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We study the zero temperature phase diagram of Ising spin systems in two dimensions in the pres-

ence of competing interactions, long range antiferromagnetic and nearest neighbor ferromagnetic of

strength J . We first introduce the notion of a “corner energy” which shows, when the antiferromag-

netic interaction decays faster than the fourth power of the distance, that a striped state is favored

with respect to a checkerboard state when J is close to Jc, the transition to the ferromagnetic state,

i.e., when the length scales of the uniformly magnetized domains become large. Next, we perform

detailed analytic computations on the energies of the striped and checkerboard states in the cases

of antiferromagnetic interactions with exponential decay and with power law decay r−p, p > 2, that

depend on the Manhattan distance instead of the Euclidean distance. We prove that the striped

phase is always favored compared to the checkerboard phase when the scale of the ground state

structure is very large. This happens for J . Jc if p > 3, and for J sufficiently large if 2 < p ≤ 3.

Many of our considerations involving rigorous bounds carry over to dimensions greater than two

and to more general short-range ferromagnetic interactions.

1. INTRODUCTION

In this paper we continue our study of the ground state (GS) of lattice spin systems with

competing ferro (F) and anti-ferro (AF) Ising-like spin interactions. See1–4 for previous results.

Such systems are simplified models of real systems with both short range attractive interactions

and long range dipolar type interactions. The competitive nature of these interactions is be-

lieved to be responsible for the formation of mesoscopic periodic structures, such as stripes, in

many quasi two-dimensional (2D) systems at low temperature, see5–15 for several examples of

spontaneous pattern formation in physical systems with competing interactions. See also16,17

where such competition is held responsible for the development of macroscopic patterns in

chemical and biological systems described by reaction-diffusion equations.

While it is simple to understand that the competition between interactions acting on dif-

ferent length scales can give rise to mesoscopic structures, it is very difficult to predict the

optimal shape of these structures. The problem of determining the optimal shape and mu-

tual arrangement of these domains has been addressed in the past by a variety of numeri-

cal and theoretical techniques, ranging from MonteCarlo simulations18–20, variational compu-

tations and energy estimates21–26, functional analytic estimates27,28, mean field theory and

self-consistent equations29–32, effective field theory, thermodynamic stability and local density

approximation33–36, scaling arguments37 and renormalization group38,39. Similar methods have

been used to predict the shape and size dependence of these structures on experimental parame-

ters such as temperature40–42 or, in the context of thin magnetic films, the sample thickness26,43,
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the out-of-plane uniaxial anisotropy44 or an external magnetic field45,46. However, a fundamen-

tal understanding of the microscopic mechanism leading to a self-organized periodic pattern, is

still missing. Even at a heuristic or numerical level, the preferred pattern is often very difficult

to identify, due to the proliferation of quasi-degenerate states and the slow glassy-like approach

to equilibrium47–51.

Here we show for a large class of interactions that stripes are energetically favorable as com-

pared to other natural structures, such as the rectangular or square checkerboard, by a combi-

nation of variational estimates, rigorous upper and lower bounds and by analytical comparison

of the energies of different patterns. The Hamiltonians we consider have the form

H =
1

2

∑

x6=y

[
− J δ|x−y|,1 + ε v(x− y)

](
σxσy − 1

)
≡ 1

2

∑

x 6=y

φ(x − y)
(
σxσy − 1

)
, (1.1)

where x ∈ Z
d
, σx = ±1 are Ising spins, J and ε are two positive constants (the strengths of the

F and AF interactions), v is a non-negative potential, symmetric with respect to 90o rotations

and summable. In the following, we will be mostly concerned with d = 2 and v of infinite range.

The constants J and ε will be thought of as being “large” and “small”, respectively.

The goal is to understand the zero temperature phase diagram as the ratio J/ε is varied. If

ε = 0, the ground state is ferromagnetic. In the opposite limit, that is, J = 0, the ground state

displays some non-trivial alternation between positively and negatively magnetized domains;

e.g., if v(x) = |x|−p, p > d, then the ground state is the period-2 antiferromagnetic Néel state52.

As the ratio J/ε is increased from zero to large values, the GS changes to reduce the number of

antiferromagnetic bonds. This can be achieved by generating uniformly magnetized structures

of larger and larger length scales. It is often assumed that the ground state configurations are

periodic, and display either checkerboard or striped order, depending on the specific choice of

the interaction and the value of J . In24, it was shown that for v(x) = |x|−3 and J large enough,

the optimal striped configuration has lower energy than the optimal checkerboard configuration

(contrary to the erroneous conclusions of21, where a similar computation was performed). This

leads to the conjecture (still unproven, but supported by several numerical works, see e.g.20,22,23)

that the ground state configurations of Eq.(1.1) with v(x) = |x|−3 and J large display periodic

striped order.

There is also evidence for the fact that the sequence of transitions to the ferromagnetic phase

has some universal features8,53–56 and that the emergence of stripes is essentially independent

of many details of the F and AF interactions. However, the reason for this is still unclear and

puzzling because stripes break the symmetry of the lattice.

In this paper, we prove that striped patterns are favored, within a natural class of variational

states, when the scale of the GS structure is very large compared to the range of the FM

interaction. A simple explanation of this fact can be based on the concept of corner energy,

which suggests that the intersection points among straight phase separation lines can be thought

of as elementary excitations of the system with positive energy, at least in the case that the

AF interaction decays faster then r−4 at large distances. Our argument is substantiated by

explicit computations in the simple case that the AF interaction depends on the Manhattan

(L1) distance between sites and decays as r−p, p > 2, at large distances.

