
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Equilibrium and stability of polarization in ultrathin
ferroelectric films with ionic surface compensation

G. Brian Stephenson and Matthew J. Highland
Phys. Rev. B 84, 064107 — Published 19 August 2011

DOI: 10.1103/PhysRevB.84.064107

http://dx.doi.org/10.1103/PhysRevB.84.064107


BZ11583

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Equilibrium and Stability of Polarization in Ultrathin Ferroelectric Films
with Ionic Surface Compensation

G. Brian Stephenson∗ and Matthew J. Highland
Materials Science Division, Argonne National Laboratory,Argonne, IL 60439

(Dated: April 21, 2011)

Thermodynamic theory is developed for the ferroelectric phase transition of an ultrathin film in equilibrium
with a chemical environment that supplies ionic species to compensate its surface. Equations of state and free
energy expressions are developed based on Landau-Ginzburg-Devonshire theory, using electrochemical equilib-
ria to provide ionic compensation boundary conditions. Calculations are presented for a monodomain PbTiO3

(001) film coherently strained to SrTiO3 with its exposed surface and its electronically conductingbottom elec-
trode in equilibrium with a controlled oxygen partial pressure. The stability and metastability boundaries of
phases of different polarization are determined as a function of temperature, oxygen partial pressure, and film
thickness. Phase diagrams showing polarization and internal electric field are presented. At temperatures below
a thickness-dependent Curie point, high or low oxygen partial pressure stabilizes positive or negative polariza-
tion, respectively. Results are compared to the standard cases of electronic compensation controlled by either an
applied voltage or charge across two electrodes. Ionic surface compensation through chemical equilibrium with
an environment introduces new features into the phase diagram. In ultrathin films, a stable non-polar phase can
occur between the positive and negative polar phases when varying the external chemical potential at fixed tem-
perature, under conditions where charged surface species are not present in sufficient concentration to stabilize
a polar phase.

PACS numbers: 77.80.bn, 64.70.Nd, 68.43.-h, 77.84.Cg

I. INTRODUCTION

The equilibrium polarization structure of an ultrathin ferroelectric film is strongly affected by the nature of the charge compen-
sation of its interfaces. When there is insufficient free charge at the interfaces, a locally polar state can be stabilized by formation
of equilibrium 180◦ stripe domains that reduce the depolarizing field energy.1–6 When electrodes are present, electronic charge at
the interfaces can stabilize a monodomain polar state, provided that the effective screening length in the electrodes is sufficiently
small compared with the film thickness.6–14 In both cases, the Curie pointTC is expected to be increasingly suppressed as film
thickness decreases because of the residual depolarizing field energy.

Even when the surface electrode is missing, it has been experimentally observed that a monodomain polar state can be stable
in ultrathin ferroelectric films.15–18 This has been attributed to the presence of ionic species at the surface that provide charge
compensation and reduce the depolarizing field energy,16 similar to the adsorbates observed on bulk ferroelectric surfaces.19

Furthermore, experiments have shown that the sign of the polarization can be inverted by changing the chemical environment
in equilibrium with the surface.20,21 Recently22 it was found that when the polarization is inverted by changing the external
chemical potential, switching can occur without domain formation and at an internal field reaching the intrinsic coercive field
for certain ranges of film thickness and temperature. Thus, through either kinetic suppression of domain nucleation, orthe
structure of the equilibrium phase diagram, an instabilitypoint of the initial polar state can be reached. This is in sharp contrast
to switching by applied field across electrodes, where the consensus has been that polarization inversion occurs only bydomain
nucleation and growth at fields well below the instability.23

These studies motivate the need to understand the polarization phase diagrams and metastability limits for ultrathin ferro-
electric films with ionic surface compensation, in chemicalequilibrium with their environment. While the energy and structure
of ferroelectric surfaces compensated by ions have been predicted byab initio calculations,16,20,24,25these zero-Kelvin results
have been extrapolated to experimental temperatures usingsimple entropy estimates, and to date have not included the effects
of interaction with the ferroelectric phase transition andTC . Here we develop a thermodynamic theory for the ferroelectric
phase transition of an ultrathin film in an environment that supplies ionic species to compensate the polarization discontinuity at
the surface of the ferroelectric. We use an approach based onLandau-Ginzburg-Devonshire (LGD) theory for the ferroelectric
material,3 with boundary conditions that include both the depolarizing field effects that arise in ultrathin films and the creation
of ionic surface charge through electrochemical equilibria. This new chemical boundary condition is based on a Langmuir ad-
sorption isotherm for ions.26 We develop an expression for the free energy of the system anduse it to determine the equilibrium
monodomain polarization states and their stability. For simplicity we do not include additional “intrinsic” surface effects or
polarization gradients in the ferroelectric.27 We compare and contrast our model for ionic compensating charge controlled by an
applied chemical potential with existing models for electronic compensating charge controlled by either an applied voltage or
fixed charge, to elucidate how the present predictions for ionic compensation differ from prior work.
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We find that the equilibrium phase diagram of a monodomain ferroelectric film as a function of temperature and chemical
potential can have a different form than the standard phase diagrams as a function of temperature and applied voltage or charge.
We present calculations for PbTiO3 (001) films with a conducting bottom electrode (e.g., SrRuO3), coherently strained to SrTiO3,
and with a surface compensated by excess or missing oxygen ions.16,20 For sufficiently thin films, we find that a non-polar state
becomes stable between the positive and negative polar states, within the range of external oxygen partial pressures where there
is insufficient surface charge to stabilize a polar state. Under these conditions the Curie temperature depends strongly on the
oxygen chemical potential.

II. THERMODYNAMIC MODEL

In this section we establish the electrostatic boundary condition, the ferroelectric constitutive relation, and the free energy
expressions used to describe an ultrathin ferroelectric film. We consider a uniformly polarized, monodomain film with uniaxial
polarization oriented out-of-plane (normal to the interfaces). This should apply to systems such as PbTiO3 (001) coherently
strained to SrTiO3, since LGD theory3,28predicts that compressive in-plane strain favors this “c domain” polarization orientation.
Even if out-of-plane polarization is suppressed by depolarization field effects, in this system the in-plane “a domain” polarization
orientation is less stable than the non-polar phase22 at temperatures above 360 K. For this case all fields can be specified by scalars
since their in-plane components are zero.

To include the effects of incompletely neutralized depolarizing field, we use the simple electrostatic model illustrated in
Fig. 1. The spatial separation between the compensating free charge in the electrodes and the bound charge at the outer surfaces
of the ferroelectric leads to residual depolarizing field inthe film even when the external voltageVex is zero (i.e. short-circuit
conditions). Figure 1 shows the polarizationP and displacementD in a ferroelectric film of thicknesst sandwiched on the top
and bottom by planes of compensating free charge of density±σ, at a distanceλ ≥ 0 outside the ferroelectric. The planes of
bound and free charge lead to steps inP andD, respectively. In Fig. 1,P andD are positive and the free charge on the top
electrodeσ is negative. The electric field and potential can be calculated fromE = (D− P )/ǫ0 and∇φ = −E, whereǫ0 is the
permittivity of free space. The internal field in the ferroelectric film isEin = −(σ + P )/ǫ0, while the field just outside the film
isEλ = −σ/ǫ0.

