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It is useful to classify the spin transfer switching events according to the scenarios of equilibrium
destabilization: a local transformation or an equilibrium merging. We derive an invariant expression
for the critical current of local transformation, discuss the critical current of merging and consider
the competition of the two scenarios. The critical current of saddle point stabilization is also derived.
Our results provide a intuitive picture for the behavior of spin transfer devices, allowing one to make
qualitative predictions and understand the limitations of some frequently used approximations.

PACS numbers: 85.75.-d, 5.78.-n

I. INTRODUCTION

High density electric currents induce magnetization
motion and switching in nano-size metallic wires contain-
ing alternating ferromagnetic and non-magnetic layers
(Fig. 1). This phenomenon is finding important appli-
cations in computer memory and logic devices. Switch-
ing is caused by the spin-transfer torque 74?2 which
depends on the magnitude and spin polarization of cur-
rent, material parameters and the geometry of the de-
vice. Once the spin torque 74 is found from experiment
or theory, the magnetization dynamics can be obtained
by solving the Landau-Lifshitz-Gilbert (LLG) equation.
A simple but often sufficiently accurate approximation
is the macrospin model that assumes uniform magneti-
zation of the layer M(r,t) = Mn(t), where M is the
saturation magnetization value and n is a unit vector. In
this case the LLG equation reads

n= [—% X n} + Tso(n) + an xnl, (1)

where e(n) = (y/M)E(n), E is the magnetic energy per
unit volume, v is the gyromagnetic ratio, and « is the
Gilbert damping constant. The spin-transfer torque is
proportional to electric current, 75 ~ I.

At I = 0 vector n assumes an equilibrium position
n(0) at a minimum of magnetic energy. A nonzero
current has two effects: First, the spin torque gradu-
ally shifts the equilibrium away from its original posi-
tion ney(0) = neq(7). Second, a stable equilibrium may
abruptly turn unstable at a critical current I.. Such lo-
cal loss of stability will cause a magnetic switching? to
another stable state. Local destabilization is, however,
not the only process leading to switching. As will be dis-
cussed below, another scenario involves a collision and
disappearance of two equilibria as they shift towards each
other in response to the increasing spin torque. In this
paper we obtain new results for the critical current in
local and merging scenarios and discuss situations where
the two mechanisms compete with each other.

Various stabilization and destabilization scenarios are
well understood for general dynamic systems in terms of
the bifurcation theory.® However, in the spin transfer lit-
erature the usage of this language did not become a com-
mon practice. In part this happened because the critical
current can be found without establishing the exact sce-
nario of the stability change. Consider, for example, a
computation of the destabilization current I.. for a given
stable equilibrium. The LLG equation is linearized near
the point n.q(I), resulting in a system of two coupled lin-
ear differential equations for small deviations. The sta-
bility of the equilibrium is determined by the eigenvalues
A1,2(I) of the 2 x 2 matrix composed of the system’s coef-
ficients. When the inequalities Re[A1 2] < 0 are satisfied,
the equilibrium is stable. If the real part of either eigen-
value changes its sign as the current is increased, the
equilibrium becomes unstable. The critical current can
be determined from

Re[A(1,)] = 0. (2)

Equation (2) is applicable for any destabilization sce-
nario. But, as we show below, knowing the actual sce-
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FIG. 1: Spin transfer device with a static spin polarizer (fixed
layer) and a dynamic magnet (free layer).



nario one can qualitatively understand the parameters
determining the critical currents and predict the qualita-
tive behavior of the spin transfer device above and below
the current threshold.

Sections IT and III of the paper discuss the local and
merging scenarios, derive expressions for the critical cur-
rents, and consider examples of device operation. In
Sec. IV the competition between the two scenarios is con-
sidered. There we show how our method can provide a
qualitative picture of the device with several switching
possibilities.

II. LOCAL CHANGE OF STABILITY

A. Motivation

In the absence of the current, the equilibrium n.4(0)
corresponds to a local minimum of the energy. It is a
stable focus with two complex conjugated eigenvalues
A2 = A]. Both of them have a negative real part which
is a consequence of the positive damping o > 0. (For
zero damping the LLG equation describes conservative
dynamics with purely imaginary values of A; 2). To find
I. from the condition (2) one generally has to calculate
two complex eigenvalues as a function of current. This
calculation should, in particular, account for the displace-
ment of the equilibrium point caused by the spin torque.
The procedure is mathematically clear, but does not have
an obvious physical interpretation. The conventional in-
tuition, stating that the energy minima should be stable
and the energy maxima and saddle points should be un-
stable, breaks down in the presence of the spin torque.

