparse matrix-vector multiplications we in-
stead calculate the matrix elements for the entire sweep
simultaneously, which necessitates performing matrix-
matrix multiplications. Provided the changes in the order
parameters are small the local changes are independent
of those of surrounding sites and we can then perform
the entire sweep from this data set. Spherical averaging
further reduces the influence of changes in the surround-
ing order parameters. Central to the recursion relation
for Tm is the costly calculation of xn, for 1 < n ≤M . To
evaluate this we divide the calculation of the M matrix
products into three stages:

1. The lowest order matrix products, up to xk, are
sparse. Therefore, for the elements 1 < n ≤ k
the matrix multiplications involve only sparse ma-
trices, each of peak cost kN , and the total cost of
calculating them is O(k2N).

2. The second stage is to successively calculate every
kth matrix product. Each of these involves multi-
plying the dense matrix xpk by the matrix xk, for
integer 1 ≤ p ≤M/k, which costs O(N2.38) time48.
With M/k of these products to calculate the total
cost is O(N2.38M/k).

3. The third stage is to construct the entire family of
xn by interpolating between the matrices xpk found
in the second stage. This is done by multiplying
the dense matrices found in the second stage by
the sparse matrices found in the first stage. Fur-
thermore, as we need only the diagonal elements of
the final matrix each separately costs O(kN) and
so the total cost is O(kNM).

Having now laid out the prescription of how to cal-
culate the matrix elements, we now examine the total
cost, O(k2N + N2.38M/k + kNM). The choice k ∼
3
√
N1.38M will minimize the total cost to O(N1.9M2/3 +

N1.46M4/3), and as typically N � M the cost is ∼
O(N1.9M2/3). This is a significant improvement over the
cost O(N2M) of the Chebyshev expansion approach47,
which for the parameters employed in our simulations
corresponds to a speedup by a factor of ∼ 30. Now that
the matrix elements behind the Chebyshev expansion
have been found they are applied for the entire sweep.

To verify the Monte Carlo procedure in Fig. 11(a) we
first check the convergence of the estimate for the current
and that its standard error falls as the root of the number
of Monte Carlo iterations. In Fig. 11(b) we compare the
results of equilibrated Monte Carlo runs at zero temper-
ature from a variety of initial configurations of the order
parameter fields ρ and ∆. Evolution under the Metropo-
lis algorithm drives these starting fields into different re-
laxed configurations, which because the simulations are
restricted here to T = 0 are unable to be excited out

to explore different configurations. These final configu-
rations yield a variety of different current values, with
standard deviation of ∼ ±2.4% of the final total cur-
rent. At finite temperature thermal excitations can drive
the system to explore configurations around the ground
state with a narrower standard deviation of ∼ ±0.6%.
Having verified the current statistics, in Fig. 11(c and d)
we show the results of some timing runs that highlight
the improvement of the algorithm to O(N1.9M2/3) time
over the standard approach of calculating all the energy
eigenvalues in O(N4) time and the standard Chebyshev
approach that runs in O(N2M) time. In particular, by
varying the system size we observe that the method of
calculating all the eigenvalues is more efficient for systems
smaller than N ∼ 10, but the new Chebyshev approach
is superior for large systems. We took advantage of this
development to study large systems. In a typical simu-
lation on a single 2.66GHz Intel Core 2 processor we can
accumulate statistics over 10,000 different field configu-
rations for a 800-site system in approximately 10 hours.

The Chebyshev expansion method just described rep-
resents a zero order approximation. However, we can ex-
tend this method further and calculate the lowest order
change in the Chebyshev expansion following a shift in
the configuration of the fields ρ and ∆ by δ. The resul-
tant shift in the Chebyshev expansion of Ti is found using
the recursion relationships ti = 2

sδTi−1 + 2
sHti−1 − ti−2

with t0 = 0 and t1 = δ/s. This allows the Chebyshev ex-
pansion coefficients to be extrapolated over several con-
figuration space sweeps, and the calculation time falls
proportionally. Spherical averaging also reduces the in-
fluence of changes in the surrounding order parameters.
In practice it was found that up to ten extrapolation
steps could be performed, resulting in a code speed-up of
a factor of ten.

Though the Chebyshev approach can be used to di-
rect the sampling of the system, to calculate expectation
values, such as the current, it is necessary to diagonal-
ize the system and determine the field configurations of
its states. Formally this requires O(N3) time. However,
since the current is dominated by the quasiparticle states
near to the Fermi surface we instead adopt the Implic-
itly Restarted Arnoldi Method49 to calculate only those
particular states. We are also helped by the sparsity of
the matrix, which allows us to calculate K eigenstates
in O(KN) time. It is usually necessary to calculate a
certain fraction of the energy states, so K ∝ N , and the
total cost is O(N2). The eigenfunctions and energies can
then be used to calculate the current for a specific re-
alization of ρ and ∆ using the formalism described in
Sec. II. It is then necessary to average over successive
realizations of ρ and ∆. However, the contribution from
successive Monte Carlo calculations might be serially cor-
related which would result in an underestimated value for
the uncertainty in the predicted value of the current. To
correct for this we calculated the correlation time through
the truncated autocorrelation function50. We find a typ-
ical correlation time of approximately six Monte Carlo
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steps, which without autocorrelation corrections would
correspond to an underestimate in the uncertainty of a
factor of ∼ 2.5.
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