The rest of the paper is organized as follows. In Section 2 we introduce the notions of line and

corner energies and present our argument explaining why stripes are favored as compared to

checkerboard when the AF interaction decays at infinity faster than r−4 and the scale becomes

very large compared to the lattice spacing. In Section 3 we present detailed analytical compu-

tations of the stripe and checkerboard energies in cases where the AF interaction depends on

the Manhattan distance between sites and decays either exponentially or as a power law r−p,

p > 2. In Appendix A, we rigorously compute the critical strength Jc of the FM interaction
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separating a FM from a non FM phase, when the AF interaction decays at infinity faster than

r−3. In Appendix B, we prove that power law interactions depending on the Euclidean distance

between sites are reflection positive. This implies that if the GS consists of stripes it will be

periodic. Finally, in Appendix C we discuss in some more detail the zero temperature phase

diagram of the model when the AF potential is an exponential Kac interaction: in this case,

we have evidence for a transition from checkerboard to stripes as J is increased from zero to

Jc. The conjecture is verified by rigorous upper and lower bounds on the GS energy.

2. LINES AND CORNERS

In this section, we show that the formation of stripes of mesoscopic size in d = 2 is essentially

independent of the nature of the AF interaction in Eq.(1.1), as long as it is long range and

falls off faster than |x|−4, i.e., 0 ≤ v(x) ≤ K|x|−4−δ for some constants K, δ > 0. According to

this argument, the occurrence of stripes is related to the sign and the relative sizes of line and

corner energies, which we now define.

Consider a system in a square box of side length L with half the spins up and half down,

separated by a vertical line, called an anti-phase boundary. When the falloff of v is faster than

|x|−3 the energy divided by L will have a nice limit as L → ∞, which is defined to be the line

energy τ :

τ = −2 lim
L→∞

L−1
∑

−L/2<x1≤0
1≤x2≤L

∑

1≤y1≤L/2
1≤y2≤L

φ(x − y). (2.1)

The energy per unit length τ has the interpretation of surface tension of an infinite straight

line, and is linear in J , i.e., τ = 2(J − Jc) for a suitable positive constant Jc.

At J = Jc, the surface tension of an infinite straight line vanishes and there is coexistence

of the FM ground state with the ground state corresponding to a single isolated anti-phase

boundary. It is intuitive that for all J > Jc, the ground state is ferromagnetic, since the energies

of ferromagnetic contours (or, at least, of straight FM contours) is positive. See Appendix A for

a proof of stability of the FM state against arbitrary contours. For J < Jc the GS is certainly

not FM, because the system reduces its energy by producing anti-phase boundaries.

Next, we define a corner energy, κ, by first taking two crossed, vertical and horizontal, anti-

phase boundaries in the box of size L. The energy of this configuration is, to first approximation,

2τL. The difference between this energy and 2τL has a limit as L → ∞ whenever the falloff of

v is faster than |x|−4. This difference is the corner energy κ, and is given by the formula

κ = 4
∑

x∈Q1

∑

y∈Q3

φ(x − y) + 4
∑

x∈Q2

∑

y∈Q4

φ(x − y), (2.2)

where Q1, Q2, Q3, Q4 are the first, second, third and fourth quadrant in Z
2, respectively. Note

that κ does not depend on the nearest neighbor interaction energy and is therefore positive for

the Hamiltonian in Eq.(1.1).

We now observe that if the GS is made up of a rectangular checkerboard (not necessarily

periodic) then it consists of a mixture of horizontal and vertical lines, and hence has corners

where these lines intersect. To lower the energy one can replace the horizontal lines by the same

number of vertical lines, thereby eliminating the corners. While the increased density of vertical

lines increases the energy, the saving on the corners more than makes up for it when the scale is

large enough and J . Jc. In fact, consider a configuration of sparse straight lines, all typically at

a mutual distance larger than R ≫ 1. The interaction energy of any vertical (resp. horizontal)

line in a square box of side L with all the other vertical (resp. horizontal) lines is positive
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and smaller than (const.)LR−1−δ, which follows from the fact that 0 ≤ v(x) ≤ K|x|−4−δ.

Similarly, the interaction energy of any corner with all the other corners is negative and smaller

in absolute value than (const.)R−δ. Therefore, the total energy EΛ of a configuration of widely

separated straight lines in a square box Λ ⊂ Z
2
of side L has the form

EΛ =
(
τ +O(R−1−δ)

)
(M1 +M2)L+

(
κ−O(R−δ)

)
M1M2 , (2.3)

where M1 (M2) is the total number of horizontal (vertical) lines and we recall that the line

energy τ = 2(J −Jc) is negative for the considered values of J , J . Jc. Eq.(2.3) shows that, for

given M = M1 +M2 of order L/R, it is energetically favorable to have M1M2 << L2/R2. In

fact, if the number of corners was≃ L2/R2, than we could decrease the energy by rotating all the

vertical (horizontal) lines by 90o, making them horizontal (vertical) and placing them half-way

between the existing horizontal (vertical) lines. The decrease in energy due to elimination of

the corners would be of the order L2/R2, while the increase, due to increased repulsion energy

between lines, would be of the order L2/R2+δ, which is much smaller. Therefore, after this

rotation, the final configuration would have an energy equal to
(
−|τ |+O(R−1−δ)

)
(M1+M2)L,

which is strictly smaller than the one of the initial configuration. From this expression it is

apparent that the optimal line separation, which can be computed by balancing the line energy

with the repulsion energy between lines, is of the order R ≃ |τ |1/(1+δ). Therefore, having R

large requires having |τ | small, that is, J sufficently close to the critical value Jc. This also

indicates that the GS energy per site scales as −|τ |(2+δ)/(1+δ) at small negative values of τ . By

the methods of Appendix A, we can prove a rigorous lower bound, showing that the actual GS

energy scales exactly as −|τ |(2+δ)/(1+δ) for τ small and negative. This is a strong indication for

stripes in the parameter range under consideration.

