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The elastic moduli of pure polycrystalline beta plutonium were measured over its full 

range of existence (417 K to 491 K) using resonant ultrasound spectroscopy. The Debye 

temperature (138 K), Poisson’s ratio (0.28), Grüneisen parameter (2.3), and the zero-

temperature atomic volume (21.2 Å
3
) were computed from the measurements. Both bulk 

and shear moduli decrease smoothly on warming with expected discontinuities at the 

phase boundaries. The shear modulus is surprisingly nearly the same for beta and gamma 

Pu. The temperature dependence of bulk moduli for beta Pu is, like gamma Pu, unusually 

small. Poisson's ratio shows very strong differences among alpha, beta, and gamma Pu 

indicating they are entirely different metals. The zero-temperature elastic moduli were 

computed for the three phases as well as for gallium-stabilized delta Pu (also measured 

by us) and compared to calculations.  
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I. INTRODUCTION 

Plutonium is one of the two most interesting elements because it has six crystallographic 

allotropes, unusual thermal expansion, and apparently completely different bonding 

behavior among its phases.1 Some of its isotopes can sustain a fission chain reaction.2 

Surprisingly, neither accurate elastic moduli measurements exist, nor do satisfactory first-
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principles electronic structure models; the first because of the difficulties in working with 

Pu,3-6 the second because Pu electrons straddle the itinerant/localized boundary, 

frustrating understanding.7-11 Lacking essential measurements for a very challenging 

element further distances understanding. 

The lowest-temperature (α) phase (Fig. 1) of Pu crystallizes in a low symmetry 

monoclinic structure, unusual for any metal, with a 16-atom unit cell.12 At 398 K, the 

volume expands by 10% and forms a body-centered monoclinic structure with a perhaps 

34-atom unit cell (β) phase.13 At 488 K, the volume expands by 3% and forms a face-

centered orthorhombic structure with an 8-atom unit cell (γ) phase.14 At 593 K, the 

volume expands by 7% (25% larger than that of the alpha phase) and forms the (close-

packed) face-centered cubic (δ) phase with the largest solid volume and negative thermal 

expansion.15 The volume contracts at 736 K for the δ’ phase with dubious properties,16 

followed by the (ε) body-centered cubic structure at 756 K15 until it liquefies at 913 K.17 

This complex phase diagram occurs within a factor of two in absolute temperature,18 

indicating how delicate the energy and entropy balances must be. 

One set of properties that are incompletely measured19-23 are the adiabatic elastic 

moduli, the second derivatives of energy respect to strains, and often the first properties 

computed from the many electronic structure models.24-38 Elastic moduli are also one of a 

few thermodynamic susceptibilities which are essential for an understanding of the 

phases of Pu39-49, and with their temperature dependence are important for applications. 

For these reasons, Young’s modulus and shear modulus were measured by several 

investigators. In 1960 by a resonance method for all six phases,50, 51 Pu was thermally 

cycled many times. After each cycle, the moduli changed.50 The most reliable bulk 
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modulus measurements were by Linford and Kay52 (Fig. 2).  Young’s modulus was also 

measured by an extensometer for four phases53 and by an ultrasonic resonance method 

for six phases54. There are many elastic modulus measurements at room temperature for 

α-Pu55-58. Temperature dependence of α-Pu moduli over a limited temperature range was 

measured by an ultrasonic resonance method59-61, by an ultrasonic pulse technique62 and 

by non-contacting laser-ultrasonics63. The β−α transformation was studied with an 

ultrasonic pulse technique.64 The relative shear modulus as well as ultrasonic attenuation 

were measured using an inverted torsion pendulum for the six phases.65 All pure Pu 

measurements were performed with polycrystalline samples because monocrystalline 

pure Pu was not available, however monocrystalline elastic moduli were measured in 

gallium-stabilized δ-Pu (δ-Pu 3.3 at. % Ga) at ambient temperature using a pulse-echo 

method by Ledbetter and Moment.66 Inelastic x-ray scattering measurement produced 

values close to the Ledbetter and Moment result.67 The temperature dependence of elastic 

moduli for polycrystalline  δ-PuGa was measured by non-contacting laser-ultrasonics63, 

by a high-pressure x-ray measurement68 and by resonant ultrasound spectroscopy (RUS) 

for different gallium concentrations69. δ-PuAl was also measured by an ultrasonic 

resonance method61 and RUS.43 The change of elastic moduli with time was used to study 

Pu aging by self-irradiation in α-Pu and δ-PuGa.70  

 

