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Though not very often, in literature there are cases where discrepancies exist in 

temperature dependence of elastic constants of materials.  A particular example of this 

case is the behavior of C12 coefficient of a simple metal, aluminum. Here, we attempt to 

provide insight into various contributions to temperature-dependence in elastic properties  

by investigating the thermo-elastic properties of fcc aluminum as a function of 

temperature through the use of two computational techniques and experiments. First, ab 

initio calculations based on density functional theory (DFT) are used in combination with 

quasi-harmonic theory to calculate the elastic constants at finite temperatures through a 

strain-free energy approach. Molecular dynamics (MD) calculations using tight-binding 

potentials are then used to extract the elastic constants through a fluctuation-based 

formalism. Through this dynamic approach, the different contributions (Born, kinetic and 

stress fluctuations) to the elastic constants are isolated and the underlying physical basis 

for the observed thermally-induced softening is elucidated. The two approaches are then 

used to shed light on the relatively large discrepancies in the reported temperature 

dependence of the elastic constants of fcc aluminum. Finally, the polycrystalline elastic 

constants (and their temperature dependence) of fcc aluminum are determined using 

Resonant Ultrasound Spectroscopy (RUS) and compared to previously published data as 

well as the atomistic calculations performed in this work. 

  



I. INTRODUCTION 

Development and selection of new materials requires accurate knowledge of their 

properties as well as reliable experimental and theoretical tools for their characterization. 

In the particular case of high-temperature structural materials, the component designer 

needs (at the very least) reliable information on their thermo-elastic behavior over a wide 

temperature range1. Although one may think that this information is readily available, the 

truth of the matter is that there are significant discrepancies among different experimental 

studies, even for the most widely used materials. The problem is even more daunting in 

the case of novel materials currently being under development for next-generation high-

temperature structural materials, for example.  

As an example, we summarize in Figure 1 published experimental data on the 

adiabatic C12 elastic constant of fcc aluminum as a function of temperature from four 

different studies2-5. In these studies, the elastic constants were determined by identifying 

the resonant frequencies of single crystalline specimens within the kHz-to-MHz range. In 

this figure, quantitative and even qualitative differences can be seen among the three 

different experimental data sets. While the measurements by Sutton4, Kamm and Alers3, 

and Gerlich2 show a softening of this shear constant with increasing temperature, Tallon5 

(the most recent---and one would expect the most accurate---experimental work on 

elastic properties of aluminum) reports an actual increase of the C12 elastic constant with 

temperature. Although some of the discrepancies can be explained by the use of different 

frequency ranges (lower frequencies are used in the earlier study by Sutton4), the 

qualitative differences---softening vs. hardening---observed indicate significant 

systematic problems in at least one of the experimental investigations.  

Given the fact that aluminum has been one of the most widely characterized and 

simulated metals2, 4-12, these results are rather surprising. However, it is important to note 

that the accurate determination of elastic constants through resonance techniques is far 

from trivial13, and the actual results are subject to non-negligible degrees of interpretation. 

Based on the published experimental results2-5 alone, it is impossible to determine a 

priori which of the published data most accurately represents the actual thermo-elastic 



behavior of fcc aluminum. Moreover, the puzzling hardening of C12 reported by Tallon5, 

if true, may indicate unexpected significant anharmonic phenomena in a metal that is 

normally considered to be slightly anharmonic at most. In this work, we try to address 

these important issues by using two different computational techniques---electronic 

structure calculations based on Density Functional Theory14-16 as well as classical 

Molecular Dynamics (MD)---to determine the temperature dependence of the elastic 

tensor of aluminum and complement these simulations with state-of-the-art Resonant 

Ultrasound Spectroscopy (RUS) measurements13, 17. In the following sections, we will 

describe the different methods used as well as the results obtained. It is expected that the 

computational methodology presented in this work can in turn be used to assess the 

quality of published thermo-elastic data for other important high temperature structural 

materials and to reliably predict these properties in cases where no experimental 

information is available. 

 

II. THERMODYNAMIC DEFINITIONS OF ELASTIC CONSTANTS 

The adiabatic (CS
ijkl) and isothermal (CT

ijkl) second-order elastic constants can be 

defined as second derivatives of internal energy E and the Helmholtz free energy F, 

respectively, with respect to the homogeneous deformation of the unit cell18. 
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where V0 and εij are the reference volume and strain tensor of the system, respectively. 

In turn, the total free energy of a system is described by a Hamiltonian H, which is 

the sum of kinetic energy and potential energy, for a two body form of interactions 

between particles can be written as: 
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where pa and ma correspond to momentum and mass of particle a, while rab corresponds 

to the interatomic separation between atom pairs a-b and U is the potential energy 

function. 