The previous discussion shows that corners play the role of elementary excitations, with a

positive energy cost, which can be eliminated by rotating straight lines by 90o. A similar analysis

shows that also the “half corners” produced each time that a non-straight anti-phase boundary

has a 90o turn have a finite positive cost. Therefore, we can give a similar argument to exclude

the presence of large isolated rectangles in the GS. We are, however, not able to exclude the

presence of more complicated “excitations” in the GS.

Regarding the condition on the large distance decay of the AF interactions, we do not think

it is sharp. However, in the general case, the balance between the corner and line energies is

much more subtle. In fact, if the decay of the AF potential is ∼ r−p, 2 < p < 4, then the corner

energy is formally infinite; however, corner-corner interactions have an oscillatory sign and such

oscillations make the effective energy of each corner finite and approximately proportional to

R4−p if 2 < p < 4, where R is the distance to the neighboring corner. It is straightforward to

check that if the corners have a finite density, then their contribution to the specific GS energy

is comparable to the line-line interaction and of the order of R2−p, where R is the typical

separation between lines. Therefore, by rotating the vertical lines by 90o, we gain the corner

energies and lose some line-line interaction energy, both of the order (const.)R2−pL2; to decide

whether the saving makes up for the loss, we need to compute the constant prefactors. This

will be done analytically in the next section, in the special case of AF interactions depending

on the Manhattan distance between sites. The computation shows that when we rotate the

vertical lines by 90o and eliminate the corners, the saving overcomes the loss for all p > 2. It

remains to be seen whether this saving is an accident of the specific model considered below or

whether there is a general physical reason behind the result.

We note that in the special case that the AF interaction is reflection positive52, given that

the configurations entering the GS are all straight vertical (horizontal) lines, then they have to

be periodically arranged. This follows from the analysis in1–4.
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3. COMPARISON OF THE STRIPE AND CHECKERBOARD ENERGIES

In this section we perform explicit analytic computations of the energies of the stripe and

checkerboard states, for different choices of the fall off of the long range AF potential. We focus

on the (analytically) simple case of interactions depending on the Manhattan (L1) distance

‖x‖1 := |x1|+ |x2| between sites. Our calculations complement and simplify those in24.

Let us consider Eq.(1.1) with d = 2, ε = 1 and

v(x) =

∫ ∞

0

dα µ(α)e−α‖x‖1 , (3.1)

with µ(α) a positive measure. We will be particularly concerned with two cases:

1. Exponential interactions, v(x) = γ2e−γ‖x‖1, corresponding to the choice µ(α) = γ2δ(α−γ)

in Eq.(3.1);

2. Power law interactions, v(x) = ‖x‖−p
1 , with p > 2, corresponding to the choice µ(α) =

αp−1/Γ(p) in Eq.(3.1).

As mentioned above, the choice Eq.(3.1) is made to simplify the computations; choosing eu-

clidean rather than Manhattan distance should not make a difference from the physical point

of view. Let us remark that the potential in Eq.(3.1) is reflection positive52 and so is the (more

usual) power law potential v(x) = |x|−p, with |x| =
√
x2
1 + x2

2 the Euclidean distance (see

Appendix B). The property of reflection positivity is not explicitly used in the computations

below but, as observed at the end of previous section, it implies that if the GS consists of

stripes, then these must be regularly spaced, see1–4.

Let sh(x) be the 1D profile of period 2h, obtained by extending periodically over Z the

function f : (−h, h] → R such that f(x) = sign(x−1/2) for x = −h+1, . . . , h. Let ec(h) be the

specific energy of the checkerboard configuration, σx = sh(x1)sh(x2), let es(h) be the specific

energy of the striped configuration σx = sh(x1). We start by computing the specific energy

e(h1, h2) of the “rectangular” configuration sh1
(x1)sh2

(x2). We have:

e(h1, h2) = (3.2)

=
2J

h1
+

2J

h2
− 1

h1h2

∫ ∞

0

dαµ(α)
∑

1≤x1≤h1

1≤x2≤h2

∑

y∈Z2

e−α|x1−y1|e−α|x2−y2|χ(σx 6= σy) ,

where χ(condition) is = 1 if the condition is satisfied, and = 0 otherwise. After some straight-

forward algebra,

e(h1, h2) =
2J

h1
+

2J

h2
+ 2

∫ ∞

0

dα

α2
µ(α) · (3.3)

·
[
−Aα

tanh(αh1/2)

αh1/2
−Aα

tanh(αh2/2)

αh2/2
+Bα

tanh(αh1/2)

αh1/2

tanh(αh2/2)

αh2/2

]
,

where

Aα =
(α/2)3 cosh(α/2)

sinh3(α/2)
, Bα =

(α/2)4

sinh4(α/2)
. (3.4)

Note that, for small α, Aα ≃ 1− (1/15)(α/2)4 and Bα ≃ 1− (2/3)(α/2)2, which will be useful

in the following.