II. MEASUREMENTS 

Resonant ultrasound spectroscopy (RUS)71-73 measurements of the adiabatic bulk 

and shear moduli of pure polycrystal β-Pu are reported here. The Pu measured had the 

highest available purity, and measurements were completed without thermal cycling. One 
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specimen was used for the work described here on the β phase. It was also used for 

measurement of α−Pu above 300 K, and γ−Pu. The specimen was made from electro-

refined 239Pu with 99.96 wt % Pu, 115 ppm W, 49 ppm Np, 50 ppm O, 53 ppm Si, 32 

ppm Am and the sum of remaining impurities less than 25 ppm. The specimen was cut 

from a larger button that was arc melted and quenched to room temperature on a copper 

hearth, cut and polished, examined optically for voids and metallurgical defects, and the 

process repeated (about 10 times) until metallurgical imperfections were judged 

negligible.20 

By usual metallographic cut-grind-polish method, the specimen was prepared in a 

parallelepiped of 0.265 x 0.268 x 0.270 cm3 all ±0.002 cm. The immersion density at 300 

K was determined to be 19.55 g/cm3 ±0.02%. The density determined from mass and 

dimensions at 300 K is 19.70 g/cm3 and the x-ray diffraction density is 19.86 g/cm3 at 

294 K. While the differences are small, thermal activation of defects makes it impossible 

to achieve (and unreasonable to expect) x-ray density in Pu above cryogenic 

temperatures.  

Temperature was controlled by a helium gas-flow cryostat. Measurements were 

made in (constantly pumped) vacuum. The specimen was heated only once (after sample 

preparation where it was hearth-quenched) from room temperature to 650 K by 

approximately 2 K per hour.  A crude dilatometer recorded length jumps at the same 

temperatures at which the elastic moduli displayed step-like changes at the phase 

transitions. 

 The technique used for the measurements, RUS, acquired resonance frequencies 

that were very different for different phases, while the variation for frequencies within 
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phases was smooth.74 The typical resonances and the detailed descriptions for the RUS fit 

process for α-Pu19, 20, γ-Pu21 and δ-Pu 2.36 at. % Ga 22, 23 are described elsewhere. 

For the specimen of β-Pu (see Fig. 3) used here, the frequency was swept 

typically from 0.2 to 1 MHz.75 The inverse calculation (RUS fit)76 was used to obtain two 

polycrystalline elastic moduli, CL (the longitudinal sound speed is controlled by this 

modulus) and the shear modulus, G where the bulk modulus can be calculated by B=CL-

(4G/3). Errors arise principally from errors in sample geometry and the measurement of 

dimensions. The recorded resonances have relatively low Q (typically 400-700) with 

many resonances overlapped with each other. The resonances that appeared as shoulders 

of larger resonances or had large background noise were omitted from the fit. The fitting 

procedure obtained small ~0.3 % rms errors76 (the RMS error is not the error for the 

moduli) using 28 frequencies to determine two moduli.77 The estimated errors for the 

moduli are 0.09 % for G and 0.33 % for CL (0.61 % for B).  

For the RUS fit, the x-ray density was used in the calculation. It is easy to scale to 

other densities. Measured thermal expansion (or contraction) was used to correct density 

in Fig. 1 for all the phases.  The relation in Eq. 1 also can be used for density correction: 

 ( )
1/3

1
1 0

0

( )C C
⎛ ⎞ρρ = ρ ⎜ ⎟ρ⎝ ⎠

, (1) 

where C(ρ1) is the RUS-computed elastic modulus when the sample was assumed to have 

the density ρ1. 
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 III. RESULTS  

Table I shows elastic moduli of pure Pu and gallium–stabilized δ-Pu (δ-Pu 2.36 at. % Ga) 

measured by us at selected temperatures. The elastic moduli of β-Pu and γ-Pu are plotted 

in Fig. 4. The shear modulus is surprisingly similar between β-Pu and γ-Pu (even more 

surprising, the shear modulus is slightly larger for γ-Pu) while the bulk modulus 

decreased at the β−γ transition as expected. γ-Pu resonances were analyzed slightly 

beyond the temperature range reported previously21 to its full range of existence (493-616 

K).78 The specimen was measured above 616 K. At 618 K, the dilatometer and 

resonances exhibited a jump, indicating that it was in the δ-phase. However at the same 

time, the sample seemed to have lost good contact to the transducers. We were unable to 

detect a sufficient number of resonances to perform the RUS fit to obtain accurate elastic 

moduli for δ-Pu. For β-Pu, the temperature dependences of both bulk and shear moduli 

are quite linear (except at the phase boundaries). Table II contains parameters obtained 

from linear fits to the measurements of B, G and CL. We found that the transition 

temperatures for α-β,  β-γ and γ-δ to be 415 K, 492 K and 617 K, respectively, which are 

higher than what others found. Thermometry and its errors were described previously.20 