In a series of early papers, Batra, Wurfel, and Silverman7–9 showed that the results of a more complex model taking into
account the space charge distribution and non-zero screening length in non-ideal metal electrodes could be reproducedby this
simple model in which ideal metal electrodes are separated from the ferroelectric by a vacuum gap of width equal to the screening
length, and all bound and free charges reside at the interfaces. This model has been discussed extensively6,10,11,15and used to
parametrize the results ofab initio calculations.12 An alternative description in terms of interfacial capacitance14,29 is equivalent
if the interfacial capacitance per unit area is identified with ǫ0/λ. Recent calculations13,14,30have shown that the screening length
for the electrode material can be generalized to be an effective screening length for a given ferroelectric/electrode interface.

We can relate the external voltageVex across the structure toσ andP by integrating the field to give

ǫ0Vex = 2λσ + t(σ + P ). (1)

The field in the ferroelectric can then be expressed as a function ofP and eitherσ or Vex using

Ein = −(σ + P )/ǫ0

= −
Vex + 2λP/ǫ0

2λ+ t
. (2)

In the latter expression, the second term in the numerator gives the voltage from the residual depolarizing field that is proportional
to (and opposes) the film polarization.

In this simple electrostatic model, we assume that the two interfaces have the same screening length and work function. In a
polarized material, these quantities can depend upon the polarization magnitude and orientation with respect to the surface, and
differences between the two interfaces may arise even if theelectrode materials are identical.13,30Since to first order these effects
simply add a term to2λ in the numerator of Eq. (2), which is already a variable parameter in our model, we have neglected these
differences. The approximations in this electrostatic model are not critical in determining the new behaviors we find below for
ionic surface compensation (which occur even forλ = 0), but do provide simple, analogous electronic compensation models for
comparison.

To determine the equilibrium polarization in the film, the values of field and polarization inside the ferroelectric mustsimul-
taneously satisfy both the electrostatic boundary condition Eq. (2) and theEin(P ) constitutive relation for the ferroelectric. For
PbTiO3 this can be written as3

Ein = f ′(P ) = 2α∗
3P + 4α∗

33P
3 + 6α111P

5, (3)
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wheref ′(P ) is the derivative of the bulk LGD free energy density

f(P ) ≡ α∗
3P

2 + α∗
33P

4 + α111P
6, (4)

and the coefficientsα∗
i are those for a coherently-strained film,31

α∗
3 =

T − T0

2ǫ0C
−

2xmQ12

s11 + s12
,

α∗
33 = α11 +

Q2
12

s11 + s12
, (5)

wherexm is the epitaxial misfit strain of the zero polarization state, T0 is the temperature at whichα∗
3 changes sign forxm = 0,

C is the Curie constant, andQij andsij are the electrostrictive and elastic compliance coefficients, respectively.3,32,33. Values of
these material parameters for PbTiO3 are listed in Table I. The misfit strainxm has a somewhat temperature-dependent value3 of
about -0.01 for PbTiO3 coherently strained to SrTiO3. While for unstressed bulk PbTiO3 the fourth-order polarization coefficient
α11 is slightly negative, indicating a weakly first order transition as a function ofT atEin = 0, for coherently strained films the
coefficientα∗

33 has a positive value of5.0× 107 Vm5/C3, indicating that the transition is second order31.
The strain normal to the film can be calculated from the polarization using the expression3

x3 = Q11P
2 + 2s12(xm −Q12P

2)/(s11 + s12). (6)

If the effects of depolarizing field are neglected (i.e. for ideal electrodes withλ = 0), the Curie temperatureT ◦
C is determined

by the change in sign ofα∗
3, which gives

T ◦
C = T0 + 4ǫ0CQ12xm/(s11 + s12). (7)

Using thexm(T ) appropriate for epitaxially strained PbTiO3 on SrTiO3, this givesT ◦
C = 1023 K, about 270 K higher than in

thexm = 0 case.
We can determine which of the equilibrium solutions is stable, metastable, or unstable by considering the appropriate free

energy of the system. For a closed system (e.g. fixed charge),the Helmholtz free energy is minimized at equilibrium. The
Helmholtz free energy per unit areaA can be written as3

A = t[f(P ) +
ǫ0
2
E2

in] + 2λ
ǫ0
2
E2

λ

= t

[

f(P ) +
(σ + P )2

2ǫ0

]

+
λσ2

ǫ0
, (8)

where the two terms are for the ferroelectric film and surrounding screening regions. For an open system (e.g. fixed potential),
the Gibbs free energy is minimized at equilibrium. The Gibbsfree energy per unit areaG is given by3

G = A− Vexσ, (9)

where the difference between the Gibbs and Helmholtz free energies−Vexσ is the electrical work done on the system by the
external circuit. This difference is in accord with that in arecent derivation34 of the energy functionals to be minimized in
first-principles calculations at fixedD and fixedE.

III. FERROELECTRIC FILM WITH ELECTRONIC COMPENSATION

In this section we present the equations of state and phase diagrams for ferroelectric films with electronic compensation under
controlled voltage or charge conditions, as background fordevelopment of theory for ionic compensation. Some of the more
subtle differences between fixed voltage and fixed charge boundary conditions are highlighted.

Figure 2 graphically shows the equilibrium polarization and field values that simultaneously satisfy the constitutiverelation,
Eq. (3), and either the fixedVex or the fixedσ boundary condition. A temperature of 644 K was chosen to match one of
the experimental conditions previously studied.20,22 Each line in Fig. 2(a) is the fixedVex boundary condition from the second
equality of Eq. (2) for a particular value ofVex. The deviation of this line from vertical reflects the non-zero value ofλ/t = 10−4

used to model the screening length in the electrodes. AsVex is varied, this boundary condition translates along the horizontal
Ein axis. For|Vex| less than a certain value, there are three intersections representing equilibrium solutions; at larger|Vex|, there
is only a single solution. The marked intersections correspond to solutions that are not unstable, as described below. Each line
in Fig. 2(b) is the fixedσ boundary condition from the first equality of Eq. (2) for a particular value ofσ. These lines are nearly
horizontal, showing that the field dependence ofP at constantσ is negligible. Asσ is varied, this boundary condition translates
along the verticalP axis. In this fixed, uniformσ case, there is a single equilibrium solution at allσ andT values. The behavior
is independent ofλ andt, and, as described below, the equilibrium solution is always stable.
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A. Phase Diagram for Controlled Vex

At constantVex, the equilibrium polarization value is that which minimizes G. Using the Eq. (1) to eliminateσ gives an
expression forG in terms ofVex andP ,

G = tf(P )−
ǫ0V

2
ex

2(2λ+ t)
+

tPVex

2λ+ t
+

λtP 2

ǫ0(2λ+ t)
. (10)

Figure 3 showsG as a function ofP andVex corresponding to Fig. 2(a). The equilibrium polarizationPeq can be determined by
setting the first derivative ofG at constantVex to zero, giving the equation of state

0 =
1

t

∂G

∂P

∣

∣

∣

∣

Vex

= f ′(P ) +
Vex + 2λP/ǫ0

2λ+ t
. (11)

This agrees with the simultaneous solution of the constitutive relation and boundary condition shown above, Eqs. (2-3).
The stability of the equilibrium solutions of Eq. (11) is determined by the sign of the second derivative ofG at that value ofP ,

1

t

∂2G

∂P 2

∣

∣

∣

∣

Vex

= f ′′(P ) +
2λ

ǫ0(2λ+ t)
. (12)

When this is negative, the solution is unstable; when it is positive, the solution is stable or metastable. In particular, when there
are three solutions, as shown in Fig. 2(a), the middle one near P = 0 is unstable. The values ofP andVex at the instability
(limit of metastability) are given by the condition that both the first and second derivatives ofG are zero. At this value ofP , the
P (Ein) curve of the constitutive equation, Eq. (3), has the same slope as the constantVex boundary condition line, Eq. (2), on
Fig. 2(a). The value ofEin at the instability is the intrinsic coercive field for the film/electrode system with parameterst andλ,
taking into account the effect of depolarizing field.