There is, however, one case where the physics of the
process is well understood, namely the case of collinear
geometry, where the spin polarization of the current is
parallel to the equilibrium direction n.,(0) (see, e.g.,
Ref. 4). Here the spin torque points opposite to the dis-
sipation torque and directly competes with it. For the
collinear geometry the effect of spin transfer is described
by an additional “negative damping” as; < 0 that should
be added to the original positive damping «. As soon as
the total damping a.rf = o+ a changes sign, the equi-
librium becomes unstable. The novel negative damping
ag introduced in the collinear case is proportional to the
spin torque magnitude, which is, in turn, proportional
to the current |ag| ~ |Tst| = AswI. The coefficient
Ay gives a measure of the effectiveness of the current in
destabilizing the equilibrium: the larger it is, the smaller
the critical current will be.

The existence of a single number Ay, characterizing
the “switching ability” of the current greatly simplifies
the understanding of switching in the collinear geome-
try. Historically it was often implicitly assumed that the
ratio |74:|/I will also play the role of switching ability
for an arbitrary angle between n., and spin polarization.
This view, in particular, predicted that a sharp differ-
ence should exist between the destabilization of collinear

and non-collinear equilibria because the spin torque is
necessarily small near a collinear equilibrium (in this
case Tst(Neg) = 0) but can have a finite value near a
non-collinear one. The non-collinear equilibria were thus
thought to have much lower critical currents. Actual cal-
culations using the LLG linearization method, as well as
experiments, did not confirm this prediction and it was
argued? that the critical current should generally depend
not just on ||, but also on its derivatives.

One can ask if it is possible at all to have a single
“switching ability” parameter Ay, characterizing the ef-
fectiveness of the current-induced destabilization in a
general non-collinear geometry? Here we show that such
a parameter can be indeed introduced for extremum
(minimum or maximum) energy points and in some cases
for energy saddle points, and find explicit expressions for
it.

B. Invariant criteria, switching ability, and critical
circles

The LLG equation (1) can be equivalently written as
(1+a*)n=F(n)=7(n)+anx 7(n), (3)

where 7 = 7.+ T4 and 7. = —[(0¢/0n) x n] is the con-
servative part of the torque due to magnetic anisotropy
energy and external magnetic field. Both torques 7. and
Tt are tangent to the unit sphere.

The equilibrium magnetization orientations n., satisfy
T(neq) = 0. Their stability can be investigated by lin-
earizing the equation of motion. In standard spherical
coordinates (¢, ) one decomposes F = F?e; + Fley in
terms of the unit vectors ey, ep pointing along the coor-
dinate lines and obtains:
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Stability of an equilibrium requires both eigenvalues of
the “dynamic matrix” D to have negative real parts. For
a 2 X 2 matrix this is equivalent to the conditions (see
Appendix A)

TrD(ng,) <0, det D(ng,) > 0. (5)

We will call the above a “trace condition” and a “deter-
minant condition”. .

The dynamic matrix D is not covariant with respect
to the change of spherical coordinates, and its trace and
determinant depend on the coordinate choice. Let us
introduce a related matrix of covariant derivatives
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The trace of Deo, is an invariant quantity equal to
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where divF is understood as the divergence of the vector
field F(n) on the surface of a unit sphere. Crucially,
at gquilibrium points D = DCOU and we can can use
TrDco» < 0 and det Do, > 0 instead of (5). In partic-
ular, an invariant condition divF < 0 replaces the trace
condition.

The trace condition describes the local destabilization
or stabilization of the equilibria corresponding to the
energy extrema (minima and maxima). In those cases
detD > 0, and the stability change is due to the sign
change of TrD = divF.

Using the relation between F and 7 and notation
divF =V - F, we find:

V-F=V-1—-0a[VXT] n, (6)

where [V x 7] -n = —(019/0¢ — O(sin7,)/00)/sin b is
the curl of the field 7 on the surface of the sphere.

The general expression for the spin-torque created by
a polarizer pointing along the unit vector s reads:®

Tst(n, ) =wy g(n-s) [n X (s xn)] =wrfse(n) . (7)

Here wy = (y/M)(hI/2eV) is the rescaled current, where
V' is the magnetic layer volume, e is the electron charge,
and g(n - s) is the efficiency factor.® In the last form
of spin torque we have explicitly separated the overall
proportionality to the current from the angular depen-
dence fi(n). Importantly, the conservative torque is
divergence-free

V-t.=0,
and the spin transfer torques is curl-free
[VXTgl - n=0.
Using these properties we get
V-.F=V-Ty4—aVxT.=wr V-fy —aV?e. (8)

By changing the current, one can control the sign and
magnitude of the first term and produce the sign change
of the whole expression. We see that the switching ability
A = V- Iy exists, and is determined by the divergence
of the quantity f:(n) characterizing the angular depen-
dence of the spin torque.