In Fig. 2, the elastic moduli of α-Pu, β-Pu, and γ-Pu, measured on the same high-

quality sample without thermal-cycling are plotted along with the measurements by 

Linford and Kay2. Even accounting for the scatter in the previous study, the larger moduli 

observed here are expected for higher purity, single-phase material. The bulk moduli 

(empty diamonds) and shear moduli (solid diamonds) for δ-Pu 2.36 at. % Ga, measured 

by our group, are also plotted and are consistent with the values of pure Pu because 

extrapolated values of δ-Pu 2.36 at. % Ga into pure δ-Pu’s temperature range are smaller 



 7

than that of γ-Pu as expected. We note that the thermal expansion of δ-Pu 2.36 at. % Ga 

approaches that of pure δ-Pu as gallium content is reduced.79 δ-Pu 2.36 at. % Ga reported 

here has a stable δ phase at low temperature.69 

Table III shows the temperature dependence of the fractional change of the bulk 

and shear moduli at relatively high temperatures. The temperature dependence of bulk 

moduli for β-Pu and γ-Pu is unusually small while the temperature dependences of the 

shear moduli for β-Pu and γ-Pu is similar to both the shear and bulk moduli of α-Pu and 

δ-Pu 2.36 at. % Ga.  

The Varshni function:80, 81 

 ( )
0( )

exp / 1
sC T C

Tθ
= −

−
 (2) 

is commonly used to fit the temperature dependence of elastic moduli where C0, s and θ 

are adjustable parameters. Here, C0
 denotes a zero-temperature elastic modulus, θ is 

closely related to the Einstein characteristic temperature and s/2 is the difference between 

C0 and the zero-temperature harmonic elastic stiffness coefficient obtained by 

extrapolating dC/dT linearly from high temperatures.82, 83 For T » θ , the derivative of Eq. 

2 is  

 ( )C T s
T θ

∂ = −
∂

. (3) 

The linear extrapolating function from high temperatures is expressed as 

 0( )
2
s sC T C T

θ
= + − , (4) 
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and 0( / 2)C Cθ = . Therefore the zero-temperature elastic moduli can be most accurately 

obtained from high temperature measurements by linear extrapolation to T=3ΘD/8 where 

θ ≈ΘΕ≈3ΘD/4 84, ΘΕ the Einstein temperature and ΘD the Debye temperature.
 

The Debye temperature, was computed using:85, 86 

 

1/3
3

4D m
a

h
k V

υ
π

⎛ ⎞
Θ = ⎜ ⎟

⎝ ⎠
, (5) 

where h,  Va , k, and υm denote Planck’s constant, the atomic volume, Boltzmann’s 

constant, and the mean sound velocity, respectively. We used the X-ray diffraction 

value13 for Va (ρ=M/NAVa where NA is Avogadro’s number, and M=239 is the atomic 

weight). The mean sound velocity can be obtained by 

 

1
3

3 3

1 1 2
3m

l t

υ
υ υ

−
⎡ ⎤⎛ ⎞

= +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

,  (6) 

where the longitudinal sound velocity, /t LCυ ρ=  and the transverse sound velocity, 

/t Gυ ρ= . 

The zero-temperature elastic moduli and Va
0 (estimated value for Va at 0 K) were 

used for the computation of ΘD. Va
0 was estimated by extrapolating the high temperature 

x-ray and thermal expansion measurements to 0 K using Grüneisen’s law: 

 P

S

C
V B
γβ = , (7) 

where β is the isobaric volumetric thermal expansion coefficient, γ is the Grüneisen 

parameter (we hope that context will sort out the double-meaning in this paper of β and 

γ), CP is heat capacity at constant pressure, V is volume, and BS is adiabatic elastic 

modulus. We assumed γ is constant in temperature and CP ≈ CV where CV is the heat 
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capacity at constant volume. We used the Debye model for CV with Debye temperature 

computed from Eq. 5. For BS, we used Eq. 2 with our measured bulk modulus. 

B0, G0, Va
0 and ΘD for β-Pu (and also γ-Pu) were determined numerically using 

Eqs. 3,4,5,6,7 (Appendix A). We obtained ΘD=138 K and Va
0=21.2 Å3 for β-Pu (ΘD=140 

K and Va
0=22.3 Å3 for γ-Pu). The zero-temperature elastic moduli are compared to the 

values derived by Kay, et al. using “linear extrapolation to 60 K of data reported by Kay 

and Linford (1960)50, 87 (see Table IV). Table V shows comparison to the other phases. 

We also obtain ΘD
T = 109 K for β-Pu using the elastic moduli and Va at 450 K. We 

consider ΘD
T for comparison because especially α-Pu and δ-Pu 2.36 at. % Ga have strong 

temperature dependences, i.e. large anharmonic effects. 