Using Eq.(3.3), we see that the energy of a striped configuration of period h is equal to

es(h/2) =
4J

h
+ 2

∫ ∞

0

dα

α2
µ(α)

[
− 2Aα

tanh(αh/4)

αh/2

]
, (3.5)
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while the one of a checkerboard configuration of period 2h is

ec(h) =
4J

h
+ 2

∫ ∞

0

dα

α2
µ(α)

[
− 2Aα

tanh(αh/2)

αh/2
+ Bα

tanh2(αh/2)

(αh/2)2

]
. (3.6)

It is interesting to note that the various terms in Eqs.(3.3)-(3.5)-(3.6) have a clear interpretation

in terms of the notions of “line energy” and “corner energy”, introduced in Section 2. In fact,

looking at Eq.(3.3), the terms proportional to J correspond to the FM surface tension energy;

the integral terms with the integrand proportional to Aα correspond to the AF line energy

(including both the negative AF surface tension and the repulsive line-line interactions); the

integral term with the integrand proportional to Bα corresponds to the AF corner energy

(including both the positive corner self-energy and the attractive corner-corner interactions).

The analogous terms in Eqs.(3.5)-(3.6) have a similar intepretation; note that ec(h) includes

a positive contribution from the corner energy, which does not appear in es(h/2), while the

contribution from the line energy is smaller than the corresponding one in es(h/2).

As we discussed above, the goal is to find the balance between these terms when the scale of

the relevant structures is large compared to the lattice spacing. We will in fact show that when

h ≫ 1, then ec(h) > es(h/2), which is equivalent to

1

2

∫ ∞

0

dα

α2
µ(α)Bα

tanh2(αh/2)

(αh/2)2
>

∫ ∞

0

dα

α2
µ(α)Aα

tanh(αh/2)− tanh(αh/4)

αh/2
(3.7)

implying that the GS is striped. This will be proved below by treating separately the cases of

exponential interactions and of power law interactions, with p > 4, p = 4, 3 < p < 4, p = 3,

2 < p < 3 (that are listed here in the order of increasing difficulty).

Remark. Even though Eq.(3.7) does not involve the parameter J , the condition that the

scale h of the GS structures is large compared to the lattice spacing is satisfied only if J is

chosen properly. More precisely, as discussed in Section 2 (see also Appendix A), if the AF

interaction decays faster than r−3, then there exists a finite Jc such that the homogenous FM

state is the GS for all J ≥ Jc; in this case, the condition that h ≫ 1 is valid in the range

J . Jc. On the contrary, if the decay of the AF interaction is equal to r−3 or slower, then the

condition h ≫ 1 is verified for all J ≫ 1. The results below are relevant for J belonging to

these ranges.

A. Exponential interactions and power laws with p > 4

If the AF interaction decays exponentially or as a power law with p > 4, then we already

know from the analysis in Section 2 that ec(h) > es(h/2) for all h ≫ 1. For completeness, let

us check this analytically, using Eq.(3.7). In the case of exponential interactions, the condition

reduces to

1

2
Bγ

tanh2(γh/2)

(γh/2)2
> Aγ

tanh(γh/2)− tanh(γh/4)

γh/2
(3.8)

which is obviously satisfied for h large, simply because the l.h.s. goes to zero as h−2, while the

r.h.s. goes to zero exponentially fast in h. In the case of power law interactions with p > 4, the

l.h.s. of Eq.(3.7) can be rewritten as

1

2

∫ ∞

0

dααp−3 Bα
tanh2(αh/2)

(αh/2)2
=

2

h2

∫ ∞

0

dααp−5 Bα +O(
1

hp−2
) , (3.9)
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while the r.h.s. is
∫ ∞

0

dααp−3 Aα
tanh(αh/2)− tanh(αh/4)

αh/2
=

=
1

hp−2

∫ ∞

0

dααp−3 tanh(α/2)− tanh(α/4)

α/2
+O(

1

hp+2
) , (3.10)

where in estimating the error term of order h−p−2 we used the fact that |Aα − 1| ≤ Cα4, for a

suitable constant C. Therefore, Eq.(3.7) is valid, simply because h−2 ≫ h−p+2, ∀p > 4, for h

large.

B. The case p = 4

This case is very similar to the previous one. In fact, the r.h.s. can be rewritten and estimated

exactly as in Eq.(3.10), with p = 4; in particular, it is ∼ h−2. The l.h.s. can be rewritten as

1

2

∫ ∞

0

dααBα
tanh2(αh/2)

(αh/2)2
=

2

h2

∫ 1

1/h

dα

α
tanh2(αh/2) +O(

1

h2
) =

= 2
logh

h2
+O(

1

h2
) . (3.11)

Therefore, Eq.(3.7) is valid, simply because h−2 log h ≫ h−2, for h large.

C. The case p < 4

If p < 4 the proof of Eq.(3.7) is slightly more subtle, because both sides of the inequality

scale in the same way as h → ∞. In fact, the l.h.s. can be rewritten as

1

2

∫ ∞

0

dααp−3 Bα
tanh2(αh/2)

(αh/2)2
=

1

2

(2
h

)p−2
∫ ∞

0

dααp−3 tanh2 α

α2
+O(

1

h2
) , (3.12)

while the r.h.s. reads
∫ ∞

0

dααp−3 Aα
tanh(αh/2)− tanh(αh/4)

αh/2
=

=
( 2

h

)p−2
∫ ∞

0

dααp−3 tanhα− tanh(α/2)

α
+O(

1

hp+2
) . (3.13)

Therefore, both sides of Eq.(3.7) scale as ∼ h2−p as h → ∞. The inequality is asymptotically

valid if and only if the following condition is true:

1

2

∫ ∞

0

dααp−3 tanh2 α

α2
>

∫ ∞

0

dααp−3 tanhα− tanh(α/2)

α
. (3.14)

This inequality can be checked numerically in the different ranges 3 < p < 4, p = 3 and

2 < p < 3. In fact, if p = 3, Eq.(3.14) is equivalent to

1

2

∫ ∞

0

dα
tanh2 α

α2
= 0.85256 . . . > log 2 = 0.69315 . . . (3.15)

If 3 < p < 4, Eq.(3.14) is equivalent to

1

2

∫ ∞

0

dααp−5 tanh2 α > (2p−3 − 1)

∫ ∞

0

dααp−4(1− tanhα) . (3.16)

In the limiting case p → 3+, Eq.(3.16) is equivalent to Eq.(3.15), as it should. In the limit

p → 4−, Eq.(3.16) is obviously valid (because the r.h.s. tends to a constant, while the l.h.s.
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FIG. 1. A plot of the difference between the right and left hand sides of (3.16) vs p, which proves that

es(h/2) < ec(h) for all 3 < p < 4, and h large enough.

diverges to +∞). The validity of Eq.(3.16) for all values of p in the interval (3, 4) can be checked

numerically, see Fig.1.

Finally, if 2 < p < 3, Eq.(3.14) is equivalent to

1

2

∫ ∞

0

dααp−5 tanh2 α > (1− 2p−3)

∫ ∞

0

dααp−4 tanhα . (3.17)

In the limit p → 3−, condition Eq.(3.17) reduces to Eq.(3.15), as it should. In the limit p → 2+,

condition Eq.(3.17) reduces to

log 2 >

∫ ∞

0

dα
( tanhα

α2
− tanh2 α

α3

)
⇐⇒ (3.18)

⇐⇒ log 2 +
1

2
= 1.193147 . . . >

∫ ∞

0

dα
tanh3 α

α2
= 1.154785 . . .

The validity of Eq.(3.17) for all values of p in the interval (2, 3) can be checked numerically, see

Fig.2.

This concludes the proof that ec(h) > es(h/2) whenever h is large, for all power law decays

with exponent p > 2 and for exponential interactions. An immediate consequence of this

analysis is the following: let e∗s(J) = minh∈N es(h) and e∗c(J) = minh∈N ec(h) be the optimal

stripe and checkerboard energies at a given J ; then, if the AF interaction is either exponential

or power law with p > 3, we have e∗s(J) < e∗c(J) for all Jc − J positive and small enough; if the

AF interaction is power law with 2 < p ≤ 3, then e∗s(J) < e∗c(J) for all J large enough.

In conclusion, we showed for a 2D spin model with competing short range (nearest neighbor)

FM and long range AF interactions that stripes are favored with respect to checkerboard when

the GS structures are large compared to the range of the FM interaction. If the AF interaction

decays faster than r−4, the emergence of stripes close to the transition to the FM phase can

be understood on the basis of a comparison between the sign and relative sizes of the corner

and line energies, which is independent of the details of the AF interaction. If the decay at

infinity of the AF interaction is slower, than the balance between corner and line energies is

more subtle, and the understanding of why stripes are favored relies on explicit computations

of the stripe and checkerboard energies, which have been performed here in the simple case that

the AF depends on the Manhattan distance between sites. We believe that future progress on
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FIG. 2. A plot of the difference between the right and left hand sides of (3.17) vs p, which proves that

es(h/2) < ec(h) for all 2 < p < 3, and h large enough.

the problem will come from a deeper understanding of the reason that interactions that fall off

slower than r−4 always seem to favor stripes.
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Appendix A: A rigorous computation of Jc

Let us assume that the long range AF interaction decays at infinity faster than r−3, and let

τ = 2(J − Jc) be the line energy, as defined in Section 2. Here we want to prove that for all

J ≥ Jc, the homogeneous FM state is a GS of Eq.(1.1) (and is the unique GS for J > Jc). As

already remarked in Section 2, for J < Jc the homogenoeus state is not a GS, simply because

the state with a single straight anti-phase boundary has negative energy. If J ≥ Jc we want

to get a lower bound on the energy of an arbitrary state, which is positive, unless the state is

homogeneous.

We proceed in a way similar to the proof of Theorem 3 of1. We need to introduce some defi-

nitions; in particular via the basic Peierls construction we introduce the definitions of contours

and droplets. Given any spin configuration σΛ on the squared periodic box Λ, we define ∆ to

be the set of sites at which σi = −1, i.e., ∆ = {i ∈ Λ : σi = −1}. We draw around each i ∈ ∆

the 4 sides of the unit square centered at i and suppress the sides that occur twice: we obtain

in this way a closed polygon Γ(∆) which can be thought as the boundary of ∆. Each side of

Γ(∆) separates a point i ∈ ∆ from a point j 6∈ ∆. At every vertex of Γ(∆) ∩ Λ∗, with Λ∗ the

dual lattice of Λ, there can be either 2 or 4 sides meeting. In the case of 4 sides, we deform

slightly the polygon, “chopping off” the edge from the squares containing a − spin. When this
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is done Γ(∆) splits into disconnected polygons Γ1, . . . ,Γr which are called contours. Note that,

because of the choice of periodic boundary conditions, all contours are closed but can possibly

wind around the box Λ. The definition of contours naturally induces a notion of connectedness

for the spins in ∆: given i, j ∈ ∆ we shall say that i and j are connected iff there exists a

sequence (i = i0, i1, . . . , in = j) such that im, im+1, m = 0, . . . , n− 1, are nearest neighbors and

none of the bonds (im, im+1) crosses Γ(∆). The maximal connected components δi of ∆ will

be called droplets and the set of droplets of ∆ will be denoted by D(∆) = {δ1, . . . , δs}. Note

that the boundaries Γ(δi) of the droplets δi ∈ D(∆) are all distinct subsets of Γ(∆) with the

property: ∪s
i=1Γ(δi) = Γ(∆).