The solution of Eq. (12) forP = 0 gives the condition for the Curie temperatureTC which can differ from the valueT ◦
C for

λ = 0. The change inTC due to a non-zero screening length is given by8

∆T ≡ TC − T ◦
C =

−2λC

2λ+ t
. (13)

Because the Curie constantC is much larger thanT ◦
C for typical ferroelectrics, stability of the polar phase requiresλ << t.

Even a ratioλ/t = 0.001 gives∆T = −300 K for PbTiO3. Effective screening lengthsλ calculated from first principles12,14

vary between zero and 0.02 nm for various electrode-ferroelectric interfaces.
Figure 4 shows the equilibrium polarization, strain, and free energy of the stable and metastable solutions as a function

of Vex. These indicate the possible polarization hysteresis and strain butterfly loops. Two equilibrium solutions (one stable
and one metastable) corresponding to oppositely polarizedstates exist when|Vex| is smaller than the instability. The stable
solution switches between positive and negative polarization atVex = 0. At values ofVex in the metastable region between the
equilibrium and instability points, polarization switching requires nucleation of domains of the opposite polarity.The nucleation
barrier becomes zero whenVex reaches the instability.35 At values ofVex exceeding the instability, switching occurs by a
continuous process without nucleation.

Figure 5 shows the equilibrium polarization phase diagram as a function ofVex andT . While there is a first-order transition
phase between positive and negative polar ferroelectric (F+ and F-) phases, this terminates atTC in a second-order transition to
the non-polar paraelectric (P) phase36. WhenT is varied at non-zero values ofVex, there is no phase transition between the non-
polar and the stable polar phase. The dashed red and blue curves are the limits of the metastable F+ and F- phases, respectively.
The polarity switching transition driven by changingVex at fixedT requires nucleation under conditions inside (below) these
curves, and is continuous (non-nucleated) outside (above)these curves.

The non-zero screening lengthλ not only depressesTC belowT ◦
C , but also produces inverted electric fields in the film in

the region near the phase boundary (small|Vex|). Figure 6 shows the internal field as a function ofVex andT in the vicinity
of TC . The inverted electric fields extend into the non-polar phase in the region betweenTC andT ◦

C . Thus, when a small
external voltage is applied to a film in this region, the equilibrium field in the film isoppositeto the applied field. Close to
TC , the magnitude of this inverted field is larger than that of the applied field, producing an (internal) voltage gain in a passive
device that diverges asTC is approached. It has been proposed that such “negative capacitance” could be used to improve the
performance of nanoscale transistors.37 The conditions for zero field, shown as black dashed curves inFig. 6, can be obtained
from Eq. (2) asVex = −(2λ/ǫ0)P0, whereP0 is the zero-field spontaneous polarization of the epitaxially strained film.3 Unlike
TC , these boundaries are independent of film thickness.
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B. Phase Diagram for Controlled σ

An alternative to controlling the voltageVex across the electrodes is to control the current flow to the electrodes, and hence
the free chargeσ. The equilibrium polarization at fixedσ is determined by minimizing the Helmholtz free energy for the system
given by Eq. (8). This is plotted as a function ofP andσ in Fig. 7. Setting to zero the derivative ofA at constantσ gives the
equation of state

0 =
1

t

∂A

∂P

∣

∣

∣

∣

σ

= f ′(P ) +
σ + P

ǫ0
. (14)

This agrees with the constitutive relation, Eq. (3), verifying that the correct equilibrium states are predicted by this free energy
for fixedσ. SinceC/T ◦

C is very large for typical ferroelectrics, there is a only oneminimum at each value ofσ. The equilibrium
values ofA andVex are plotted versusσ in Fig. 8. To a good approximation, this equilibrium solution corresponds toPeq ≈ −σ,
and

Aeq ≈ tf(σ) +
λσ2

ǫ0
,

V eq
ex ≈ tf ′(σ) + 2λ

σ

ǫ0
. (15)

If these approximate expressions were plotted with the exact results in Fig. 8, the curves would be indistinguishable.
The stability of this equilibrium solution with respect to variations inP can be evaluated from the sign of the second derivative

of A with respect toP ,

1

t

∂2A

∂P 2

∣

∣

∣

∣

σ

= f ′′(P ) +
1

ǫ0
. (16)

BecauseC/TC is very large, the first term is negligible, and the second derivative is always positive. Unlike the fixedVex case,
the equilibrium solutionPeq ≈ −σ is never unstable with respect to fluctuations inP , and there is no phase transition. This
point is often not recognized –if the surface charge is controlled and kept uniform, any value ofP in the film may be stably
formed.

While at fixed surface charge densityσ the equilibrium solution is always stable with respect to polarization variations,
instability can occur with respect to spatial non-uniformity in σ. The free energyAeq of Eq. (15) is a double well, as shown in
Fig. 8(b). The minima occur at valuesσmin given by solutions of

0 =
1

t

dAeq

dσ
≈ f ′(σ) +

2λσ

tǫ0
. (17)

This givesV eq
ex (σmin) = 0. If the controlled parameter is the net charge density on theelectrodeσ̄, then for |σ̄| < |σmin|

the system can lower its free energy by forming a 2-phase mixture of domains of opposite polarity. The extent of this 2-phase
region is shown by the black dotted lines in Fig. 8. The local surface chargeσ = ±|σmin| will have opposite sign for oppositely
polarized domains. At equilibrium, the fraction of positive domainsxpos will be xpos = (1 − σ̄/|σmin|)/2. The equilibrium
value ofVex is zero in this polydomain region and the free energy densities of the oppositely polarized domains are equal.

Here we assume that the in-plane size of the domains is sufficiently large compared with the film thickness that we can neglect
the excess free energy of the domain walls and the in-plane components and non-uniformity of the polarization and field near
the domain walls. When there is incomplete neutralization of the depolarizing field by compensating charge (e.g. whenλ is not
zero), the free energy can in some cases be reduced by the formation of equilibrium 180◦ stripe domains1,3,6 with an in-plane
size similar to or less than the film thickness. For such fine-scale domain structures, the domain wall energies and field variations
are not negligible. For simplicity, we do not consider thesecases here.

The surface charge density is a conserved order parameter, so instability with respect to spatial non-uniformity occurs for
magnitudes ofσ smaller than the spinodal values given by

0 =
1

t

d2Aeq

dσ2
≈ f ′′(σ) +

2λ

tǫ0
. (18)

Sinceλ << t, this expression gives the same result as the instability with respect to uniformP variations at constantVex,
Eq. (12).