Equation (8) shows that the condition divF = 0 can
be viewed as a limiting case of the condition for the ex-
istence of a precession state (PS). A precession cycle is
characterized by the integral condition f (Tst -€1)dl =
a $([Ve x n] - e, dl, where e is a unit vector tangent
to the sphere and perpendicular to the cycle trajectory,
and the integrals taken along the cycle.”® This integral
condition reflects the balance of incoming and dissipated
energy. As the size of the cycle tends to zero, equation (8)
is recovered from the integral condition. In terms of the
bifurcation theory?® local destabilization of the minimum
points is the Hopf bifurcation which normally produces
a small stable precession cycle around the destabilized
equilibrium.
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FIG. 2: Angular dependence of the spin torque divergence.
Efficiency factor is taken in the Slonczewski’s form. Inset:
absolute value of spin torque. Curves for different spin polar-
izations P are shown.

Consider now the experimentally relevant case of small
Gilbert damping, « <« 1. Expression (8) shows that
the critical current satisfies I. < « and hence will be
also small. Therefore at I = I. the equilibrium point
Neq(I.) = neq(0) + An will be close to zero current equi-
librium with An o« I, « «a. Expanding (8) up to linear
terms in o we get an approximate stability condition

2
wr V- f5t|neq(0) < aV a|neq(0) (9)

with equality achieved at the critical current.® Impor-
tantly, all quantities in (9) are evaluated at the unper-
turbed equilibrium point n.,(0). In comparison, using
conditions (5) one needs®1? to perform an explicit cal-
culation of n.,(I.) even in the case of the first order ex-
pansion in «. This siutation is discussed in more detail
in Appendix B.
According to Eq. (9) the critical current is given by

V2e
Neq(0)
Wre =« i (10)
In this formula the influences of the magnetic energy and
of the spin torque on the critical current are completely
separated. The former determines the equilibrium point
n.,(0) and the value of the enumerator, and the latter
is responsible for the switching ability in the denomina-
tor. For example, if one would rotate the polarizer s
keeping the energy ¢ constant, the critical current would
change according to the change of A, which, accord-
ing to Eq. (7), is a function of the angle between s and
n.q(0).
We now derive a useful expression for the switching
ability Ay, = V - f5;. For 74 given by Eq. (7) one gets

1 d .
Sinﬁﬁ(g(cosﬁ) sin® ¥9). (11)
where 9 is the angle between s and n. Representative

graphs of V - f;;(¥)) are shown in Fig.2(b) for the Slon-
czewski form? of g(19). We observe that:

V-t =~




(a) The angular dependence of the divergence V-7 4 ()
differs substantially from that of |7s]|(¢). In particular,
the divergence is not necessarily small in the collinear
configurations ¢ = 0,7 and the destabilization of non-
collinear equilibria may actually require larger currents
than those needed for the collinear cases.

(b) The switching ability Ay, = V - f5; vanishes at a
critical angle 9, (Fig.2(b)). Equation (9) predicts infi-
nite critical current for the equilibrium points lying on
the “critical circle” (CC) defined by 9(¢,0) = 9. (more
precisely, the approximation (9) breaks down at CC and
I. is just large). The critical circle divides the unit sphere
into two parts. Spin-transfer torque destabilizes the en-
ergy extrema in one of them (which one — depends on
the current direction), while in the other it makes them
more stable.

(c) The signs of I. are opposite for equilibria located
on different sides of a CC. This circumstance is especially
relevant when one considers different models of g(¢). For
example in the Slonczewski’s case ¥, depends on the
spin polarization P and varies from 9,p—g) 2 7/2 to
Y4(p=1) = 7. In contrast, for a popular approximation
g = const, one has ¥, = 7/2 independently of P. The
difference between the two models becomes crucial for an
equilibrium located between the respective CC’s: a given
current would have a stabilizing effect in one model, and
destabilizing in another.

(d) In the collinear geometry ¢ = 0,7 and the spin
torque divergence (11) is reduced to 2¢(0) and 2g(w) re-
spectively. Thus in these cases A, is indeed proportional
to the spin torque magnitude, in accord with the physical
picture presented in Sec. ITA.

(@) g=g() , (b) g=const ,
critical mrcl

anomalous

reglon
I I :
M, e i
i @ i = |
B

W f@ i
0 0.2 0.4 0.6 * 1 0 0.2 0.4 0.6 0.8 1
H/H, H/H, H/H,

FIG. 3: Critical circles and the “anomalous” stabilization re-
gion. Upper panels: collinear device with s||v||¢ and H||g.
The energy minimum points M; and Mz move with increas-
ing H as shown by the arrows. Critical circles shown for (a)
generic g(9¥) and (b) g = const. Lower panels: switching dia-
grams. In the regions M; and M2 one equilibrium is stable,
in B both are stable, and in P both are unstable.