Given the definitions above, let us rewrite the energy EΛ(σΛ) of σΛ in a box Λ ⊂ Z
2 with

periodic boundary conditions as

EΛ(σΛ) = 2J
∑

Γ∈Γ(∆)

|Γ| −
∑

δ∈D(∆)

Edip(δ) , (A.1)

where Edip(δ) := 2ε
∑

x∈δ

∑
y∈∆c v(x − y), which can be bounded from above as

Edip(δ) = 2ε
∑

n∈Z2

v(n)
∑

x∈δ

∑

y∈∆c

χ(x− y = n) ≤

≤ 2ε
∑

n∈Z2

v(n)
∑

x∈δ

∑

y∈Z2\δ

χ(x− y = n) . (A.2)

Now, the number of ways in which n = (n1, n2) may occur as the difference x − y or y − x

with x ∈ δ and y 6∈ δ is at most
∑

Γ∈Γ(δ)

∑2
i=1 |Γ|i|ni|, where |Γ|i is the number of faces in Γ

orthogonal to the i–th coordinate direction. Therefore,

Edip(δ) ≤ ε
∑

Γ∈Γ(δ)

∑

n∈Z2

v(n)

2∑

i=1

|Γ|i|ni| = 2ε
∑

Γ∈Γ(δ)

|Γ|
∑

n∈Z
2:

n1>0

n1v(n) = 2Jc
∑

Γ∈Γ(δ)

|Γ| . (A.3)

Plugging this back into Eq.(A.1) gives

EΛ(σΛ) ≥ 2(J − Jc)
∑

Γ∈Γ(∆)

|Γ| , (A.4)

which readily implies that the uniformly magnetized state is a GS for all J ≥ Jc and that it is

the only GS for J > Jc.

As remarked in Section 2 (see the paragraph after Eq.(2.3)), the same method leading to

Eq.(A.4) allows us to prove that, as τ = 2(J − Jc) tends to zero from the left, the specific

ground state energy scales as −|τ |(2+δ)/(1+δ), which is the same scaling as the optimal stripes

energy for τ small and negative. However, we will not belabor the details of this computation

here.

Appendix B: Reflection positivity of power law interactions

In this Appendix we prove that v(x) = |x|−p, with p > 0 and |x| ≡ |x|2 =
√
x2
1 + x2

2 the

usual Euclidean distance, is a reflection positive (RP) potential, which may be a useful remark

for a possible future proof of the periodicity of the GS of Eq.(1.1) with v(x) = |x|−p. We recall

that v is RP if, for all compactly supported functions f : Z2 → C,

∑

x1,y1≥1
x2,y2∈Z

f̄x fy v(x1 + y1 − 1, x2 − y2) ≥ 0 . (B.1)
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By Schur’s product theorem, pointwise products of RP potentials are reflection positive. There-

fore, in order to prove that |x|−p is RP for all p > 0, it is enough to show that |x|−1 and |x|−λ,

with 0 < λ < 1, are separately RP. If v(x) = |x|−1 and x1 ≥ 1,

v(x1, x2) =
1√

x2
1 + x2

2

=
1

2π2

∫ +∞

−∞

dk

∫ +∞

−∞

dp

∫ +∞

−∞

dq
eikx1+ipx2

k2 + p2 + q2
=

=
1

2π

∫ +∞

−∞

dp

∫ +∞

−∞

dq
eipx2

√
p2 + q2

e−x1

√
p2+q2 , (B.2)

from which (B.1) readily follows. If v(x) = |x|−λ, with 0 < λ < 1, then (B.1) follows if we

prove the stronger result
∫ ∞

0

dx1

∫ 0

−∞

dy1

∫ +∞

−∞

dx2

∫ +∞

−∞

dy2
ρ(x)ρ(y)

|x− y|λ ≥ 0 , (B.3)

if ρ(x) is a smooth compactly supported real function, with support contained in R
2 \{x1 = 0},

and such that ρ(−x1, x2) = ρ(x1, x2). Using the Fourier transform of |x|−λ, see e.g.57 (Thm.

5.9), and proceeding as in58, we can rewrite the l.h.s. of (B.3) as

1

2λπ

Γ(1− λ
2 )

Γ(λ2 )

∫

R
2

dk

∫

x1,y1>0
x2,y2∈R

dx dy ρ(x)
eik1(x1+y1)eik2(x2−y2)

(k21 + k22)
1−λ/2

ρ(y) . (B.4)

We observe that for fixed x1+y1 > 0 and k2, the function eik1(x1+y1)(k21 +k22)
−1+λ/2 is analytic

in k1 in the upper half plane with the cut {iτ : τ ≥ |k2|} removed. Deforming the contour of

integration in dk1 to this cut and calculating the jump of the argument across it we obtain
∫ +∞

−∞

dk1
eik1(x1+y1)

(k21 + k22)
1−λ/2

= 2 sin
(
π(1− λ/2)

) ∫ ∞

|k2|

dτ
e−τ(x1+y1)

(τ2 − k22)
1−λ/2

. (B.5)

Plugging this back into (B.4) we find
∫

−x1,y1>0
x2,y2∈R

ρ(x)ρ(y)

|x− y|λ =
21−λ

π

Γ(1− λ
2 )

Γ(λ2 )
sin

(
π(1 − λ/2)

) ∫

R

dk2

∫ ∞

|k2|

dτ · (B.6)

· 1

(τ2 − k22)
1−λ/2

∫

x1,y1>0
x2,y2∈R

dx dy
(
ρ(x)e−τx1+ik2x2

)(
ρ(y)e−τy1−ik2y2

)
,

which is clearly nonnegative. This concludes the proof that |x|−p is reflection positive for all

p > 0.