Figure 9 shows the equilibrium polarization phase diagram as a function ofσ̄ andT , while Fig. 10 shows the internal field
in the vicinity ofTC . These exhibit a two-phase field between the single-phase positive and negative polar phases (F+ and F-).
The dashed red and blue spinodal curves are the metastability limits of the F+ and F- phases, respectively. The polarization
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behavior is especially simple, since we haveP ≈ −σ in the single-phase regions, independent ofT . The suppression ofTC is
the same as in the controlledVex case, and the equilibrium and instability curves correspond exactly. However, transformations
driven by controlling eitherVex or σ̄ follow different paths. IfVex is kept constant, the parent phase will remain metastable
and will be entirely consumed by the stable phase. Ifσ̄ is kept constant,Vex will decrease to zero as the fraction of inverted
domains grows, reaching an equilibrium two-phase state. The controlled potential and controlled charge phase diagrams for
ferroelectrics, Figs. 5 and 9, are directly analogous to controlled chemical potential and controlled composition phase diagrams
for an alloy or fluid exhibiting phase separation.35 In particular, the instability in ferroelectrics is a spinodal boundary, and the
continuous transition that occurs at fixedVex in the unstable region is equivalent to spinodal decomposition of an alloy held
at constant chemical potential. In this case, unlike the usual fixed average composition constraint for an alloy, the continuous
transition will result in a single-phase (monodomain) finalstate. Spinodal transitions from monodomain to polydomainstates in
ferroelectrics at fixed̄σ have recently been modeled.38

While the conclusion that theP ≈ −σ solution is always stable with respect toP fluctuations for any constantσ may seem
practically irrelevant for the electronic compensation case where the system is unstable with respect toσ non-uniformity, in the
case of ionic compensation this conclusion can be important. As we shall see, for ionic compensation the system can be stable
againstσ non-uniformity, and the phase transition to a polar state can be completely suppressed for a range of applied chemical
potential.

IV. FERROELECTRIC FILM WITH IONIC SURFACE COMPENSATION

Now we consider a ferroelectric film without a top electrode,but with its surface exposed to a chemical environment that
can supply free charge from ionic species. The amount of freecharge supplied will depend on the chemical composition of the
environment and the external voltageVex that it sees on the surface. We will use the same electrostatic boundary condition,
Eq. (1), constitutive relation, Eq. (3), and free energy, Eq. (8), employed above for the electronic compensation cases, treating
the ions as residing in a plane at a distanceλ above the surface. Rather than solving for the polarizationfor a given value ofVex

or σ, we wish to obtain the equilibrium polarization for a given composition of the environment.
To obtain the relationship betweenσ andVex due to this chemical equilibrium, we develop an expression based on those

for adsorption of ions used in electrochemical systems.26 We treat the external chemical environment as an electrolyte that is
in contact with both the surface of the film and the bottom electrode (e.g. via pinholes in the film away from the region of
interest). In order for surface ions from the chemical environment to produce an electric field across the sample, as observed in
experiments,20–22 the electrons involved in creating the surface ions must have such a path to reach the bottom electrode.

We can write a generalized surface redox reaction between oxygen in the environment and a particular surface ioni,

IonSite +
1

ni
O2 ↔ zie

− + Ionzi , (19)

whereni is the number of surface ions created per oxygen molecule, and zi is the charge on the surface ion. In this formalism,
ni andzi change sign depending upon whether positively or negatively charged surface species are involved. For example, if the
surface ion is a doubly-negatively-charged single-atom adsorbed oxygen,O2−

ad , so thatni = 2 andzi = −2, the redox reaction
is

Vad +
1

2
O2 + 2e− ↔ O2−

ad , (20)

while if the surface ion is a doubly-positively-charged single-atom missing surface oxygen,V2+
O , so thatni = −2 andzi = 2,

the redox reaction is

OO ↔
1

2
O2 + 2e− +V2+

O . (21)

In these reactionsVad represents a vacant oxygen ion adsorption site on top of the film andOO represents an occupied oxygen
site in the outermost layer of the film. We include these sitesin the equilibrium so that the concentration of ions saturates when
all sites in the relevant surface layer are filled. The concentrations of surface ions,θi ≡ [Ion], are defined so that their saturation
levels areθi = 1 and the concentrations of the surface sites are[IonSite] = 1− θi.

One can write mass-action equilibria for these redox reactions, taking into account the external voltage difference between the
bottom electrode and the surface (since the electrons are assumed to reside at the bottom electrode, while the ions reside at the
surface). These are given by

θi
1− θi

= p
1/ni

O2
exp

(

−∆G◦
i − zieVex

kT

)

, (22)
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where∆G◦
i is the standard free energy of formation of the surface ion atpO2

= 1 bar andVex = 0, ande is the magnitude of
the electron charge. This expression is analogous to the Langmuir adsorption isotherm used in interfacial electrochemistry26 for
adsorption of neutral species onto a conducting electrode exposed to ions in a solution. Here, we consider adsorption ofions
onto a polar surface exposed to neutral species in a chemicalenvironment. Thus ourVex is the potential of the adsorbed ions
relative to the electrons, rather than the potential of the electrons relative to the ions in solution as in the typical electrochemical
case.

The standard free energies can depend not only on temperature but also on the polarization of the film, since the surface
structure changes withP . For simplicity we assume that they can be all described by the same parameterλ′ using

∆G◦
i ≡ ∆G◦◦

i (T ) + (zieλ
′/ǫ0)P. (23)

If λ′ is positive, then a more positively polarized film tends to stabilize negative surface ions, and vice versa. Note that theeffect
of λ′ is in addition to the electrostatic energy already includedthrough thezieVex term in Eq. (22). The density of free charge
on the surface is the sum of those from the various surface ions, giving

σ =
∑

i

zieθi
Ai

, (24)

where theA−1
i are the saturation densities of the surface ions.

Using Eqs. (22-24) and Eq. (1), the surface ion concentrationsθi can be calculated for givenVex andpO2
. Parameter values

for a system with one positive surface ioni = ⊕ and one negative surface ioni = ⊖ are given in Table II; here∆G◦◦
⊕ and∆G◦◦

⊖

are taken to be independent of temperature. We have assumed that the saturation densities of the surface ionsA−1
i are both one

per PbTiO3 unit cell area. For divalent surface ions, this saturation density would provide more than twice the charge density
needed to fully compensate the typical polarization of PbTiO3.

Figure 11 showsθi as a function ofVex for several different values ofpO2
. ChangingpO2

shifts the external voltage scale by
[kT/(zinie)]∆ ln pO2

for each ion. Figure 12 shows the corresponding surface charge densityσ. Three plateaus occur – two
at extreme values ofVex, where one or the other of the ionic surface concentrationsθi saturates at unity, and a third near zero
surface charge over the range ofVex for which bothθi are small compared to unity. From the shape of the charge vs. voltage
curves in Fig. 12, one can see that this chemical boundary condition has regions that correspond to fixedσ separated by regions
that correspond approximately to fixedVex. Thus fixedpO2

does not correspond to either fixedσ or fixedVex. As we shall see,
this strongly affects the equilibrium phase diagram.