C. Examples

Let us now show how the notions of switching ability
and critical circles allow one to understand qualitatively
the behavior of various devices. Note that expression (10)
is ultimately based on the smallness of the equilibrium
displacement for o < 1 and w; < wye. This property
allows one to classify each equilibrium by its position
n.,(0) at zero current. In this spirit we will refer to
the finite current equilibria n.q(I) as energy minima and
maxima. We will consider typical nanopillars'® with an

(x,y) easy plane and an easy axis v||&, so that

1 1
£=—wy(n2)? — §wa(nu)

D) (H 1’1),

where w, and w, < w, are the easy plane and easy axis
anisotropy constants. Nanopillar devices differ in the di-
rections of applied field H and spin polarizer s.

Fist, let the external magnetic field H||§ be applied
in the easy plane, perpendicular to v, and the polarizer
be directed along the easy axis, s||v (Fig. 3). In the
absence of applied field the energy minima M; and Ms
are located at +v. As the field is turned on, the min-
ima move along the equator towards the saddle point
L, and finally merge with it when the field reaches the
easy axis anisotropy value Hy = w,/~. For this case the
spin transfer switching diagrams in the plane of parame-
ters (H, I) were calculated in Refs. 11,12. The diagrams
for a generic efficiency function ¢g(¢) (Fig. 3a) and for
the special case of g = const (Fig. 3b) are found to be
qualitatively different, with the former diagram display-
ing the “anomalous” region (Fig. 3a) where both critical
currents are negative. In our approach the occurrence
of an “anomaly” is naturally explained by the fact that
the minimum point M;(H) crosses the critical circle at
H = H.,. After the crossing both equilibria are found on
the same side of CC and are destabilized by the current
of the same direction. For g = const the critical angle
is ¥, = /2 and the minima never cross the critical cir-
cle, hence the anomalous region is absent. The 74 ()
dependence produced by the g = const approximation is
qualitatively similar to the actual one. Nevertheless, it
does not lead to the correct qualitative picture of switch-
ing when the equilibria of interest are close to the actual
critical circle.

Previous example discussed spin transfer destabiliza-
tion of an energy minimum. Equation (9) can also de-
scribe the opposite process of an energy maximum sta-
bilization. At an energy maximum point the Laplasian
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FIG. 4: Spin-flip transistor geometry. (a) For g = const local
destabilization of the energy minima requires external field H
to shift M;2 away from the critical circle (marked CC). (b)
For g = g(¥) the minima are away from CC even at H = 0.

satisfies V2e < 0, so the term wr V - f; has to get suf-
ficiently negative stabilize the equilibrium. The critical
value of wy is again determined from Eq. (10). Stabiliza-
tion of the energy maximum was first discussed in Ref. 13
for a simple anisotropy. In the nanopillar case such a
stabilization was studied in Ref. 6 in the case of external
field and spin polarization directed along the easy axis,
H||v, s|lv. It was found that the stabilization current
diverges and changes its sign at a particular field H,.
The reason for this peculiar dependence was not under-
stood at the time. With the present insight the picture
becomes clear. The energy maximum point is shifted by
the changing magnetic field and crosses the critical circle
at H = H,. This crossing naturally explains the behavior
of the corresponding critical current.®.

Sensitivity to the g(f) angular dependence turns out
to be of crucial importance for the interpretation of the
“spin-flip transistor” precession experiment.'* The spin-
flip transistor is nanopillar with s||g. Calculations!?2%
performed with the assumption g = const found that in
this configuration the precession state is forbidden at zero
magnetic field, but can exist in an external field H||7 if it
is directed antiparallel to s. At the same time precession
state was experimentally observed at H = 0.!4 Based on
the theory of Refs. 19,20 this result was interpreted as an
indication that an additional “field-like” term had to be
introduced in Eq. (7).

Within the framework of our analysis, the absence of
PS states at zero field is due to the fact that at g = const
and H = 0 the energy minima M 2 are located on the
critical circle (Fig. 4a) and cannot be destabilized. The
antiparallel field is required to shift the minimum points
away from CC. However, for general g(1), the minimum
points are away from CC even at H = 0 (Fig. 4b). They
can be locally destabilized, producing PS states by Hopf
bifurcation without any field-like terms.'® The lesson of
this example is that the H = 0 results of Refs. 19 and 20
are sensitive to the angular dependence g(+}) in a manner
that would be hard to foresee without the notion of a

(a)

FIG. 5: (a) “Wavy” 75:(9) dependence'® (solid line) and cor-
responding V-7, (dashed line). (b) Critical circles CCh 2 and
positions of minimum points M; 2 at an intermediate value of
the field H. The energy maximum point is X.

critical circle.