Using the definition given above, the statistical fluctuation formula for second-order 

elastic constants can be derived and presented as follows19, 20. 
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where N – number of particles, δ - Kronecker delta and σ - microscopic stress tensor. 

The first term has a direct connection with temperature and corresponds to the kinetic 

energy contribution to the elastic tensor. The second one is called the Born term and is 

related to the strain derivative of the interaction potentials U: 
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in which the  sign denotes ensemble averaging at the reference volume of the system. 

The averaging over an microcanonical (NVE) or canonical (NVT) ensemble will 

correspond to adiabatic or isothermal elastic constants, respectively. 

The kinetic and Born terms contribute to the intrinsic stiffness of the crystal. The last 

term in Equation 3 corresponds to contributions from fluctuations in the microscopic 

stress tensor of the crystal. While the Born term can certainly be affected by anharmonic 

contributions to the free energy, it is the third term in which these contributions become 

more apparent. As will be shown in this work, stress fluctuation contributions can 

contribute significantly to the temperature dependence of the elastic tensor even in 

relatively simple systems such as aluminum. 

  



III. DETERMINATION OF THERMO-ELASTIC PROPERTIES 

THROUGH DFT-BASED STATIC CALCULATIONS 

A. Approach 

At the most fundamental level, the elastic constants are related to the variation of 

interatomic forces with respect to atomic displacements. Over the past decades, many 

different approaches have been developed to predict the elastic properties of crystals 

through the use of atomistic calculations. Dynamic methods make full use of the 

fluctuation-based definition for the stiffness of the crystal described in Equation 3. Static 

methods, on the other hand, can only consider contributions to the stiffness tensor due to 

variations in the internal stress state of the crystal with respect to uniform crystal 

deformations without considering anharmonic atomic displacements away from 

equilibrium or (explicitly) fluctuations in the stress tensor. In these static techniques, only 

the so-called Born contribution to the elastic constants can be calculated directly. The 

individual components of the elastic constant tensor can be determined either by 

establishing relationships between strain and resulting internal stresses21 or between the 

energy of the crystal and imposed strains22. Both static approaches can be trivially 

implemented within the context of DFT calculations. 

In our DFT calculations, the elastic energy per crystal unit volume is expanded in 

terms of the strain state. Specifically, we calculate the variation in the energy of a crystal 

as a function of strain, under constant volume constraints. 
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By judiciously selecting the proper volume-conserving strain tensor, it is possible to 

establish a relationship between the difference in lattice energies with respect to 

unstrained state and the corresponding strain23. For example, in the case of crystals of 

cubic symmetry23, the volume-conserving orthorhombic strain tensor: 
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can be used to establish a relationship between the change in lattice energy and the shear 

elastic constant 11 12C C− : 

 ( ) ( ) 2 4
11 12E x V C C x O x⎡ ⎤Δ = − + ⎣ ⎦  (7) 

Likewise, the C44 elastic constant can be obtained from volume-conserving 

monoclinic strains: 
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The corresponding lattice energy-strain relationship can in turn be used to determine 

C44: 

 ( ) ( ) 2 4
44 2E x E x VC x O x⎡ ⎤Δ = Δ − = + ⎣ ⎦  (9) 

The expression above is only applicable at 0 K, where contributions due to thermal 

excitations of vibrational, electronic, configurational and/or magnetic degrees of freedom 

are neglected. At finite temperatures, however, one has to take these contributions into 

account since straining the lattice would have an effect over thermally-excited degrees of 

freedom, particularly those related to lattice vibrations. In recent work, Ackland et al24 

have used a similar approach to investigate the elastic properties of high temperature 

metals and intermetallics. 

In this work, we proceeded to impose volume-conserving strains necessary to extract 

the 11 12C C−  and 44C elastic constants. For each of the strained structures, the phonon 

density of states (DOS) was determined through the direct force-constant approach25. The 

resulting vibrational free energy was in turn calculated by using simple statistical 

mechanical formulas6. Although electronic contributions are not expected to be 



significant in aluminum due to relatively low electronic density at the Fermi level, the 

electronic free energy was calculated using the temperature-independent self-consistent 

one-electron approximation26. In order to take into account the effects of lattice thermal 

expansion, the quasi-harmonic approximation was used. In this approximation, it is 

assumed that the phonons (and electronic DOS) are only volume dependent27. 