The values ofpO2
andVex that giveσ = 0 can be obtained by solving Eqs. (22-24) forσ = P = 0, θi << 1, to give

ln

(

pO2

p◦◦O2

)

=
n⊖n⊕(z⊕ − z⊖)

n⊖ − n⊕

eVex

kT
, (25)

wherep◦◦O2
is the temperature-dependent oxygen partial pressure thatgivesσ = P = 0 atVex = 0,

ln p◦◦O2
≡

−n⊖n⊕

n⊖ − n⊕

[

∆G◦◦
⊖ −∆G◦◦

⊕

kT
+ ln

(

z⊕A⊖

−z⊖A⊕

)]

. (26)

As shown below, this value ofpO2
marks the transition between oppositely polarized films on the phase diagram.

A. Equilibrium Solutions at Controlled Oxygen Partial Pressure

Equilibrium solutions can be calculated by obtaining a relationship betweenEin andP due to the chemical boundary condi-
tion, and solving it simultaneously with the constitutive relation for the ferroelectric, as we did for the electronic case in Fig. 2.
The solution forσ as a function ofVex shown in Fig. 12 along with Eqs. (1-2) gives a relation between Ein andP for a given
pO2

, which can be solved simultaneously with Eq. (3) to obtain the overall equilibrium. This is illustrated in Fig. 13, wherethe
chemical boundary condition for three values ofpO2

is shown. ChangingpO2
shifts the boundary condition curve along theEin

axis. The boundary condition curve is centered onP = 0, Ein = 0 whenpO2
is equal top◦◦O2

of Eq. (25).
An approximate expression for the chemical boundary condition can be obtained by making some simplifying assumptions.

The dependence ofσ on Vex obtained from the depolarizing field, Eq. (1), is negligiblecompared with that obtained from the
chemical equilibria, Eq. (24), shown in Fig. 12. One can approximate Eq. (1) asσ ≈ −P . In addition, we can neglect one of
the ion concentrationsθ⊕ or θ⊖ relative to the other, depending on the sign of the film polarization. This leads to the limiting
expressions

Vex ≈ −
kT

zie
ln

−AiP/zie

1 +AiP/zie
−

∆G◦◦
i

zie
−

λ′

ǫ0
P +

kT ln pO2

zinie
, (27)
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for i = ⊖ or ⊕ (positive or negative film polarization, respectively). For the parameters used in Fig. 12, e.g. far belowTC ,
the approximation (27) is very close to the exact solution obtained numerically. Substituting the approximations Eqs.(27) into
Eq. (2), one obtains relationships between field and polarization given by

ǫ0Ein ≈
ǫ0(

kT
zie

ln −AiP/zie
1+AiP/zie

+
∆G◦◦

i

zie
−

kT ln pO2

zinie
)− 2λ†P

2λ+ t
, (28)

for i = ⊖ or⊕. Here we have introduced a new parameter,λ†, defined by

λ† ≡ λ− λ′/2. (29)

If λ′ is positive thenλ† is smaller thanλ, and in particularλ† can be negative.

B. Stability of Equilibrium Solutions

Because of the plateau in theP (Ein) shape of the chemical boundary condition shown in Fig. 13, there can be as many as
five equilibrium solutions given by the intersections. A total free energy function that is minimized at equilibrium canbe used
to determine which solutions are stable, metastable, and unstable. The Gibbs free energy consistent with the above treatment of
the chemical boundary conditions is

G = t

[

f(P ) +
(σ + P )2

2ǫ0

]

+
λ†σ2

ǫ0

+
∑

i=⊖,⊕

kT

Ai

[

θi∆G◦◦
i

kT
−

θi ln pO2

ni

+ θi ln θi + (1− θi) ln(1− θi)

]

. (30)

The extra terms in this expression for Gibbs free energy not present in Eq. (8) for the Helmholtz free energy, i.e. the summation
and theλ′ term inλ†, are analogous to the term−Vexσ in the Gibbs free energy for the electronic compensation case, Eq. (9).
These terms represent the work done on the system by the environment at fixed chemical potential.

Minimizing thisG with respect toP at constantpO2
, θ⊖, andθ⊕ (and therefore constantσ) gives

0 =
1

t

∂G

∂P

∣

∣

∣

∣

θ⊕,θ⊖,pO2

= f ′(P ) +
σ + P

ǫ0
. (31)

This agrees with the constitutive relation, Eq. (3), like the case for electronic compensation, Eq. (14). As in that case, because of
the large value ofC/TC for PbTiO3, the equilibrium polarization is given to a good approximation byP ≈ −σ. The free energy
expression then becomes

G ≈ tf(σ) +
λ†σ2

ǫ0

+
∑

i=⊖,⊕

kT

Ai

[

θi∆G◦◦
i

kT
−

θi ln pO2

ni

+ θi ln θi + (1− θi) ln(1− θi)

]

. (32)

When the derivatives of this free energy with respect toθ⊕ andθ⊖ at fixedpO2
are set to zero, this yields the equilibrium relations

given above in Eqs. (22-24), whereVex of Eq. (1) is now given byVex ≈ 2λσ/ǫ0 + tf ′(σ).
The global minimum of the free energyG of Eq. (32) with respect toθ⊖ andθ⊕ typically occurs either atθ⊖ ≈ 0 or θ⊕ ≈ 0.

The generality of this result can be evaluated by re-expressing the θ⊖ and θ⊕ terms in the free energy Eq. (32) using new
variablesσ andδ ≡ z⊕eθ⊕/A⊕ − z⊖eθ⊖/A⊖. Minimizing G with respect toδ at fixedσ gives

0 = 2e
∂G

∂δ

∣

∣

∣

∣

σ,pO2

=

(

∆G◦◦
⊕

z⊕
−

∆G◦◦
⊖

z⊖

)

+

[

kT

z⊕
ln

(

θ⊕
1− θ⊕

)

−
kT

z⊖
ln

(

θ⊖
1− θ⊖

)]

+

(

z⊕n⊕ − z⊖n⊖

z⊕n⊕z⊖n⊖

)

kT ln pO2
. (33)
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The first term is positive in cases such as the one we consider,when there is a region of intermediatepO2
with low concentrations

of both positive and negative surface ions. The third term iszero for typical values of thezi andni. Thus the equilibrium
condition requires that the second term be negative, which occurs only when eitherθ⊖ or θ⊕ is very small. Substituting this
result into Eq. (32) gives

G ≈ tf(σ) +
λ†σ2

ǫ0
+

σ

zie

(

∆G◦◦
i −

kT ln pO2

ni

)

(34)

+
kT

Ai

[

Aiσ

zie
ln

(

Aiσ

zie

)

+

(

1−
Aiσ

zie

)

ln

(

1−
Aiσ

zie

)]

,

wherei = ⊖ for θ⊕ ≈ 0, positiveP , and negativeσ, or i = ⊕ for θ⊖ ≈ 0, negativeP , and positiveσ. The third term is
proportional toσ, like a field term, but the constant of proportionality changes whenσ changes sign and the ionic species at the
surface change between positive and negative ions. This change in slope ofG(σ) at σ = 0 can produce a stable or metastable
minimum.