To further demonstrate the power of the analysis based
on Egs. (9) and (11), consider the experiment!® per-
formed on a nanopillar device with an unusual “wavy”
75t(9) dependence!®17 (Fig. 5a). As the figures shows,
in this case there are two critical circles, CCy7 and CCs,
defined by the angles 1},1,2. At zero external field the
energy minima M; o fall into the regions of the same sign
of V-7 and can be destabilized simultaneously, produc-
ing a precession cycle.!®> With increasing current, the cy-
cle gradually approaches the energy maximum point X.
Eventually spin-transfer stabilizes that point® by closing
the contour on it.!®

Here the notion of critical circles suggests an exper-
iment capable of providing additional evidence for the
“wavy” Ts(J) dependence. If an H||g field is applied
to the nanopillar (Fig. 5b), the energy minima M, o are
shifted towards the saddle point L. Since 19,1 and ¥,2 are
not necessarily symmetric with respect to 7/2, there will
be an interval of fields where M; had already crossed C'Cy
and moved into the middle region, while Ms remains in
the left region. In this interval V - 74 has opposite signs
for M 2 and normal switching between M; and M, will
be possible. Further increase of H will put both mini-
mum points into the middle region, where they will be
again destabilized by the same current direction. How-
ever, now the same current direction will also destabilize
X, so the evolution of the PS state will be different from
the H = 0 case.!8

III. EQUILIBRIUM MERGING

Let us now turn to the question of saddle point stabi-
lization. In the absence of current these points are un-
stable with detD;—¢ < 0, so their stabilization requires a
change of sign of detD.

An example of saddle point stabilization is provided
by a spin-flip transistor in zero field where the spin



FIG. 6: (a) Spin-flip transistor: s L 2, s L v, H||s. The
dashed hnes show how the positions of the equilibria M; and
M> change with increasing current and merge with the saddle
L. (b) General in-plane directions of s and H. The saddle
merges with one of the minima, while the other one asymptot-
ically approaches s. (c-e) transformation of the field F during
the merging of a saddle with two foci in case (a).

torque attracts n to the saddle point and eventually sta-
bilizes L.1%29 Notably, this stabilization is accompanied
by a simultaneous discontinuous change in the nature
of two other equilibria: the minimum points M 2 loose
their stability at the same critical current that makes L
stable.!?

The spin-flip transistor device at zero field has high
symmetry. To get more intuition about the stabilization
of saddles we first study what happens when the sym-
metry is reduced by an application of the magnetic field
parallel to the spin polarization vector, H||s||§. If the
field is directed parallel to s (note the difference with
the antiparallel case discussed in Sec. IIC 3) the current
leads to a significant deviation of the minima M; > from
their initial positions (Fig. 6(a)). The minimum points
M; 2 approach L and merge with it at the critical current,
forming a stable center. The saddle point stabilization
still happens through a process involving several equilib-
rium points.

We start by explaining why those simultaneous trans-
formations are not a coincidence. In the examples above
the saddle point is stabilized by conversion into a stable
center. However, as topological defects of the vector field
F, saddles and centers differ in the winding number?!
which is a topological characteristic equal to n = —1 for
a saddle and n = 1 for a center or focus. Since the total
winding number is conserved according to the Poincaré
index theorem, a saddle point cannot be transformed into
a center locally. The saddle-to-center transformation has
to either proceed via merging with other defects, or be
accompanied by a simultaneous change of nature of the
far away equilibria. For example, Fig. 6(c-e) shows an
allowed merger with two focus points, each of which has
n=1.

An even better insight comes from considering a
generic case of H and s pointing in the arbitrary in-plane
directions (Fig. 6(b)). Here the saddle point L merges

with one of the minima which leads to the disappearance
of both equilibria. In the meantime the other minimum
approaches s. Merging of a saddle point and focus point
(n = 1) is allowed by the winding number conservation.
In fact, the bifurcation theory® shows that it is the most
general case called a saddle-node bifurcation. As a result,
the saddle point is normally not stabilized but rather de-
stroyed in a collision with a point of energy extremum.

Note that another equilibrium destroyed in such a col-
lision can be a stable one. In this case its disappearance
will lead to a switching event. A saddle-node bifurcation
constitutes a separate switching mechanism, complimen-
tary to the local destabilization discussed in Sec. II. Here
the critical current can in principle be determined by ap-
plying the condition det D = 0. However, as we have
seen in the spin-flip transistor example, in this case the
deviation of ngq(I) from n.q(0) is large. Thus one first
has to calculate the actual position neq(I) and then find

the determinant det D(ngy()). As a result, it is more
practical to detect the switching moment by searching
for the equilibrium collision event, without even apply-
ing the linear stability analysis.

Returning to the stabilization of a saddle point, we
see that it happens only in special circumstances, for ex-
ample in an important special case when s is pointing
exactly into the saddle L. In such a geometry L remains
an equilibrium for an arbitrarily large current and thus
cannot disappear in a saddle-node bifurcation. This re-
striction produces a transcritical bifurcation® where the
energy extremum and the saddle exchange their nature
in a collision. The bifurcation diagram (Fig. 7a) gives
the positions of the colliding equilibria as a function of
applied current. It is seen how the previously unstable
saddle point becomes a stable center (or focus) above the
critical current value.