For each of the volumes considered, the total free energy as a function of strain was 

used to calculate the corresponding elastic constants (replacing EΔ  by TotalFΔ in the 

expressions above) at different temperatures. Within the quasi-harmonic approximation, a 

( ),ijC V T surface---for C11-C12 and C44, respectively---was then constructed. The 

resulting elastic tensor surface in V-T space was then represented mathematically using a 

two-dimensional spline (more details below). Using the volume expansion calculated 

from the ab initio total free energy calculations6, the elastic constants at the equilibrium 

volume at each temperature were then calculated by evaluating the two-dimensional 

spline along the V-T path corresponding to the predicted volume thermal expansion 

derived from the quasi-harmonic approximation. In order to isolate C11 from C12, the 

relationship between these elastic constants and the bulk modulus for cubic crystals was 

used ( ( )11 122 / 3B C C= + ). The bulk modulus was in turn calculated by fitting an 

equation of state of the form28: 

 ( ) 1/3 2/3 1E V a bV cV dV− − −= + + +  (10) 

where a, b, c, d are fitting parameters. These parameters can then be related to cohesive 

energy, E0; equilibrium volume, V0; bulk modulus, B0 and pressure derivative of the bulk 

modulus, B’. For the detailed mathematical relations between the fitting coefficients of  

the equation of state used and the corresponding state variables the reader is referred to 

the work by Shang and Böttger28. The particular choice of the equation of state did not 

greatly affect the results obtained in this work and comparisons with more conventional 

expressions (such as Birch and Birch-Murnaghan) resulted in no major differences. The 

particular reason for the selected EOS form was based on mathematical convenience 

when fitting quasi-harmonic free energies over the temperature range of interest. 



The elastic constants calculated from this approach correspond to isothermal 

conditions. In contrast, resonance-based experiments are performed under adiabatic 

conditions and thus the following thermodynamic conversion must be used29: 
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In cubic crystals, for C11 and C12, ( )11 122T T
i j C Cλ λ α= = + 30. In the case of C44, the 

coefficients 4λ are zero due to the symmetry of the thermal expansion coefficient tensor 

and thus there is no difference between the isothermal and adiabatic constants. This fact 

is highly useful when trying to compare the results from calculations with experimental 

measurements in a direct manner. 

B. Results 

The calculations were performed using projector-augmented plane wave 

pseudopotentials (PAW) as implemented in the electronic structure code VASP31, 32. All 

the calculations were performed within the GGA approximation with the 

parameterization suggested by Perdew and Wang (PW91)33. For these calculations, the 

electrons in the configuration 3s23p1 were considered valence states. In all calculations, 

the k-point mesh consisted of at least 10,000 k-points per reciprocal atom. The particular 

shape of the k-point mesh was adjusted depending on the symmetry of the reciprocal 

lattice of the structures considered. The energy cutoff used was 350 eV. The k-point 

density and energy cutoff employed ensured a very good convergence (within less than 

0.1meV) of the total energies.As mentioned above, the quasi-harmonic approximation 

was used to calculate the thermodynamic properties---including volume thermal 

expansion and bulk modulus---of fcc aluminum. Seven volumes (ranging from -1 % to 5 % 

lattice expansion) were considered in our calculations. For each volume, we used the so-

called ‘direct method’ to obtain the phonon density of states. The lattice dynamics 

calculations used to determine the phonon density of states were performed using the 

ATAT code 34, 35, using supercells containing 32 atoms. From these calculations, the free 



energy (including contributions due to electronic degrees of freedom) can be easily 

calculated using the standard statistical mechanics formulas6. The reader is referred to the 

article by one of the co-authors6 for a more detailed comparison between calculated and 

experimental thermodynamic properties of fcc Al. 

As mentioned above, we used volume-conserving strains to obtain the C11-C12 and 

C44 elastic constants. To calculate C11-C12 at each volume, we used seven volume-

conserving tetragonal strains (see Equations 6 and 7) with the strain parameter, x, ranging 

from -0.06 to 0.06. For C44, at each volume, we used five volume-conserving monoclinic 

strains (see Equations 8 and 9) with the strain parameter, x, ranging from 0 to 0.06. In 

both sets of calculations, the strain parameter was equally spaced. For each strain state, 

we calculated its vibrational and electronic free energies as described above. By 

combining the elastic constants calculated at different temperatures and volumes, we 

created a V-T surface for C11-C12 and C44. The V-T surface was represented 

mathematically through the use of a 2-D smooth B-spline (using the interpolate module 

in scipy36). The temperature dependence of the elastic constants was then obtained by 

evaluating the 2-D spline along the V-T path resulting from the predicted thermal 

expansion for fcc aluminum. Finally, we applied the conversion (see Equation 11) from 

isothermal to adiabatic elastic constants in order to compare our calculations with 

experiments. We would like to note that the use of the smooth 2-D spline also contributed 

to the reduction in the noise associated with the calculation of the elastic tensor and this is 

the main reason for the low level of noise in the temperature dependence of the elastic 

tensor calculated through DFT+quasi-harmonic approximations. 