The free energy of Eq. (34) is plotted versuspO2
/p◦◦O2

andσ in Figs. 14-15. At intermediate values ofpO2
, there are three

(meta-)stable solutions corresponding to local minima inG(σ), at positive, zero, and negative polarization. These equilibrium
solutions satisfy the equations of state

0 =
∂G

∂σ
≈ tf ′(σ) +

2λ†σ

ǫ0
+

1

zie

(

∆G◦◦
i −

kT ln pO2

ni

)

+
kT

zie

[

ln

(

Aiσ

zie

)

− ln

(

1−
Aiσ

zie

)]

, (35)

and the limits of metastability of these solutions can be obtained from

0 =
∂2G

∂σ2
≈ tf ′′(σ) +

2λ†

ǫ0
+

kT

zieσ
(

1− Aiσ
zie

) , (36)

wherei = ⊖ or ⊕ as in Eq. (34). Figure 16(a,b) shows the polarizations and energies of these solutions as a function of
pO2

/p◦◦O2
. The energy of the solution atP = 0 is zero, while the energies depend onpO2

/p◦◦O2
for the other two solutions. For

the parameters used here, e.g. a 3.2 nm film thickness, the energies of all three solutions are almost equal atpO2
/p◦◦O2

= 1. The
P = 0 solution will be the stable (global minimum) solution for thinner films at intermediatepO2

. Here this solution is stable
againstσ non-uniformity, unlike the electronic compensation case.For example, Fig. 16(c,d) shows the results for a 1.6 nm
thick film, with all other parameters the same. In such thin films, where the central flat region of the boundary conditionP (Ein)
curve spans a large range ofEin, the positive and negative solutions do not overlap, and theP = 0 solution is the only solution
for the range ofpO2

where bothθ⊕ andθ⊖ are small.
For the polar phases, the last term of Eq. (36) is typically small enough, except nearTC , that this condition for the instability

is very similar to those for the electronic compensation cases, Eqs. (12) and (18). Thus at the metastability limit of thepolar
phases, the internal field reaches the same intrinsic coercive field in the ionic compensation case as it does in the electronic
compensation cases.

C. Phase Diagram for Controlled pO2

The effect of the chemical boundary condition on the ferroelectric phase transition can be explored by solving for the polar-
ization and field as a function of temperature as well aspO2

and film thickness. As can be guessed from the fixed-temperature
results shown above, the temperature dependences ofP , Ein, and the Curie pointTC (i.e. the temperature of the equilibrium
boundary between the polar and non-polar phases) all vary with thepO2

of the environment.
Figure 17 shows equilibrium polarization phase diagrams asa function ofT andpO2

/p◦◦O2
for various film thicknesses. In

addition to the stable and metastable equilibrium phase boundaries, the metastability limits of the polar and non-polar phases
are shown. These phase diagrams are calculated using parameter values given in Table II. The oxygen pressure scale has been
normalized top◦◦O2

(T ), which produces symmetric diagrams whenn⊖ = −n⊕, z⊖ = −z⊕.
The equilibrium phase diagrams as a function ofpO2

for ionic compensation, Fig. 17, differ qualitatively fromthe standard
second-order ferroelectric phase diagrams as a function ofVex or σ for electronic compensation, Figs. 5 and 9. The ionic phase
diagrams show temperature ranges where the non-polar phaseis stable at intermediatepO2

separating the positive and negative
polar phases at high and lowpO2

, respectively. As film thickness becomes smaller, this “wedge” of non-polar phase extends to
lower temperature, reaching 0 K for thicknesses less than about 1 nm for the parameter values used here. For films with smaller
thickness, an inverted ferroelectric transition remains at extreme values ofpO2

, with the polar phase stable at temperatures above
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the phase boundary, and the non-polar phase stable below theboundary. For thicker films, there is a triple point where thefirst
order transitions between the positive and negative polar and non-polar phases meet atpO2

/p◦◦O2
= 1, while at extreme values

of pO2
there is no phase transition as a function ofT between the polar and non-polar phases, similar to the case at non-zero

Vex in Fig. 5 for electronic compensation. For all film thicknesses, the high temperature ends of the polar/non-polar phase
boundaries terminate at two critical points. In a range of temperature below these critical points, the regions of (meta-)stability
of the positive and negative polar phases do not overlap. Here, switching transitions between oppositely polarized states at fixed
T driven by changingpO2

must occur through an intermediate non-polar state.
The appearance of the non-polar phase between the polar phases at lower temperature is directly related to the non-linear

dependence of surface chargeσ on ln(pO2
) at fixedVex. This has a plateau at a value nearσ = 0 for intermediatepO2

values,
where the concentrations of both positive and negative surface ions are small. The low value ofσ in this region can be insufficient
to stabilize either polar phase.

Figure 18 shows the temperatures as a function of film thickness of the critical points, the polar phase instabilities at
pO2

/p◦◦O2
= 1, and the triple point. The triple point is the minimum equilibrium TC . At temperatures between the triple

point and the critical points, the non-polar phase intervenes between the polar phases at equilibrium. An expression for the tem-
peraturesTcr of the critical points can be obtained by setting the second and third derivatives of the free energy simultaneously
to zero, Eq. (36) and

0 =
∂3G

∂σ3
≈ tf ′′′(σ) −

kT
(

1− 2Aiσ
zie

)

zieσ2

(

1− Aiσ
zie

)2
, (37)

wherei = ⊖ or⊕ as in Eq. (34). In the approximation thatσ is small at the critical point, these reduce to

0 ≈≈

(

α∗
3(Tcr) +

λ†

ǫ0t

)3

+ 2α∗
33

(

9kTcr

4t|zi|e

)2

. (38)

We use the double≈≈ symbol to indicate a rough approximation, in this case because it becomes invalid at smallt. Nonetheless,
Eq. (38) shows that the temperatures of the critical points for the ionic compensation case are suppressed by an additional
thickness-dependent term not present in the electronic compensation case, Eq. (13). Even if the effective screening length is
zero,λ† = 0, theTcr are changed by an amount

∆Tcr ≡ Tcr − T ◦
C ≈≈ −2ǫ0C(2α∗

33)
1/3

(

9kTcr

4t|zi|e

)2/3

. (39)

Using the LGD parameters3 for PbTiO3 coherently strained to SrTiO3, |zi| = 2, and a thickness oft = 3.2 nm, one obtains
∆Tcr ≈≈ −115 K.

Figure 19 shows the internal field (along with the phase boundaries) as a function ofpO2
/p◦◦O2

andT for a 1.6 nm thick film.
Like the electronic compensation cases, Figs. 6 and 10, the internal electric field is inverted in the polar phases near the phase
boundaries because of the incompletely neutralized depolarizing field. While the electronic compensation model requires a non-
zero screening lengthλ to produce an inverted field, the ionic compensation model does not. The magnitude of the inverted field
at the phase boundary is much larger for ionic than for electronic compensation in the cases shown. In all cases the inverted field
regions extend above the critical point(s). The oxygen partial pressure corresponding to zero internal field can be obtained by
setting the numerator in Eq. (28) to zero, giving

ln pEin=0

O2
≈ −

2nizieλ
†P0

ǫ0kT
+ ni ln

(

−AiP0/zie

1 +AiP0/zie

)

+
ni∆G◦◦

i

kT
, (40)

whereP0 is theT -dependent zero-field spontaneous polarization of the epitaxially strained film given by the solution to Eq.
(2) with Ein = 0, and i = ⊖ or ⊕ for positive or negative values ofP0. As for electronic compensation, the conditions
for zero field are independent of film thickness, and they intersect atT ◦

C . Rough values of the oxygen partial pressure at the
critical pointspcrO2

can be obtained by assuming that the field is zero and neglecting the first two terms in Eq. (40). This gives
kTcr ln p

cr
O2

≈≈ ni∆G◦◦
i , wherei = ⊖ for positiveP (highpO2

) andi = ⊕ for negativeP (low pO2
).