At higher temperatures, a Grüneisen-Einstein model yields the following 

expression:82 

 0

3 ( 1)

a

B k
T V

γ γ∂ += −
∂

. (8) 

The Grüneisen parameter, the quintessential measure of anharmonicity, for β-Pu was 

determined to be γ = 2.3.   The anharmonicities of β-Pu and γ-Pu are more like metals 

such as copper (γ = 2.0) while α-Pu and δ-Pu 2.36 at. % Ga have relatively larger values. 

Wallace estimated γ for β-Pu to be much smaller using Eq. 7 (see Table IV).41 With 

ΘD
T=116 K, we calculated the molar CV of the phonon contribution in the Debye model 

as 24.9 J·K-1·mol-1 at 450 K. Using CP-CV=NAVaTβ2BT and CP/CV= BT/BS,88 we have CP 

=29.4 J·K-1·mol-1 from CP=CV
2/(CV-NAVaTβ2BS) with β=1.37×10-4 K-1·and Va=22.3 Å3, 

while Oetting et at. measured Cp=33.3 J·K-1·mol-1. Their large measured Cp value was 

attributed to the conduction electrons, anharmonic lattice vibrations, nuclear 
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characteristics, and magnetic properties.40 We calculated γ = 2.1 using our measured BS 

and calculated Cp in Eq. 7. 

 When considering interatomic bonding, Köster and Franz89 emphasized that 

Poisson’s ratio, ν is the most relevant elastic parameter. For polycrystalline samples,  

 3 2
2(3 )

B G
B G

ν −=
+

. (9) 

In Fig. 5, Poisson’s ratios for the three phases of pure Pu as well as δ-Pu 2.36 at. % Ga 

are plotted as a function of temperature. Poisson’s ratio for most materials falls in the 

range 0.25-0.35.90 A low Poisson's ratio reflects a high ratio of bond-bending stiffness to 

bond-stretching stiffness, and a high shear-stiffness to bulk-modulus ratio. Note that 

Poisson's ratio on warming (Köster and Franz89) should increase toward 0.5, 

characteristic of the liquid state. The Poisson’s ratios of aluminum91, 92, austenitic steel93, 

α-Fe94 and diamond95, 96 are plotted for comparison.97 The values and temperature 

dependence of the Poisson’s ratios for β-Pu and γ-Pu are similar to that of many metals 

while α-Pu has small values and almost no (slightly negative) temperature dependence 

which is more characteristic of covalent bonding. δ-Pu 2.36 at. % Ga has a value near Fe, 

but flat temperature dependence. Overall, α-Pu, β-Pu and γ-Pu (and δ-Pu 2.36 at. % Ga) 

have large differences in their values and temperature dependences as if they are 

completely different metals. 

In Table VI, zero-temperature elastic moduli and the zero-temperature atomic 

volume for the four phases are compared with theory. Magnetism98-100 seems to play an 

important role in theoretical treatments of Pu, but magnetic effects have never been 

observed. Söderlind et al. captures most aspects of the measured behavior while 
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underestimating the bulk modulus of α-Pu.38 The ab-initio electronic structure treatments 

of Pu are, at their core, zero-temperature ones. The unusually low elastic moduli observed 

here require that entropic considerations are essential in understanding the phases of Pu, 

especially in light of the very low elastic moduli. Such effects are absent in most ab-initio 

models. In Table VII, theoretical predictions for bulk modulus are compared with our 

data for the four phases. The calculated values by the atomistic model39 are in good 

agreement with our data. 

 

IV. CONCLUSIONS 

We have reported accurate elastic moduli of pure polycrystalline β plutonium of its entire 

existence temperature range at ambient pressure. The elastic response of pure β-Pu, when 

compared to other phases of Pu and to other metals, displays many bizarre features 

including an increase (albeit small) in shear modulus on warming from β to γ, and 

Poisson’s ratios that differ strongly among the three phases explored here. These 

measured properties support the conjecture that Pu lies on a knife-edge of stability caused 

by the 5f electrons. 
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Appendix A 

Using measured high temperature elastic moduli, we estimated the zero-temperature 

elastic moduli, the zero-temperature atomic volume and the Debye temperature with the 

most accurate method we are aware of. From the high temperature measurements where 

the elastic moduli are linear in temperature (Eq. 2), using three measured values: T1, C1 

and C’1 (where C1 =C(T1) is elastic modulus and 
11 ( ) / |T TC dC T dT =′ = ), from Eq. 4, the 

zero-temperature elastic modulus can be estimated: 

 0
1 1 1

3( )
8 DC C C T′= + Θ − . (10) 

From Eq. 5 and 6, 

 1 1 1 1 1

1
1/3 3/2 3/2 3

1 6
1

/ 3 3( ) (9
84

)
8

2A
D a L L D DC C T GN Th V

M
G

kπ

−− −
⎡ ⎤ ⎡ ⎤′ ′+ Θ − + Θ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎛ ⎞⎛ ⎞Θ = +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
. (11) 

Table VIII lists the values of CL1, CL’1, G1, G’1 , and T1 for β-Pu and γ-Pu that we used. 