Table I shows comparisons between calculated and experimental structural and 

thermodynamic properties of fcc Al. In general, the calculated structural and 

thermodynamic properties agree very well with experiments. In the table, we also present 

the calculated elastic constants (at 0 K) using two different approaches: one based on 

energy-strain fits23---used in the rest of the present article---and the other one based on 

stress-strain relations21. The table show that both sets of calculations (using the same k-

point mesh density, energy cutoff and convergence criteria described above) yielded 

results relatively close to experiments (within ~5 GPa) as well as to one another (within ~ 



2 GPa). Since these two calculation schemes are fundamentally independent of one 

another, the agreement suggests the calculations are already well converged with respect 

to k-point mesh and energy cutoff. Other calculations performed at different strain levels 

(for the stress-strain calculations) and maximum strains (for the energy-strain fits) 

suggest convergence within േ1 GPa. 

After applying the corrections outlined above, we proceeded to compare the resulting 

temperature dependence of the elastic constants with the published data. Figure 2 

compares C11 as obtained from experiments2-5 with the DFT calculations. In the figure, 

we include the calculated C11 obtained simply by finding the value of this elastic constant 

at different volumes through the 0 K energy-strain relations (cold curve), as well as the 

C11 in which we used the free energy-strain relations (quasi-harmonic). From the figure it 

is seen that only by considering the vibrational contributions to the total free energy of 

the strained structures it is possible to closely reproduce the temperature dependence of 

C11 as reported by Gerlich2 and Kamm and Alers3 as well as (in a limited manner) the 

results by Tallon5.  

 In Figure 3, the (cold curve) C12 shows a softening close to that reported by Gerlich2 

and Kamm and Alers3. Surprisingly, our calculations suggest that vibrational 

contributions lead to a stiffening of C12. In this case, the quasi-harmonic C12 remains 

almost constant as temperature increases, in contrast with what Gerlich2 and Kamm and 

Alers3 suggest. Our results seem to suggest that Sutton4 overestimated the temperature 

dependence of this elastic constant. The hardening of C12 with temperature reported by 

Tallon5 is not supported by our calculations, even considering the relatively small 

softening resulting from our quasi-harmonic calculations. It is likely that the 

underestimation of softening in our quasi-harmonic calculations results from the small 

supercells used to calculate the strain free energies. As will be seen in the next section, 

fluctuations in the microscopic stress tensor have very limited effects on the softening of 

this component of the stiffness tensor. Thus, this softening originates from the weakening 

of the interatomic force constants as volume increases, and is thus mostly due to Born-

like contributions.  



In Figure 4, we present the comparison between calculated and experimental 

adiabatic elastic constants including only the results published by Gerlich2 and Kamm 

and Alers3. The figure shows that the temperature dependence of (quasi-harmonic) C11 

agrees rather well with the experiments (in this figure we exclude the results reported by 

Sutton4 and Tallon5). The figure shows that the quasi-harmonic calculations differ from 

experiments by an almost constant amount. This discrepancy is likely due to the 

underestimation of the bulk modulus calculated within the GGA approximation, as 

discussed earlier.  

Figure 4 shows that the agreement is also quite good for C44. This elastic constant is 

not affected by the underestimation of the bulk modulus and in this case, the (cold curve) 

and quasi-harmonic calculations show virtually no difference. Despite these promising 

results, our calculations still underestimate the softening in C12 reported by Gerlich2 and 

Kamm and Alers3. 

Given the good agreement between the DFT calculations and at least two 

experimental data sets, one would be tempted to conclude that full consideration of 

dynamic, anharmonic contributions to the stiffness tensor are not important. In fact, even 

though fcc aluminum appears to be a weakly anharmonic crystal, Forsblom et al9 have in 

fact shown that aluminum is highly anharmonic at even moderate temperatures. What 

contributes to the apparent non-anharmonicity of this crystal is the almost complete 

cancellation of anharmonic contributions of opposite signs. If anharmonic contributions 

in fact are important in fcc aluminum, the good agreement between the DFT calculations 

and the experiments by Gerlich2 could be due to fortuitous error cancellations. To further 

investigate this possibility, in the next section we employ dynamic methods to estimate 

the elastic stiffness tensor through the fluctuation formulas presented in Equation 3. 

 

IV. DETERMINATION OF THERMO-ELASTIC PROPERTIES 

THROUGH MOLECULAR DYNAMICS CALCULATIONS 

A. Approach 



We performed molecular dynamics (MD) calculations on the elastic constants of Al 

using tight-binding potentials suggested by Rosato et al, which is often referred as RGL37, 

38. Although simpler pair potentials for fcc Al have been successfully developed, they 

still fail to fully reproduce the physical properties of crystalline materials, as the role of 

electron density and the atomic bonding in pair potentials are underestimated. For 

instance, pure pair potentials imply the Cauchy relation between elastic constants C12 = 

C44, which is not necessarily true in real metals and alloys. Also, stacking fault energies, 

surface structure and relaxation properties cannot be accurately estimated while using 

pair potentials37. Many-body models overcome these limitations by properly treating the 

essential band character of the metallic bonding. Over the past decades, a collection of 

many-body potentials has been developed, including those based on effective medium 

theory39, embedded atom method40, as well as those based on the tight-biding approach, 

such as the Finnis and Sinclair41,  Sutton and Chen42 and the RGL model 37, 38. 