Sometimes, e.g., in the case of spin flip transistor with
magnetic field H||s (Fig. 5a) a more rare fork bifurcation
is produced due to additional symmetries. A very rare
non-local bifurcation exhibited by the spin-flip transistor
at H = 0 can only occur in devices of exceptionally high
symmetry.

In the case of perfect transcritical bifurcation a simple
formula can be derived for a critical current from the
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FIG. 7: Transcritical bifurcation diagram shows the positions
of the two colliding equilibria as a function of current (only
one angle ¢(I) is shown for clarity). Solid lines: stable, dashed
lines: unstable equilibrium. (a) perfect bifurcation with s
pointing exactly into the saddle point. (b,c) imperfect bifur-
cations realized for s pointing close to the saddle point.



condition det D(I.) = 0. First, using expression (3) for
F one can show that

det D = (1+ a?) det D . (12)
a=0
The value of the determinant at o = 0 includes, of course,
both the conservative D. and the spin transfer D con-
tributions to the dynamic matrix. The critical current
condition gets the form

det (DC + Dst

a=0 a:O) =0. (13)
In the present case of s = n., the derivation is more
transparent if one uses special coordinates instead of em-
ploying the general expressions (4). Pointing axis 2 of
the polar angle system along s we naturally introduce
coordinates x = sinfcos¢ and y = sinfsin ¢ with the
equilibrium point at (z,y) = (0,0). Using the second
order expansion of the energy in small displacements

1 1
e=¢(0)+ 55:5:5302 + EayTY + §5yyx2

we find

—Ezy ~Eyy

Exzx Exy

For the spin-transfer contribution one gets

9(0) 0 ’
0 g(0)

Using these matrices in the condition (13) we find the
critical current of the saddle point stabilization to be

—detf)|1: =
V bomt (14)

9(0)

This result can be alternatively understood as follows.
The conservative torque alone creates a saddle point
with eigenvalues A\; > 0 and A2 < 0. It repels n from
the equilibrium along the A;-eigenvector and attracts
it along the Ag-eigenvector. The spin transfer torque
alone creates a stable center with two equal eigenvalues
A2 = —wrg(0) < 0. It equally attracts n to the equilib-
rium along all directions. When the two are added, the
equilibrium will be stable if the spin torque exceeds the
conservative torque along the most repulsive direction,
i.e., along the \;-eigenvector. Thus the condition of sta-
bilization reads wrg(0) = A;. The conservative torque is
not arbitrary, but derived from a potential e. As a result,
the eigenvalues of D, satisfy A\; = —A2. Now one can ex-

press Ay = v/ —det ﬁc = 4/ —det lA)|1:0,a:0 and recover

formula (14).

For a small misalignment of s and L an abrupt saddle-
center transformation is replaced by a crossover in a small
interval of currents. This is guaranteed by the fact that
at low current the saddle point has to remain near s and

wy =

at large current a stable equilibrium near s is inevitably
produced by the increasing attraction of n to s. The
crossover can happen in two ways (Fig. 7(b,c)). Case (b)
is a generic destruction and creation of the saddle-center
pair. Case (c¢) is formally not a bifurcation, but looks
like one for all practical purposes if the misalignment is
small. Formula (14) remains a good estimate for the
crossover current, although to get the full picture of the
imperfect bifurcation one has to follow the positions of
both equilibria in the region of their anomalous approach
to each other.

IV. COMPETITION BETWEEN THE TWO
DESTABILIZATION SCENARIOS

As discussed in Sec. 111, local destabilization of an en-
ergy minimum and merging with a saddle point are the
two alternative switching mechanisms. We know from
Sec. II that the critical current of local destabilization is
proportional to a small parameter .. The critical current
of merging, determined from det D(I.) = 0, is indepen-
dent of « due to the relationship (12). Physically, local
destabilization results from a competition of the negative
damping brought by the spin torque with the small pos-
itive Gilbert damping. In contrast, equilibrium merging
results from the competition between the spin torque and
restoring anisotropy torques determined by the energy .
Therefore in a generic situation the current threshold of
merging should be much higher that that of local destabi-
lization. Exceptions to this rule may occur in two cases.
First, if the energy landscape ¢ has special directions
where the restoring torque is anomalously small, allow-
ing spin torque to cause large displacement at a current
comparable to the critical current of local destabilization.
Second, if the equilibrium is located close to the critical
circle and according to Eq. (10) its local destabilization
threshold becomes very high.