The right-hand side of Eq. 11 was calculated numerically starting with ΘD=100 K and 

iterated.  

Eq. 11 is a very slowly varying function of Va. A 5 % error in Va yields less than 1 

% error in ΘD. The temperature dependence of Va for β-Pu and γ-Pu in Fig 1 suggests that 

Va at 0 K should be within 5 % of that at higher temperature, so that Va at high 

temperature can be used safely to estimate ΘD. This estimation of the zero-temperature Va 

is most useful for comparison with first-principles calculations. 

To estimate Va
0, we took, again, three values from the thermal expansion 

measurement: T1, V1 and V’1 (where V1=V(T1) is the volume and 
11 ( ) / |T TV dV T dT =′= ). 
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Similar to what we did for elastic moduli, we need to find ratio of temperature to Debye 

temperature, ε, and then extrapolate to find V0, 

 0
1 1 1( )DV V V Tε′= + Θ − . (12) 

From Eq. 7: 

 ( )1 ( )( )
( ) ( ) ( )

P

S

C TdV TT
V T dT V T B T

γβ = = . (13) 

We approximated CP ≈ CV (or BT
 ≈ BS) because we measured BS, but with 

measurements of BT, the approximation is not necessary because β=γCP/VBS=γCV/VBT. 

The volume at T1 can be calculated as: 

 1

1 0

( )( ) (0)
( )

T VC TV T dT V
B T

γ= +∫ , (14) 

If we assume that the temperature dependence of B(T) is negligible, and use the Debye 

model for CV(T), we have ε=0.375 for T1 » ΘD. However, the contribution from softening 

of B(T) to V(T) is rather large and increases the values of ε away from 0.375 at high 

temperature. 

From Eq. 2 to 4, 

 ( )
0( ) 1

exp 3 / 4 1D

B T B
T

δ⎛ ⎞
= −⎜ ⎟⎜ ⎟Θ −⎝ ⎠

, (15) 

where 

 

1 1

1 1
0 0

1

3 3
4 34

8

D

D

D

B

B Bs
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δ
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′ ′Θ Θ= = − = −
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⎣

⎟
⎝ ⎦⎠

. (16) 

 δ is ~0.05-0.1 for typical metals as well as for β-Pu (0.039) and γ-Pu (0.037). V’(T) also 

never converges at T » ΘD. Therefore, ε is a function of δ  and n where n=T1/ΘD. It can be 
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solved numerically for ε for known values of δ  and n. The solutions of ε for different 

δ  and n are displayed in Table IX. For convenience, the values for ε can be approximated 

within a few % error for n > 1.5 by the function: 

 
( )

( ) ( )
3 2 4 3 2 3

2 3 2 2 3 3

0.311 0.0128 5.68 10 5.28 10 2.01 0.119 1.18 0.0530

35.4 63.6 24.9 1.85 131 163 25.5 7.82

n n n n n n

n n n n n nδ

ε

δ

δ− −+ − × + × + − +

− + − + +

−

+ −

≈

−
. (17) 

The zero-temperature atomic volume is 
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VVV V V V T
V V

T
T

ε
β ε
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Θ −
Θ − , (18) 

where Va
T is the atomic volume at T1 obtained from the measurement (see table V) and 

β(T1)=V’1/V1. Va in Eq. 11 can be replace by Va
0 in Eq. 18 and more accurate values for 

CL
0, G0, Va

0 and ΘD can be obtained by iterating Eq. 11. 

 This method was tested on α-Pu. Our elastic modulus measurement and the 

thermal expansion measurement101 for 380±10 K were used (see table VIII) to extract the 

zero-temperature parameters. δ=0.150 for α-Pu and it is much larger than for β-Pu and γ-

Pu. Table X contains the comparison to measured values. At T1=380 K, n=1.85 and it is 

at the lower limit for Eq. 3 to work. Still, this method produced excellent predictions for 

zero-temperature parameters using the measured values at 380 K in the 20 K window. 
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TABLES 

 
TABLE I. Elastic moduli (B: bulk, G: shear, CL: longitudinal and E: Young’s modulus) 

and ν (Poisson’s ratio) of pure α-Pu19, 20, β-Pu38 and γ-Pu21 and δ-Pu 2.36 at. % Ga23 at 

selected temperatures. 