The tight-binding methods describe interatomic interactions as a combined effect of a 

short-range pair-wise repulsion and a many-body density dependent cohesion. The 

functional form of RGL interaction potential for an atom a can be described as follows37, 

38: 
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where r0 is the first neighbor atomic distance, and A, ζ, p, q are empirical parameters 

whose values are obtained by fitting to 0 K properties such as cohesive energy, elastic 

coefficients and structure stability and they are all published in the work of Cleri et al37. 



Compared to the Sutton-Chen scheme, which has been successfully utilized to study 

various bulk properties of metal and metal alloys43-48, the RGL model is fairly similar in 

terms of its functional expression and number of fitting parameters. The first term in 

Equation 12 indicates the atomic repulsions that take into account the increase in kinetic 

energy of bonding electrons when two ions get close to each other. The Sutton-Chen 

model introduces a power form instead of an exponential expression to describe these 

ion-ion repulsions. The second term, having a general formulation of the type -
1
2

( )ab
b a

rζ ϕ
≠

⎡ ⎤
⎢ ⎥
⎣ ⎦
∑ , specifies a many-body cohesion that accounts for the nature of the 

effective band energy and it balances with repulsion forces in order to stabilize the 

crystals. The function ( )abrϕ  corresponds to the local electronic charge density induced 

at site a from atoms at site b, and is also described by a power function in the case of the 

Sutton-Chen model.  

Our MD simulation model consists of 500 Al atoms, in which the cut-off distance 

covers up to the fifth nearest neighbor49 ( corresponding to a 2/5  in fcc crystals), and 

the simulation time step is chosen to be 1 fs. At first, a thermalization process is 

conducted by slowly heating the system from 0.001 K (with the temperature increment of 

1 K per step) until it reaches the desired temperature. The zero strain state is determined 

from constant temperature and stress ensembles, by changing the volume of the supercell. 

Once the reference volume has been obtained, a strict velocity scaling of 50,000 steps is 

performed, followed by a preliminary molecular dynamics run of 20,000 steps to 

equilibrate the system at the temperature of interest. The elastic constants are then 

derived from the second derivative of the total energy with respect to the homogeneous 

deformation of unit cell, as given in Equation 3, by performing 250,000 steps of constant 

shape and constant energy simulations (EhN ensemble). The nine elastic constants were 

calculated separately in order to ensure convergence. It was then verified that the 

resulting stiffness tensor’s symmetry was cubic (i. e. non-vanishing C11, C12, and C44). 

B. Results 



The MD simulations show that the elastic constants of Al decrease with temperature, 

as a softening in materials is expected. This is in agreement with the DFT calculations as 

well as with the experimental results by Gerlich2 and Sutton4. The stability criteria for 

cubic crystals was held for Al, as C44>0, C11>0 and C11>C12. As demonstrated in Figure 8, 

C44 declines and the divergence between C11 and C12 diminishes as temperature increases. 

Beyond the equilibrium melting point, vanishing C11-C12 and C44 would correspond to 

Born melting. 

The kinetic energy, Born term and fluctuation contributions are listed (Table II) and 

plotted separately (Figures 5-7) in order to elucidate their individual contributions to the 

stiffness tensor. As can be seen in Figure 5, the kinetic contributions are rather small, 

compared to the other two terms, and even vanish for C12 . Although the kinetic term 

contributes to a stiffening of C11 and C44, its relative contribution to the total elastic 

constants (Table II and Figure 8) is insignificant.  

By examining Table II, it can be seen that the Born term (Figure 6) constitutes the 

most important contribution to the stiffness tensor. Table III also suggests that this term 

has almost the same temperature dependence for all three elastic constants. Our 

calculations indicate that the Born term of stiffness tensor softens as temperature 

increases, which is consistent with weakening of interatomic bonds as interatomic 

distance increases. The fluctuation term (Figure 7) represents the contributions to the 

stiffness tensor due to fluctuations in the microscopic stress tensor. Since these 

fluctuations are related to the amplitude of atomic displacements, as temperature 

increases fluctuation contributions to the stiffness tensor also increases. Table III shows 

that fluctuation contributions to the temperature dependence are strongest for C11, almost 

comparable to the temperature dependence of the Born contribution. In the case of C12 

and C44, the temperature dependence of the fluctuation term is 100 and 10 times weaker 

than the corresponding Born term, respectively. 