V. DISCUSSION

The new parameters in the model developed above for ionic surface compensation areni, zi, Ai, and∆G◦◦
i for i = ⊖ and

⊕, as well asλ′. These can be related to the locations of the features on the phase diagram. Approximate expressions are
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given above that show how the∆G◦◦
i determinep◦◦O2

and thepcrO2
, which give the center and width of the phase diagram in

pO2
coordinates. These expressions are particularly simple when the phase diagram is symmetric in coordinates ofpO2

/p◦◦O2

versusT , i.e. whenn⊕ = −n⊖, z⊖ = −z⊕, andA⊖ = A⊕. In this case one obtainsln p◦◦O2
= n⊖(∆G◦◦

⊖ − ∆G◦◦
⊕ )/(2kT ),

ln(pcrO2
/p◦◦O2

) ≈≈ ±n⊖(∆G◦◦
⊖ +∆G◦◦

⊕ )/(2kTcr). The value ofλ′ affects the critical temperaturesTcr, which may be suppressed
or enhanced relative to the electronic compensation value.

Although the phase diagrams we have shown are symmetric whenplotted inpO2
/p◦◦O2

versusT coordinates, the value ofp◦◦O2

is expected to be a function ofT . Thus experimental phase diagrams obtained as a function ofpO2
versusT are not expected to

be symmetric. Figure 20 shows the trajectories of constantpO2
on the sameT vs. pO2

/p◦◦O2
axes used to plot the phase diagrams.

Note that we have neglected any temperature dependence of∆G◦◦
i in these calculations. Such temperature dependence might

be expected since the entropy of O2 in the environment may be different than that of the adsorbedions.
While the Gibbs free energy expressions for the ionic and electronic compensation cases are very similar, the phase diagrams

differ qualitatively because a different parameter is fixed. If we neglect the polarization dependence of the∆G◦
i so thatλ′ = 0

and we considerθi << 1 for bothi = ⊖ and⊕, then by using the mass action equilibria Eqs. (22) one can show that the Gibbs
free energy for ionic compensation, Eq. (30), reduces to Eq.(9) used for the fixedVex case. However, the fixedVex and fixed
pO2

conditions lead to different equilibrium free energy surfaces, Figs. 3 and 14, even in the case ofλ′ = 0 andθi << 1. The
relationship between the fixedVex and fixedpO2

conditions can be seen from Eq. (27). HerepO2
enters into the expression for

Vex simply through the termkT ln pO2
/(zinie). In general, however, fixedpO2

does not correspond to fixedVex because there
are other terms and they depend upon polarization. In particular, if the value of∆G◦◦

i /(zie) differs for positive and negative
surface ions, then there is an abrupt jump inVex when crossingP = 0. Thus fixedVex and fixedpO2

constraints produce
different equilibrium behavior even when the free energy expression for both cases is the same.

The form of the phase diagrams in Fig. 17 in which a stable non-polar phase intervenes between the polar phases is due to
the appearance of a third local minimum inG(P ) nearP = 0 as shown in Fig. 15. This is conceptually similar to the behavior
of a ferroelectric with a first-order transition, for which the coefficient ofP 4 in the free energy expression is negative.36,39 For
example, Fig. 21 shows the phase diagram for controlled internal fieldEin (i.e. controlledVex across ideal electrodes withλ = 0)
for unstressed bulk PbTiO3, for which the free energy per unit volume isG/t = α1P

2 + α11P
4 + α111P

6 + ǫ0E
2
in/2− EinP

with α1 = (T − T0)/2ǫ0C. Here the topology of the equilibrium phase boundaries is similar to the ionic compensation case in
Fig. 17(a,b), with a triple point and two critical points. However the range of temperatures spanned by this structure isrelatively
small because the transition is only weakly first order in bulk PbTiO3.

The appearance of a stable non-polar state between the polarstates on thepO2
vs.T phase diagram can affect the mechanism

of switching and the internal field at which switching occurs(i.e. the coercive field). During switching by rampingpO2
, the film

may first become unstable with respect to the non-polar statebefore reachingpO2
values that stabilize the opposite polarization,

thus suppressing nucleation of oppositely polarized domains. In this case the internal field could reach the intrinsic coercive
field and switching occur by a continuous, spinodal mechanism without nucleation. This could produce the recently observed
cross-over to a continuous mechanism22 through an equilibrium pathway not requiring kinetic suppression of nucleation.

The model developed here contains several assumptions thatcould be relaxed in future extensions. We assume that the
effective screening lengthλ is not negative, so that electronic interfacial effects tend to suppress rather than enhance polarization
in ultrathin films. We also neglect any polarization dependence ofλ. Ab initio calculations14,30 indicate that in some systems
the interfaces enhance film polarization, which can be modeled with a negativeλ, and thatλ depends onP . These effects could
be included by modifications to our electrostatic boundary conditions and free energy expressions. We constrain the free and
bound charge at each interface to reside in single planes, sothat there is no space charge. Such space charge could be included
as has been done previously in models with semiconducting ferroelectric films and/or electrodes.7–9,40Since the screening layer
of thicknessλ is a conceptual construct rather than an actual dielectric layer in our model, we do not consider tunneling of
free charge across this layer, which has been recently considered for systems with a dielectric separating the electrode from the
ferroelectric.41 These effects could be added for such systems. We also neglect the possibility of equilibrium 180◦ stripe domain
formation1–6 in which nanoscale domain structures reduce the depolarizing field even when there is little or no electronic or ionic
compensation charge at one or both interfaces. A full treatment of equilibrium stripe domains for the ionic compensation case
would be valuable in future work.

VI. SUMMARY AND CONCLUSIONS

Ionic compensation of a ferroelectric surface due to chemical equilibrium with an environment introduces new featuresinto
the phase diagram, Fig. 17, not present in the standard phasediagrams for a second-order transition in a film with electronic
compensation, Figs. 5 and 9. The chemical boundary condition shown in Fig. 13 is a hybrid between the constantVex and
constantσ boundary conditions shown in Fig. 2. Because the surface concentrations of ionic speciesθi are limited to values
between zero and unity, constant surface charge regimes occur when theθi are saturated. In the regimes where one of theθi is
varying between these limits, the boundary condition is similar to a fixedVex condition. There are two independent relations
for the surface chargeσ as a function ofpO2