Appendix C: Kac interactions

In this appendix we add some comments about the possible structure of the GS of Eq.(1.1)

in the case that v is a 2D Kac potential, i.e., v(x) = γ2v0(γx), with γ a small parameter.

These may be relevant for the understanding of the “froth problem”, addressed by Lebowitz

and Penrose in59. To be definite and make things simple, we restrict to the case of exponential

interactions depending on the Manhattan distance: v(x) = γ2e−γ‖x‖1. In this case, Jc =

2γ−1Aγ and, if J ≥ Jc, the GS is the homogeneous FM state.

From the computations in Section 3, we already know that, as J → J−
c , the stripe state

is energetically favored as compared to the checkerboard state. If e∗s(J) = minh∈N es(h) and

e∗c(J) = minh∈N ec(h) are the optimal stripe and checkerboard energies, an explicit computation

shows that, if 0 < ξ := γ(Jc − J) ≪ 1,

e∗s(J) = − 2ξ

| log ξ| +O
(ξ log | log ξ|

(log ξ)2

)
, e∗c(J) = − ξ2

2Bγ
+O(e−1/ξ) ; (C.1)
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correspondingly, the scales h∗
s and h∗

c of the optimal stripe and checkerboard configurations

turn out to be:

q∗c :=
γh∗

c

2
=

2Bγ

ξ
+O(e−1/ξ) , q∗s :=

γh∗
s

2
=

1

2

∣∣ log ξ
∣∣+O(log

∣∣ log ξ
∣∣) , (C.2)

Using methods similar to those in the proof of1 (Theorem 3), it is easy to prove that for ξ small

the scaling of e∗s(J) is the optimal one; i.e., the absolute ground state energy per site e0 admits

a lower bound of the form e0 ≥ −(const.)ξ · | log ξ|−1.

It is interesting that the model with exponential Kac interactions also displays a phase where

mesoscopic checkerboard are energetically favored with respect to stripes. In fact, note that

the periods of the optimal checkerboard and striped states are given by

γJ =
(
2Aγ − 2Bγ

tanh q∗c
q∗c

)[
tanh q∗c − q∗c (1− tanh2 q∗c )

]
, (C.3)

γJ = 2Aγ

[
tanh q∗s − q∗s (1 − tanh2 q∗s )

]
, (C.4)

from which we immediately recognize that, if γ ≪ 1 and 1 . J ≪ γ−1, then h∗
c and h∗

s are

both ≪ γ−1; therefore, the solution to these equations can be determined by expanding their

r.h.s. in Taylor series in q and solving to dominant order, which leads to:

γh∗
c

2
=

(9γJ
4

)1/5

+O
(
(γJ)3/5

)
, e∗c = −2 +

10

9

(9γJ
4

)4/5

+O
(
(γJ)6/5

)
,

γh∗
s

2
=

(3γJ
4

)1/3

+O(γJ) , e∗s = −2 + 2
(3γJ

4

)2/3

+O
(
(γJ)4/3

)
.

Therefore, in this regime the specific energy e∗c of the optimal checkerboard configuration is

smaller than the specific energy e∗s of the optimal striped configuration. This suggests that

for any fixed J and γ small enough the ground states of the considered model display periodic

checkerboard order, a conjecture supported by the fact that the absolute ground state energy

per site admits a lower bound of the form e0 ≥ −2+(const.)(γJ)4/5, which has the right scaling,

see below for a proof.

In conclusion, if the AF interaction is exponential with a Kac-like scaling, we expect that as

J is increased from 0 to Jc, the GS should display a transition from checkerboard to stripes.

On the basis of the previous computations, we expect the trabnsition to take place at values of

γJ of order one, see Fig.3.

Remark. The scaling of the checkerboard energy as well as the very existence of a checker-

board phase may depend on the specific choice of the Kac potential. In particular, it may

depend on the reflection positivity property of the Kac potential (note that the considered ex-

ponential interaction is reflection positive); if v0 is smoother at the origin (e.g., v0(x) = e−|x|2),

the checkerboard phase may disappear or, at least, be characterized by a completely different

scaling behavior. The reason for this is already apparent in a 1D toy model: consider model

Eq.(1.1) in d = 1 with v(x) = γv0(γx) and v0 either of the form v0(x) = e−|x| or v0(x) = e−x2

;

if one optimizes the energy of a configuration consisting of blocks of uniformly magnetized

spins of size h and alternating sign, the optimal size turns out to be of the order γ−2/3 in the

exponential case and γ−1/| log γ| in the gaussian case. This can be seen as follows: the scale

of the optimal periodic structure can be found by balancing the energy contributions from the

FM and AF interactions; while the first is 2J/h, the second is of the order of v̂0(1/γh), with v̂0
the Fourier transform of v0; the latter depends on the smoothness properties of v0 and, more

specifically, it behaves like v̂0(k) ∼ k−2 or ∼ e−(const)k2

at large k, in the cases of v0 exponential

or gaussian, respectively. Minimization of 2J/h+ v̂0(1/γh) over h gives the optimal size of the

structures.
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FIG. 3. A plot of the optimal checkerboard energy e∗c (solid line) and of the optimal striped energy

e∗s (dashed line) vs J̃ := γJ for exponential Kac interactions v(x) = γ2e−γ‖x‖1 at γ = 0.4. The plot

shows a transition from a case where e∗c < e∗s (for small values of J̃) to a case where e∗c > e∗s (for larger

values of J̃). In the limit γ ≪ 1, the transition is expected to occur for J of the order γ−1.