Since the temperature dependence of the Born term is similar for all the elastic 

coefficients and the contributions from kinetic energy terms are relatively small, the 

difference in the temperature dependence of the total elastic constants is mostly 



determined by the behavior of the fluctuation components. Those contributions increase 

continuously and get up to about 18 % and 29 % of the Born terms for C11 and C44, 

respectively, at 900 K (which is slightly below the experimental melting point of 

aluminum). In contrast, fluctuation terms in the C12 constant are almost negligible. Figure 

8 shows clearly a linear dependence of elasticity with respect to temperature in the region 

after room temperature up to 900 K. Also, the slopes of C11, C12 and C44 with respect to 

temperature reported by these molecular dynamics calculations are in relatively good 

agreement (see Tables III) with those obtained from our earlier DFT calculations. In fact, 

the major disagreement between the classical MD and DFT calculations corresponds to 

the low temperature C12 elastic constant, with C44 differing by less than 10 % and C44 

agreeing almost perfectly.  

 

V. DETERMINATION OF ELASTIC MODULI BY RESONANT 

ULTRASOUND SPECTROSCOPY 

A. Approach 

RUS is a high-precision dynamic technique that allows determination of up to 9 

elastic constants by measuring vibrational spectrum of the samples with known geometry 

--- usually in the shape of parallelepipeds or cylinder --- and mass13, 50. 

A polycrystalline aluminum sample (Metalman, Long Island City, NY) with purity of 

99.999 % and density of 2.689 g/cm3 was used in the present study to determine elastic 

moduli and compare to the results of DFT and MD calculations. The sample was 

precisely machined in the form of discs with average diameter of 28.052 mm and average 

thickness of  3.270 mm. The Young’s (E) and shear (μ) moduli of the sample were 

determined using Resonant Ultrasound Spectroscope (RUS) (Magnaflux Quasar, 

Albuquerque, NM). The details of the experimental set up for RUS can be found 

elsewhere13, 51, 52. Briefly, the disc shaped sample was supported by three piezoelectric 

transducers. One transducer (transmitting transducer) generates an elastic wave of 

constant amplitude but of varying frequency (covering a large number of vibrational 



eigenmodes of the sample). The resonance response of excited sample is detected by the 

other two transducers, i.e. receiving transducers. In order to study the variation of elastic 

moduli as a function of temperature, the commercially available setup for RUS at room 

temperature was modified for high temperature measurements in which 4 inches long SiC 

extension rods were used to transmit the ultrasound waves to and from sample at desired 

temperature in the furnace, while keeping the piezoelectric transducers out of the furnace, 

thus unaffected by high temperature. The sample was heated at a ramping rate of 10 

K/min in argon atmosphere and resonance spectra were collected at an interval of 50 K, 

from room temperature up to 773 K after an isothermal hold of 10 minutes.  

The resonant spectra were collected in the 10-200 kHz frequency range to cover the 

first 40 eigenfrequencies. With known dimensions, density, and a set of “guessed” elastic 

constants --- i.e. C11 and C44 considering the material as an isotropic solid --- accurate 

elastic moduli of the solid can be determined from collected RUS spectra using a 

multidimensional, iterative fitting approach (RuSpec (Magnaflux Quasar, Albuquerque, 

NM) that minimizes the root-mean-square (RMS) error between the measured and 

calculated resonant frequencies for a sample of known mass and dimensions. The 

calculated resonant frequencies were determined by minimization of the Lagrangian 

equation corresponding to the free body vibrations of an elastic solid, using Rayleigh-

Ritz method50, 53.  

B. Results 

Figure 9 shows the measured Young’s and shear moduli and Poisson’s ratio of the 

polycrystalline aluminum sample as determined by RUS over the 297-773 K temperature 

range. In order to compare these new measurements with the elastic constant tensor 

calculated in this work and measured previously2-5, the single crystal elastic tensor was 

transformed to polycrystalline elastic constants through Voigt-Reuss-Hill54averaging. 

Figures 9 and 10 clearly shows a very good agreement between the DFT calculations 

and the experimental measurements by Gerlich and the RUS results obtained in this work. 

The RUS measurements for polycrystalline aluminum in this work differ by less than 



about 2 GPa at the highest temperatures measured. The (cold curve) DFT calculations 

slightly overestimate the Young’s and shear modulus (compared to the experimental 

results) and underestimate Poisson’s ratio, although the calculated temperature 

dependence agrees very well with the experimental data sets used for comparison. The 

(quasi-harmonic) DFT calculations yield Young’s and shear modulus within the ranges 

measured by Gerlich as well as with the measurements reported in this work. However, 

an inflection at about 600 K takes these polycrystalline elastic constants closer to those 

predicted by our MD calculations.  