, depending upon whether positive or negative surface ions predominate. In the
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pO2
region where there is insufficient surface charge of either sign to stabilize a polar state, the non-polar state becomes stable

between the positive and negative polar states, producing two critical points, a triple point, and a strong dependence of TC

on pO2
. Large inverted internal fields occur at equilibrium in the polar phases near the phase boundaries with the non-polar

phase. Manipulation of ultrathin ferroelectric films via controlled ionic compensation may thus allow experimental access to
exotic non-polar and high-field states such as those modeledin recentab initio calculations34,42 that would not be stable under
electronic compensation conditions.
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FIG. 1: Schematic of polarization, displacement, electricfield, and electric potential in the bulk and at the interfaces of a ferroelectric film of
thicknesst and polarizationP . Compensating planes of charge densityσ can be considered to reside at a separationλ equal to the effective
screening length in the electrodes.
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FIG. 2: (Color online) Polarization vs. internal field. Red lines show (a) fixedVex (at t = 3.2 nm andλ/t = 10−4) or (b) fixedσ boundary
conditions from Eq. (2), for the three values of the fixed quantity given in the legend. In each case, the “S” shaped blue curve is the constitutive
relation, Eq. (3), for PbTiO3 coherently strained to SrTiO3 at 644 K. Marked intersections correspond to stable or metastable equilibrium
solutions.
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FIG. 3: (Color online) Gibbs free energyG vs. P andVex for a t = 3.2 nm PbTiO3 film coherently strained to SrTiO3 at 644 K, with
λ/t = 10−4. Color scale gives values ofG.
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FIG. 4: (Color online) Equilibrium solutions for (a) polarizationP , (b) strainx3, and (c) Gibbs free energyG as a function ofVex, calculated
for PbTiO3 coherently strained to SrTiO3 at 644 K witht = 3.2 nm andλ/t = 10−4. Red (blue) curves are positive (negative) polarization;
solid (dashed) segments are stable (metastable); closed (open) circles show equilibrium transition (instability) points.
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FIG. 5: (Color online) Equilibrium polarization phase diagram as a function ofVex andT for PbTiO3 coherently strained to SrTiO3 with
t = 3.2 nm andλ/t = 10−4. Color scale gives polarization of stable phase. Solid black line is phase boundary between positive and
negative polar ferroelectric (F+ and F-) phases, terminating atTC . Dashed red and blue curves are metastability limits of the F+ and F- phases,
respectively.
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FIG. 6: (Color online) Internal field in region near the Curiepoint, corresponding to Fig. 5. Color scale gives electric field in stable phase.
Dashed black curves show conditions for zero field, which intersect atT ◦

C (open circle), the Curie point for a film without depolarizing field
(λ = 0).
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FIG. 7: (Color online) Helmholtz free energyA vs. polarizationP and surface chargeσ for a t = 3.2 nm PbTiO3 film coherently strained to
SrTiO3 at 644 K, withλ/t = 10−4. Color scale gives values ofA. To emphasize the equilibrium solutions, only the region nearP = −σ is
plotted sinceA is very large outside this region.
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FIG. 8: (Color online) Equilibrium solutions for (a) external voltageVex and (b) Helmholtz free energyA as a function of surface chargeσ
corresponding to Fig. 7. Red (blue) curves are positive (negative) polarization; all values are stable with respect toP variations whenσ is
spatially uniform. Closed (open) circles show the equilibrium transition (instability) points whenσ can be nonuniform.
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FIG. 9: (Color online) Equilibrium phase diagram as a function of net surface chargēσ andT whenσ can be nonuniform, for PbTiO3
coherently strained to SrTiO3 with t = 3.2 nm andλ/t = 10−4. Color scale gives polarization in single-phase region. Solid black line is
phase boundary between positive and negative polar ferroelectric (F+ and F-) phases and a two-phase field, which terminates atTC (filled
circle). Dashed red and blue curves are metastability limits of the F+ and F- phases, respectively.
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FIG. 10: (Color online) Internal field in the region near the Curie point, corresponding to Fig. 9. Color scale gives electric field in single-phase
region. Dashed black curves show conditions for zero field.
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FIG. 11: (Color online) Concentrations of positiveθ⊕ (red curves) and negativeθ⊖ (blue curves) surface ions as a function ofVex, calculated
for the values ofpO2

(bar) given in the legend atT = 644 K, t = 3.2 nm. Parameter values used are given in Table II.
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FIG. 12: Surface charge densityσ as a function ofVex, corresponding to the concentrations shown in Fig. 11. Parameter values used are given
in Table II.
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FIG. 13: (Color online) Polarization vs. internal field relationships arising from the constitutive relation for the ferroelectric film (blue “S”
shaped curve) and from the chemical boundary condition (redcurves with plateau) forpO2

values shown in legend (bar). Marked intersections
correspond to stable or metastable equilibrium solutions.Parameter values used are given in Tables I and II, withT = 644 K, t = 3.2 nm.
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FIG. 14: (Color online) Free energy as a function ofσ andpO2
/p◦◦O2

. Parameter values used are given in Tables I and II, withT = 644 K,
t = 3.2 nm. Color scale gives values ofG.
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FIG. 15: (Color online) Free energy as a function ofσ at three given values ofpO2
/p◦◦O2

. Parameter values used are given in Tables I and II,
with T = 644 K, t = 3.2 nm.
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FIG. 16: (Color online) PolarizationP and free energyG of the (meta-)stable equilibrium solutions as a function ofpO2
/p◦◦O2

. Blue, green,
and red curves are for negative, zero, and positive polarization solutions; solid and dashed regions are stable and metastable, respectively.
Parameter values used are given in Tables I and II, withT = 644 K, andt = 3.2 nm for plots (a) and (b),t = 1.6 nm for plots (c) and (d).
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FIG. 17: (Color online) Phase diagrams as a function ofpO2
/p◦◦O2

andT for three thicknesses of PbTiO3 coherently strained to SrTiO3, using
parameters in Tables I and II. Color scale gives polarization. Solid and dash-dot black curves are stable and metastablephase boundaries,
respectively, between non-polar paraelectric (P) and positive and negative polar ferroelectric (F+ and F-) phases. Dashed red, blue, and white
curves are metastability limits of the F+, F-, and P phases, respectively.
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FIG. 18: The temperatures of the critical pointsTcr, the polar phase instabilities atpO2
= p◦◦O2

, and the triple point, as a function of film
thickness.
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FIG. 19: (Color online) Internal field fort = 1.6 nm, corresponding to Fig. 17(b). Color scale gives electricfield in stable phase. Dashed
black curves show conditions for zero field, which intersectatT ◦

C (open circle).
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FIG. 20: Curves show fixed values ofpO2
(bar) given in the legend, plotted using same normalized axes used for the phase diagrams, with

parameters corresponding to Table II.
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FIG. 21: (Color online) Region near critical points on equilibrium polarization phase diagram as a function ofEin andT for unstressed bulk
PbTiO3 with ideal electrodes (λ = 0). Color scale gives polarization of stable phase. Solid anddash-dot black curves are stable and metastable
phase boundaries, respectively, between non-polar paraelectric (P) and positive and negative polar ferroelectric (F+ and F-) phases. Dashed
red, blue, and white curves are metastability limits of the F+, F-, and P phases, respectively.
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Tables
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TABLE I: Material parameters3,32,33 for PbTiO3.

T0 752.0 (K) Q11 8.9× 10−2 (m4/C2)

C 1.5× 105 (K) Q12 −2.6× 10−2 (m4/C2)

α11 −7.25× 107 (Vm5/C3) s11 8.0× 10−12 (m2/N)

α111 2.61× 108 (Vm9/C5) s12 −2.5× 10−12 (m2/N)
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TABLE II: Values of ionic surface compensation coefficientsused in displayed plots.

∆G◦◦
⊕ 1.00 (eV) ∆G◦◦

⊖ 0.00 (eV)

n⊕ −2 n⊖ 2

z⊕ 2 z⊖ −2

A⊕ 1.6× 10−19 (m2) A⊖ 1.6× 10−19 (m2)

λ 0 (m) λ′ 0 (m)