Temperature 

(K) 

Phase B (GPa) G (GPa) CL (GPa) E (GPa) ν

18.36  

 

  α 

72.28 58.91 150.82 138.97 0.1795 

95.82 69.03 56.36 144.18 132.90 0.1791 

203.3 62.56 51.24 130.88 120.75 0.1783 

297.9 55.93 45.85 117.05 108.02 0.1781 

407.0 48.17 39.91 101.39 93.82 0.1754 

415.0     α−β∗ 35.81 23.74 67.46 58.33 0.2285 

417.0  

β 

 

34.36 18.22 58.65 46.44 0.2748 

451.0 33.80 17.09 56.59 43.89 0.2836 

491.0 33.11 16.12 54.60 41.61 0.2905 

493.0  

γ 

25.72 16.51 47.74 40.81 0.2356 

551.0 24.96 15.19 45.22 37.89 0.2470 

616.0 24.23 14.00 42.90 35.21 0.2578 

 

14.63  

 

 

  δ∗∗ 

37.77 20.18 64.68 51.39 0.2732 

94.48 36.21 19.43 62.12 49.45 0.2724 

203.8 33.46 18.00 57.46 45.79 0.2719 

299.9 30.80 16.39 52.65 41.76 0.2740 

400.9 27.13 14.43 46.37 36.77 0.2741 

451.2 25.48 13.49 43.47 34.40 0.2750 

496.0 24.11 12.78 41.15 32.58 0.2748 
∗ See ref 74.  ∗∗ δ-Pu 2.36 at. % Ga. 
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TABLE II. Parameters obtained for linear fits to the measurements of B, G and CL of the 

form a + bT for β-Pu from 421 to 487 K. 

Elastic Modulus a (GPa) b (GPa/K) 

B 40.58 -0.01509 

G 26.07 -0.01990 

CL 75.34 -0.04162 

s 

 

TABLE III. Comparison of the fractional changes of the bulk and shear moduli with 

temperature at relatively high temperatures. The temperature dependence of bulk moduli 

for β-Pu and γ-Pu is unusually small. The others values are quite similar to each other. 

               Phase α (380 K)∗ β (450 K)  γ (550 K) ∗ δ (480 K)∗ 

  -dB/BdT (K-1) 1.4 x 10-3 0.4 x 10-3 0.4 x 10-3 1.3 x 10-3 

  -dG/GdT (K-1) 1.4 x 10-3 1.2 x 10-3 1.4 x 10-3 1.2 x 10-3 
∗ Ref 18. 

 

 

 TABLE IV. The zero-temperature elastic moduli, the Debye temperatures, and the 

Grüneisen parameters, for β-Pu compared to literature values.   

Parameter

Method 

B0
 (GPa) G0 (GPa) CL

0
 (GPa) ΘD (K) γ 

Kay (elastic moluli)87 46.2 24 78 133 - 

Wallace (γ = VβBS/CP)41 - - - - 1.4 

our calculation (γ = VβBS/CP)  - - - - 2.1 

  present (elastic moduli) 39.8 25.0 73.2 138 2.3 
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TABLE V. The Debye temperatures, (computed from the zero-temperature elastic 

moduli∗ and Va
0), ΘD

T (computed from the measured elastic moduli and Va
T at high 

temperatures), and the Grüneisen parameters are compared for the different phases19-21, 23, 

102. 

     Parameter 

Phase 

Va
0 (Å3) ΘD (K) Va

T (Å3) ΘD
T (K) γ

α 19.4 207 20.3 (380 K) 175 (380 K) 5.2 (380 K) 

    β    21.2∗∗ 138 22.3 (450 K) 116 (450 K) 2.3 (450 K) 

    γ    22.3∗∗ 140 23.3 (550 K) 109 (550 K) 1.9 (550 K) 

        δ∗∗∗  24.5 115 24.7 (650 K)  91 (650 K) 3.8 (480 K) 
∗ The values are shown in Table VI. 
∗∗ Estimated value for Va at 0K.  
∗∗∗ δ-Pu 2.36 at. % Ga was used. ΘD

T was derived by extrapolating the elastic modulus 

values to 650 K at which the δ phase of pure Pu exists. The values for δ-Pu 2 at. % Ga in 

ref. 79 were used for Va
0 and Va at 650 K. 

 

 

TABLE VI. The zero-temperature elastic moduli and the zero-temperature atomic 

volume for four phases of Pu are compared with other results. 