Figure 9 shows that the Molecular Dynamics simulations exhibit the largest 

discrepancy with the polycrystalline elastic moduli and Poisson’s ratio derived from the 

measurements by Gerlich and this work. As described above, the major reason for this 

discrepancy is an overestimation (of about 20 %) of the low temperature C12 coefficient. 

Despite this discrepancy, Figure 9 shows that the temperature dependence of the 

averaged polycrystalline elastic constants derived from the MD calculations agree very 

well with the experiments (as well as with the DFT calculations). 

 

VI. CONCLUSIONS 

This paper was motivated by the significant quantitative and qualitative discrepancies 

in the finite temperature elastic constants of fcc Al measured by three different groups. 

Given the fact that aluminum is one of the most technologically important and well 

characterized metals, the discrepancies were very surprising. While a priori it is not 

possible to judge the reliability of a particular data set, we have demonstrated in this work 

how we can use atomistic simulation techniques to assess the reliability of experimental 

data. 

Our DFT calculations exhibit surprisingly good agreement with the measurements by 

Gerlich2 and by this study, even though these calculations neglected to consider 

anharmonic contributions to the stiffness tensor. Although this good agreement seems to 



suggest that fcc Al is at most weakly anharmonic, results by others9 suggest that what 

seems to happen is that anharmonic contributions at least partially cancel out.  

Our MD calculations consider all the possible contributions to the stiffness tensor. 

These calculations suggest that anharmonic contributions (manifested in the fluctuation 

term) seem to contribute significantly to the temperature dependence of the elastic 

constants, particularly C11. These anharmonic effects are partly cancelled by the intrinsic 

kinetic stiffness of the crystal. While the calculated C12 obtained through MD simulations 

is significantly higher than the DFT-calculated and experimentally measured elastic 

constant, C11 and C44 agree well with the DFT calculations (errors of less than 10 %). In 

fact, MD and DFT calculations predict a change between 300 K and 900 K of around 17, 

9 and 10 GPa for C11, C12 and C44, respectively. More importantly, this is also what we 

can extract from the data reported by Gerlich. 

Finally, the calculated and averaged elastic constants in this work agree very well (at 

least with regards to the temperature dependence) with the experiments by Gerlich as 

well as the measurements performed in this work through RUS. Discounting the 

discrepancies in the MD-derived polycrystalline elastic moduli due to overestimation of 

the low temperature C12, this work illustrates a sound methodology for the assessment of 

the quality of published thermo-elastic data for other important high temperature 

structural materials. 
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TABLE I. Comparison between experimental and calculated properties of fcc aluminum. 

Property Experiment Calculations Units 

a 4.04656 4.050 Å 

B0 K 7957 72 GPa 

B298 K 762 67 GPa 

C11, 0 K 10757 105a,103b GPa 

C12, 0 K 6157 54a,56b GPa 

C44, 0 K 2857 26a,30b GPa 

α298 K 23 58 25 x10-6/K 

Cp,298 K 24.359 24.4 J/(mol K) 

S298 K 28.459 29.5 J/(mol K) 

Debye temperature, Θ 39460 381 K 
a Elastic constants were calculated using stress-strain relations21 

b Elastic constants were calculated using energy-strain fits23 

 

  
 

 

 

 

 

 

 

 



TABLE II. Molecular Dynamics and Quasi-harmonic DFT calculations of aluminum 

second-order elastic constants. 

T, K EC, 
GPa 

MD DFT 
Kinetic 

energy 
Born Fluctuation Total Cold Curve 

Quasi-

harmonic 

0 C11 0.00 95.02 0.00 95.02 103.89 103.35 
 C12 0.00 74.40 0.00 74.40 55.88 56.16 
 C44 0.00 37.16 0.00 37.16 29.51 29.90 

50 C11 0.17 94.12 -0.71 93.58 103.59 102.71 
 C12 0.00 73.70 -0.05 73.65 56.05 56.32 
 C44 0.08 36.68 -0.42 36.34 29.20 29.60 

100 C11 0.32 93.73 -1.40 92.65 103.08 101.80 
 C12 0.00 73.30 -0.08 73.21 56.13 56.44 
 C44 0.16 36.43 -0.90 35.69 28.82 29.10 

200 C11 0.64 92.05 -2.64 90.06 101.54 99.21 
 C12 0.00 71.96 -0.23 71.73 56.07 56.57 
 C44 0.32 35.53 -1.72 34.13 27.86 27.64 

300 C11 0.98 90.45 -4.27 87.15 99.41 95.79 
 C12 0.00 70.56 -0.28 70.29 55.74 56.55 
 C44 0.49 34.58 -2.78 32.29 26.68 25.72 