The fact that the nature of the checkerboard structure depends on the reflection positivity

properties of the Kac potential is consistent with the fact that the proof of the lower bound on

the energy in the Kac regime heavily uses reflection positivity, see next subsection.

1. Lower bound on the energy: Kac regime

Let us assume that 1 . J ≪ γ−1: in this case we want to prove that e0 ≥ −2+(const.)(γJ)4/5,

which asymptotically matches the upper bound e0 ≤ e∗c and supports the conjecture that, in

this regime, the ground state has checkerboard order. Let EΛ(σΛ) be the energy of the spin

configuration σΛ in the periodic squared box Λ. Let us consider a partition of Λ into squares

Qi of side ℓ: Λ = ∪|Λ|/ℓ2

i=1 ; given σΛ and Qi we shall denote by σQi
the restriction of the spin

configuration σΛ to the square Qi. Let v
Λ
γ (x) = γ2

∑
n∈Z

2 e−γ|x+nL|1 and let us rewrite

EΛ(σΛ) = −2
(γ/2)2

tanh2(γ/2)
|Λ|+ EΛ

γ (σΛ) + EΛ
J (σΛ) , (C.5)

where EΛ
γ (σΛ) = 1

2

∑
x,y∈Λ vΛγ (x − y)σxσy is the antiferromagnetic energy associated to σΛ,

while EΛ
J (σΛ) = 2J

∑
x∈Λ

∑2
i=1 χ(σx 6= σx+êi) is the surface tension energy of σΛ in the box Λ

with periodic boundary conditions. If we drop the surface tension energy across the boundaries

of the squares Qi, we get a lower bound on the energy of the form:

EΛ(σΛ) ≥ −2
(γ/2)2

tanh2(γ/2)
|Λ|+ EΛ

γ (σΛ) +

|Λ|/ℓ2∑

i=1

ẼQi

J (σQi
) , (C.6)

where ẼQi

J (σQi
) is the surface tension energy of the spin configuration σQi

in the box Qi with

open boundary conditions. Ifmi := ℓ−2
∑

x∈Qi
(σQi

)x, the surface tension energy can be further
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bounded from below by:

ẼQi

J (σQi
) ≥ 2Jℓmin{1, 2

√
2(1− |mi|)} . (C.7)

Moreover, using reflection positivity52, the antiferromagnetic energy can be bounded from below

as

EΛ
γ (σΛ) ≥ ℓ2

|Λ|/ℓ2∑

i=1

eγ(σQi
) , (C.8)

where eγ(σQi
) is the specific energy of the infinite volume configuration obtained by repeatedly

reflecting σQi
(with “antiferromagentic reflections”) across the sides of Qi and its images. More

explicitly,

eγ(σQi
) =

2

ℓ4

∑

p=π

ℓ
(n1,n2)

ni=1,3,5,...,2ℓ−1

|σ̃p|2γ2(1− e−2γ)2
2∏

i=1

1

(1− e−γ)2 + 2e−γ(1− cos pi)
, (C.9)

where σ̃p :=
∑

x∈Qi
σxe

−ikx. Using the fact that, for all ε > 0,

|σ̃p|2 ≥ 4(1− ε)

(1− cos p1)(1− cos p2)
− 1

ε
ℓ4(1 − |mi|)2 , (C.10)

we get

eγ(σQi
) ≥ (1 − ε)eγ(1Qi

)− (const.)
1

ε
(1− |mi|)2(γℓ)4 , (C.11)

where eγ(1Qi
) is the antiferromagnetic energy per site of the checkerboard configuration with

tiles of side ℓ. Note that eγ(1Qi
) scales as (const.)(γℓ)4 in the regime under consideration

and for ℓ ≫ 1; moreover, it can be bounded from below by C̄(γℓ)4 for a suitable constant C̄.

Optimizing over ε we get

eγ(σQi
) ≥ eγ(1Qi

)− c(1− |mi|)(γℓ)4 , (C.12)

for a suitable constant c. Combining all the previous bounds we find thatEΛ(σΛ)+2(γ/2)2 tanh−2(γ/2)|Λ|
can be bounded from below by

ℓ2
|Λ|/ℓ2∑

i=1

{2J

ℓ
min{1, 2

√
2(1− |mi|)}+

[
C̄ − c(1− |mi|)

]
(γℓ)4

}
. (C.13)

Optimizing over mi and ℓ leads to ℓ = (const.)(Jγ−4)1/5 and

e0 ≥ −2
(γ/2)2

tanh2(γ/2)
|Λ|+ (const.)(γJ)4/5 , (C.14)

as desired. The proof of (C.14) can be easily adapted to higher dimensions and to cases

where the ferromagnetic interaction has finite range rather than being nearest neighbor. On

the contrary, the assumption of RP was used in a crucial way and it is likely that in the

presence of more general long-ranged antiferromagnetic interactions the ground state energy

scales differently with γ.
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