  

Phase 

 Parameter

Method 

B0
 

(GPa)

G0 

(GPa) 

CL
0

 

(GPa) 

Va
0 

(Å3) 

 

 

 

α 

theory  

 

 

 

 

 

experiment 

 

Robert (Non-spin-polarized)103 

Robert (Spin-polarized AFM)103 

Kutepov (NM)104 

Kutepov (AFM)104 

Söderlind (SO)38 

Söderlind (SO+OP)38 

Kay (ultrasonic resonance)87 

our result (RUS)20 

(x-ray12, dilatometry105-108) 

169.2 

101.1 

175.4 

119 

30.6 

34.4 

70 

72.0 

- 

- 

- 

- 

- 

49.9 

51.3 

50 

58.6 

- 

- 

- 

- 

- 

97.1 

102.8 

136 

150.2 

- 

18.10 

18.47 

18 

18 

19.0 

20.3 

- 

- 

19.4 



 26

 

 

   β 

theory  

 

experiment 

 

Söderlind (SO)38 

Söderlind (SO+OP)38 

Kay (ultrasonic resonance)87 

our result (RUS) 

our calculation∗ 

36.0 

38.5 

46.2 

39.8 

- 

26.2 

25.3 

24 

25.0 

- 

70.9 

72.2 

78 

73.2 

- 

22.0 

23.1 

- 

- 

21.2 

 

 

 

   γ 

theory  

 

 

 

 

experiment 

 

Robert (Non-spin-polarized)103 

Robert (Spin-polarized AFM I)103 

Robert (Spin-polarized AFM II)103 

Söderlind (SO)38 

Söderlind (SO+OP)38 

Kay (ultrasonic resonance)87 

our result (RUS) 

our calculation∗ 

129.2 

35.2 

44.4 

36.5 

34.6 

40.6 

30.3 

- 

- 

- 

- 

26.4 

22.2 

24 

25.6 

- 

- 

- 

- 

71.7 

64.2 

73 

64.4 

- 

18.20 

22.14 

21.90 

22.7 

23.8 

- 

- 

22.3 

 

 

 

 

   δ 

theory  

 

 

 

 

 

 

 

 

 

experiment 

 

Robert (Non-spin-polarized)103 

Robert (Spin-polarized AFM)103 

Kutepov (NM)104 

Kutepov (AFM)104 

Shick (LSDA)109 

Shick (FLL LSDA+U)109 

Shick (AMF LSDA+U)109 

Söderlind (SO)38 

Söderlind (SO+OP)38 

Söderlind (EMTO)38 

Kay (ultrasonic resonance)87 

our result (RUS)∗∗, 23 

Lawson∗∗∗, 79 

99.9 

54.8 

90.7 

51.0 

76.1 

67.5 

31.4 

39.0 

41.0 

39.6 

51 

37.8 

- 

- 

- 

- 

- 

- 

- 

- 

27.8 

30.6 

42.3 

19 

20.2 

- 

- 

- 

- 

- 

- 

- 

- 

76.0 

81.8 

96.0 

77 

64.7 

- 

19.57 

23.43 

20 

24 

20 

28 

27 

24.2 

24.9 

25.5 

- 

- 

24.8 
∗ (x-ray13, 14, dilatometry, RUS20, 21).   ∗∗ δ-Pu 2.36 at. % Ga was used.   
∗∗∗ (neutron diffraction110) calculated value for non-alloyed δ-Pu based on the Invar 

model. 
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TABLE VII. Calculated bulk moduli with thermodynamic effects are compared with our 

measurments19, 21, 23. 

               Phase 

Method 

α 

(294 K) 

β

(388 K) 

γ

(508 K) 

δ

(593 K) 

δ 

(650 K) 

Baskes (EAM)39 41 31 23 25 - 

  Wang (CMF)111 - - - - 43.0 

 our result (RUS) 56.2 34.7∗ 25.6 21.5∗, ∗∗ 19.9∗, ∗∗ 
∗ The extrapolated values.  ∗∗ δ-Pu 2.36 at. % Ga was used. 

 

 

TABLE VIII. T1, CL1, CL1’, G1, G1’ B1, B1’ and β for β-Pu and γ-Pu (and α-Pu for 

testing) which we used for Eq. 11, 12 and 16. CL1, CL1’, G1, G1’ B1 and B1’ were extracted 

from our measurements for T1±20 (±10 for α-Pu) K.  β(T1) were extracted from ref. 101 

which summarizes the best previous thermal expansion and x-ray measurements of pure 

Pu.  