400 C11 1.29 89.16 -5.90 84.55 96.82 91.76 
 C12 0.00 69.39 -0.41 68.99 55.21 56.41 
 C44 0.65 33.83 -3.54 30.93 25.33 23.56 

500 C11 1.62 87.53 -7.42 81.73 93.93 87.35 
 C12 0.00 67.94 -0.38 67.57 54.54 56.17 
 C44 0.81 32.87 -4.60 29.07 23.85 21.35 

600 C11 1.91 86.15 -9.05 79.02 90.85 82.79 
 C12 0.00 66.66 -0.44 66.22 53.80 55.84 
 C44 0.96 32.03 -5.39 27.59 22.28 19.30 

700 C11 2.21 84.48 -10.97 75.71 87.74 78.28 
 C12 0.00 65.13 -0.54 64.60 53.04 55.44 
 C44 1.10 31.01 -6.29 25.82 20.66 17.61 

800 C11 2.50 83.02 -12.99 72.53 84.72 74.07 
 C12 0.00 63.62 -0.73 62.89 52.32 54.99 
 C44 1.25 30.02 -7.27 23.99 19.04 16.50 

900 C11 2.81 81.77 -15.16 69.42 81.95 70.37 
 C12 0.00 62.08 -0.65 61.43 51.72 54.51 
 C44 1.41 29.03 -8.54 21.89 17.47 16.16 

 



TABLE III. Average temperature dependence of elastic constants. Comparison 

between MD and DFT calculations. 

 

 

MD DFT 

kinetic Born fluctuation total 
Cold 

curve 

Quasi-

harmonic 

ΔC11, GPa 2.8 -13.3 -15.2 -25.6 -21.9 -33.0 

dC11/dT 3.1E-03 -1.5E-02 -1.7E-02 -2.8E-02 -2.4E-02 -3.7E-02 

ΔC12, GPa 0.0 -12.3 -0.7 -13.0 -4.2 -1.7 

dC12/dT 0.0E+00 -1.4E-02 -7.2E-04 -1.4E-02 -4.6E-03 -1.8E-03 

ΔC44, GPa 1.4 -8.1 -8.5 -15.3 -12.0 -13.7 

dC44/dT 1.6E-03 -9.0E-03 -9.5E-03 -1.7E-02 -1.3E-02 -1.5E-02 

 

 

 

 

  



 

 
FIG. 1. (color online) Experimental2-5 adiabatic C12 elastic constant as a function of 

temperature. 

 

 

 

 



 
 

 

 

FIG. 2. (color online) Experimental2-5 and DFT calculated C11 adiabatic elastic 

constant. For the curve labeled as ‘cold curve’ (solid, blue line), the elastic constants 

where calculated from the strain-energy relations at 0 K at different volumes. Ab initio-

calculated volume expansion was then used to convert volume to temperature 

dependence. The curve labeled as quasi-harmonic was obtained from strain-free energy 

relations. 

 

 

 



 
FIG. 3. (color online) Experimental2-5 and DFT calculated C12 adiabatic elastic 

constant. For the curve labeled as ‘cold curve’ (solid, blue line), the elastic constants 

where calculated from the strain-energy relations at 0K at different volumes. Ab initio-

calculated volume expansion was then used to convert volume to temperature 

dependence. The curve labeled as quasi-harmonic was obtained from strain-free energy 

relations. 

 

 

 

 

 

 



 
 

FIG. 4. (color online) DFT calculated and experimental2, 3 adiabatic elastic constants 

of fcc Al. For the curves labeled as ‘cold curve’ (solid, blue line), the elastic constants 

where calculated from the strain-energy relations at 0 K at different volumes. Ab initio-

calculated volume expansion was then used to convert volume to temperature 

dependence. The curves labeled as quasi-harmonic was obtained from strain-free energy 

relations. 

 

 

 

 

 

 

 

 

 

 

 



 

 

  
FIG. 5. (color online) Kinetic energy contributions to C11, C12, C44 as a function of 

temperature in MD calculations. 

 



 
 

 

FIG. 6. (color online) Born term contributions to C11, C12, C44 as a function of 

temperature in MD calculations. 

 

 

 



 
FIG. 7. (color online) Fluctuation term contributions to C11, C12, C44 as a function of 

temperature in MD calculations. 

 
FIG. 8. (color online) MD calculations on C11, C12, C44 at elevated temperatures. 



 

 

 
 



FIG. 9. (color online) Polycrystalline Young’s (a) and shear modulus (b). The 

averaged elastic constants from experimental results by Gerlich2 as well as those 

measured in this work through RUS are compared to DFT and classical MD calculations. 

 

 

 

FIG. 10. (color online) Polycrystalline Poisson’s ratio. The averaged elastic constants 

from experimental results by Gerlich2 as well as those measured in this work through 

RUS are compared to DFT and classical MD calculations. 