The energy landscape of a nanopilar device has a spe-
cial direction for w, < wy. In this case the states with
n in the easy plane have almost the same energy and
even a small external torque can potentially cause a large
equilibrium displacement along the equator of the unit
sphere. Consider the “magnetic fan” experiment?? where
the polarizer is directed perpendicular to the easy plane,
s||Z (Fig. 8). In this geometry the spin torque indeed
shifts both the minima and the saddle point along the
equator until the saddle L merges with M; (Fig. 8a).
The g = const approximation is special since the critical
circle coincides with the equator. The minimum cannot
be destabilized locally since it stays on the critical cir-
cle all the time until it merges with a saddle. After the
merging event, the system jumps to a precession cycle
of large size, called an out-of-plane precession (OPP).
In a model with angle-dependent g(¢) the energy min-
imum points are away from the critical circle. Thus a
competing scenario is allowed: point M; can be locally
destabilized before it encounters point L. In this case



(b) g=g(®)

(a) g=const

FIG. 8: “Magnetic fan” geometry. (a) At g = const point M;
stays on C'C until it collides with L, creating a large “OPP
cycle” (dotted line). (b) At g = g(¥%) M, is away from CC.
Its local destabilization can create a small “IPP cycle”.

an small precession cycle around M, called an in-plane
precession (IPP), will be produced (Fig. 8b).!1® Which of
the two destabilization events comes first depends on the
parameters of the system. Note that this example is spe-
cial for both reasons discussed in the previous paragraph:
there is a special direction, and the equilibrium may be
close to the critical circle.

The critical current of local destabilization can be ob-
tained from Eq. (10). For n on the equator one can esti-

mate
Wq
1 za
w(1+0(2))

V'fst = —91(71'/2),

Ve

which gives a critical current

= (15)
Wi(Ipp) = —Q—7—= .
U g (/2)

The critical current of merging can be estimated as fol-
lows. Both the saddle and the minimum stay on the equa-
tor where the spin torque is given by 74 = —wrg(7w/2)eq
and the conservative torque equals 7. = w, cos ¢ sin ¢ ey.
The positions of the M; and L points are determined
from the torque balance equation

wWe COSPsing —wrg(r/2) =0 .

From this one finds that points M; and L merge at

Wa
WI(OPP) = 5 7 7o) ° (16)
O 2g(w/2)
At the opposite current w; = —wropp) the minimum
M, merges with the another saddle point, L', located
opposite to L.
Equations (15) and (16) show that for

wa 2g(7/2)

—_—~

Wp g'(m/2)

the critical currents of the local and merging destabiliza-
tion can be of the same order. Then the competition be-
tween the two destabilization scenarios is possible. Note

FIG. 9: Tilted polarizer geometry. The minimum points M; >
are away from C'C and can be destabilized locally.

that the local destabilization can happen only at one sign
of the current (assuming ¢'(7/2) > 0, the IPP critical
current is negative). The merging destabilization hap-
pens at both current directions.

These properties lead to the following prediction. If
wrorp)y < |wrppyl, the system switches to the OPP
precession for both current directions. If an opposite in-
equality holds, a switch to the IPP precession will be
observed for one current direction, and a switch to an
OPP direction will happen for the opposite current di-
rection. Using Slonczewski’s g and experimental param-
eters of Ref. 22 we find wyopp)/wirppy = 0.1, which
yields an OPP cycle scenario in accord with experiment.
If the easy axis anisotropy w, is increased, for example
by making the free layer in the shape of an elongated
ellipse, a regime of wyopp) > |wrrpp)| Will be reached,
and the OPP or IPP cycles will be created depending on
the current direction.

Another way of creating a competition between the
local destabilization and merging is to tilt the polarizer
direction s away from the Z-axis (Fig. 9). In this case
both equilibria are away from the critical circle even in
the g = const approximation. One of them always falls
into the local destabilization region and may produce a
small size IPP cycle above the critical current. Similar
to the case of the magnetic fan (Fig. 8), both equilibria
will be shifted by spin torque, and will eventually merge
with the saddle points. The competition between the
local destabilization and merging destabilization is now
controlled by the polarizer tilt angle. This qualitative ap-
proach should be very useful for developing a physical un-
derstanding of the rich switching diagrams?3 25 obtained
for the tilted polarizer case by conventional methods.

V. CONCLUSIONS

We have discussed two scenarios of stabilization and
destabilization of equilibrium magnetization directions
by the spin transfer torque. Equilibrium points can ei-
ther change their stability locally, or experience a colli-
sion with the other equilibrium points.