Data 

Phase 

T1 

(K) 

CL1 

(GPa) 

CL’1 

(GPa/K) 

G1 

(GPa)

G’1 

(GPa/K) 
Β1 

(GPa)

B’1 

(GPa/K) 
β ×10-4 

(K-1) 

β-Pu 450 56.6 -0.0416 17.1 -0.0199 33.8 -0.0151 1.37 

γ-Pu 550 45.2 -0.0386 15.2 -0.0210 25.0 -0.0106 1.04 

α-Pu 380 105.3 -0.1416 41.4 -0.0545 50.1 -0.0689 1.92 
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 TABLE IX. The solutions for ε for different δ  and n values using Eq. 12 to 15. 

     n    

δ 

1 2 3 4 5 6 7 8 9 10

0.01 0.295 0.348 0.391 0.441 0.502 0.576 0.664 0.765 0.881 1.012 

0.02 0.298 0.367 0.440 0.534 0.655 0.806 0.986 1.20 1.44 1.72 

0.05 0.308 0.425 0.593 0.835 1.16 1.58 2.11 2.76 3.54 4.48 

0.075 0.316 0.476 0.731 1.11 1.65 2.38 3.33 4.59 6.28 8.78 

0.10 0.324 0.529 0.879 1.43 2.24 3.40 5.13 - - - 

0.15 0.342 0.642 1.22 2.22 4.04 - - - - - 

0.20 0.360 0.767 1.64 3.60 - - - - - - 

 

 

TABLE X. The test for our method of calculation for extracting zero-temperature 

parameters using measured data* at 380±10 K for α-Pu. The extracted values are 

compared to the measured values19 at low temperature. 

Method
                       Parameter B0

 (GPa) G0(GPa) CL
0(GPa) ΘD (K) Va

0 (Å3)

measurement 72.0 58.6 150.2 207 19.4 

our calculation 71.0 57.9 148.2 205 19.4 
* The values are shown in Table VIII. 
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Figure 1. Normalized volume of pure Pu relative to 300 K was derived from dilatometer  

measurements and is plotted from 120 to 720 K for α-Pu, β-Pu, γ-Pu and δ-Pu.112 
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Figure 2. Bulk and shear moduli of pure Pu from 18 K to 616 K for α-Pu, β-Pu and γ-Pu 

compared to Linford and Kay52. The bulk moduli (empty diamonds) and shear moduli 

(solid diamonds) for δ-Pu 2.36 at. % Ga (previous work), are also plotted and are 

consistent with the values of pure Pu because the extrapolated values of δ-Pu 2.36 at. % 

Ga into pure γ-Pu’s temperature range are smaller than that of γ-Pu as expected. 
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Figure 3. The temperature dependences of 28 resonances, which were used for the RUS 

fit for β-Pu, are plotted in (a). They are smooth and almost linear except at the phase 

boundaries. The RUS fit determined that the resonances in circles (○) in (a) and (b) are 

associated almost solely with the shear modulus, G, while crosses (×) are partially 

dependent on the longitudinal modulus, CL. The ones in black depend on linear 

combinations of G and CL. The frequencies in (a) were divided by the values at 423 K 

and are plotted in (c).  This clearly shows the difference in the temperature dependences 

for the two modes.  In (c), the rms % errors for 28 resonances are plotted. They are very 

small, less than 0.3 % and a little larger at the edges of the β phase. 
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Figure 4. The bulk and shear moduli for β-Pu and γ-Pu are plotted in (a) and (b). The 

error bars represent the uncertainty which was produced by the inverse RUS calculation. 

The bulk modulus has larger error bars because few of the measured modes depend 

strongly on it.  The non-monotonic behavior of the bulk modulus for γ-Pu at high 

temperature is probably an artifact of the RUS fit. A monotonic dependence is within the 

error bars.  The bulk modulus has a clear jump at the β−γ transition. The shear modulus is 

similar between β-Pu and γ-Pu. This is surprising for a temperature-driven phase 

transition because shear phonon softening is often the primarily entropic driver of high 

temperature phase transitions.86 The bulk modulus, which contributes less to lattice 

entropy, has a large decrease at the β−γ transition as expected, overwhelming the 

anomalous behavior of the shear modulus.  The lattice entropy also depends on the 

atomic density which is reduced by 3% at the β−γ transition. Nevertheless, the calculated 

Debye temperature of γ-Pu is slightly larger than β-Pu. While this calculation is just a 

crude estimate, β-Pu and γ-Pu are closely competing phases in entropy and energy.28, 40 
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Figure 5. Poisson’s ratio calculated from measured bulk and shear moduli is plotted. 

Poission’s ratio for δ-Pu 2.36 at. % Ga is also plotted. The Poisson’s ratios of 

aluminum91, 92, austenitic steel93, α-Fe94 and diamond95, 96 are plotted for comparison.97 

α-Pu, β-Pu and γ-Pu (and δ-Pu 2.36 at. % Ga) have large differences in their Poisson’s 

ratios and temperature dependences as if they are completely different metals. 