In the case of a local scenario the destabilization of the
energy minima and the stabilization of the energy max-
ima are symmetric processes described by the same in-



variant criteria (8,9, 10). The ability of current to desta-
bilize the energy minima or stabilize the energy maxima
is determined by a single figure of merit, the switching
ability equal to the divergence of the spin torque V - 74
and can be expressed through the spin-transfer efficiency
coefficient g(¢) (11). Our invariant stability criteria is
particularly simple and useful in the limit of small o when
the displacements of equilibria caused by spin torque are
small. In this case the unit sphere turns out to be divided
into the regions of stabilization and destabilization sep-
arated by the critical circles. A good approximation for
the efficiency g(1}) should accurately reproduce the po-
sition of the critical circle. For example, the often used
approximation g = const one) fails not only for exotic
“wavy” functions g(1), but also when it introduces a sig-
nificant error into the the critical circle location.

In the case of merging scenario, the displacements of
equilibria under the influence of spin torque are nor-
mally large and do not depend on the value of a. As
a result, it may be easier to detect the destabilization
events by following the current-dependent positions of
the equilibria, rather than by applying the linear stabil-
ity criteria. Merging regularly leads to a destabilization
of a minimum, but does not normally stabilize the saddle
points. An important exception happens when the polar-
izer points in the saddle point direction. In this case an
expression (14) for the stabilization current is derived.

The critical currents I!°°® in the local scenario are
proportional to the small Gilbert damping « and are nor-
mally much smaller than the critical currents I;*¢"9¢ in
the merging scenario. In exceptional cases a competition
between the two scenarios can take place. This happens
either when there is a special direction with small restor-
ing anisotropy torque an 1;*°"9¢ is lowered, or when the
point is close to the critical circle and I°°? is raised.
When present, the competition leads to rich switching
diagrams.

Overall, our approach allows one to develop a qualita-
tive picture of spin transfer switching in complicated de-
vices. By considering a range of examples we have shown
that the method explains previously known results and
makes a number of interesting new predictions.
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Appendix A: Eigenvalues of a 2 x 2 matrix

For an arbitrary dynamic matrix D given by

a b
c d

D =

det[D] 1
focus focus
(stable) (unstable)
center center
(stable) (unstable)
Tr[D]

saddle | point

FIG. 10: Equilibrium stability diagram on a plane of trace
and determinant of the dynamic matrix. Domain of stability
shown in grey consists of: stable center domain (real eigenval-
ues A1,2 < 0) and stable focus domain (complex conjugated
eigenvalues with ReA < 0). Domain of equilibrium insta-
bility consists of: unstable center domain (real eigenvalues
A1,2 > 0), unstable focus domain (complex conjugated eigen-
values with ReA > 0), and the domain of saddle points (real
eigenvalues with opposite signs).

the eigenvalues are obtained from the equation
A=a)A=b)—bc=0

or equivalently
A2 = A\TrD +det D =0.

This gives

~ A\ 2
o= BPe | (B2) cawn.

The eigenvalues depend on just two combinations of the
matrix elements, TrD and det D. Using the expressions
(A1) the domains of different equilibrium types can be
found on the parameter plane as shown in Fig. 10. The
areas of stable equilibria are shown in grey and occupy
the upper left quadrant ReD < 0, det D > 0.

Appendix B: Invariant criteria in the limit of small
damping

Equation (8) for the critical current reads

Tr[Deoy] = —aV2eln, 1y +wr V- fstln, () =0

The two terms on the left hand side come from the con-
servative and spin transfer torques. This condition can
be also written down in terms of the original dynamic
matrix as Tr[D] = 0. Since the trace operation is linear,
a separation into the contributions from the conservative

and spin transfer torques is also possible



Here matrix D, comes from the 7.+ «a[n X 7] part of F,
and Dg; comes from the 74 + a[n x T4 part. We will
explicitly show the proportionality of Dy to the current
by writing ﬁst = wlczst

At small current values the equilibrium displacement
dn = ngq(I) — ney(0) is small, dn ~ wy, and one can
expand near n.q(0). Expansions of the conditions using
Deoy and D up to the first order in w; give respectively

VQ
—aVie|p — c dn+wr V- fylo =0
On |,
and
. OTr[D, .
Tr[D.]| + y dn + wiTr[dg]| =0,
0 on o 0

where subscript “0” means the the expression was eval-
uated at n.4(0).

The first terms in both conditions represent the val-
ues of Tr[D.ey] and Tr[D] at zero current equilibrium.
Since Deoy and D coincide at an equilibrium point, these
terms are equal to each other. In contrast, the second
terms exhibit substantial differences. The second term in
the upper condition is proportional to the product awry,
while the second term in the lower condition is only pro-
portional to wy. The third terms are both proportional
to wr but V- f|o and Tr[czst]|o are not necessarily equal
to each other. This is why for small « the second term
can be dropped from the upper condition, but has to be
kept in the lower one. Overall, the first condition with
neglected second term, i.e., equation (9)

—aV2a|0 +wy V- f5t|0 =0,

and the second condition with all three terms give the
critical current value with the same accuracy.
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