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We present a theoretical description of the differential conductance of point contacts between a
normal metal and a multi–band superconductor with extended s± pairing symmetry. We demon-
strate that the interband impurity scattering broadens the coherent peak near the superconducting
gap and significantly reduces its height even at relatively low scattering rates. This broadening is
consistent with a number of recent experiments performed for both tunnel junctions and larger dif-
fusive contacts. Our theory helps to better evaluate the energy gap of iron–based superconductors
from point contact Andreev spectroscopy measurements.

PACS numbers: 73.23.-b, 74.78.Na, 74.62.Dh

Introduction. Iron–pnictide superconductors are multi-
band materials with several disconnected Fermi sur-
faces [1–3]. The structure of the superconducting (SC)
energy gap near the Fermi surface (FS) remains one of
the unsettled questions of the current investigation of
these materials. Experiments indicate that in some com-
pounds the SC gap vanishes along nodal lines [4–6] while
many other observations are consistent with fully gapped
FS in SC states [7–9]. But even fully gapped SC states
may be realized by different possible structures of the SC
order parameter (OP), such as conventional or extended
s± symmetry pairings [1, 10].

Various experimental techniques were utilized to ex-
plore the structure of the SC OP in iron–pnictides, in-
cluding ARPES [11], NMR [12], and the London pen-
etration depth [5, 6, 8, 9, 13, 14]. More recently, sev-
eral groups reported on measurements of the differential
conductance of a point contact between a single crys-
tal iron–based pnictide superconductor and a normal
metal by a technique called point–contact Andreev spec-
troscopy (PCAS). Point contacts with both high tunnel
barriers [15–17] and large number of conduction chan-
nels [4, 7, 18–20] were reported. In either systems the
differential conductance curves were significantly broad-
ened when compared to curves for conventional supercon-
ductors within the Blonder–Tinkham–Klapwijk (BTK)
theory [21] and required introduction of somewhat short
phenomenological electron lifetime [17, 22] near FSs.
Previous theoretical analysis [23] of PCAS for clean
multi–band superconductors do not seem to describe the
above experiments.

In the present paper we argue that the smearing of the
differential conductance in PCAS may indicate on the re-
alization of an extended s±–wave pairing and the moder-
ate interband impurity scattering. For superconductors
with extended s±–wave pairing, interband impurity scat-
tering mixes quasiparticle states between FSs character-
ized by opposite signs of the OP and has a pair–breaking
effect on superconductivity [24, 25]. A relatively small
rate Γπ ≪ Tc of the interband scattering (we use ~ = 1

FIG. 1. (Color online). Zero–temperature normalized differ-
ential conductance curves in the case ∆h = −∆e = ∆ for
different values of Γπ/∆ = 0.01, 0.1, 0.5, 0.7. Left panel: A

single–channel tunnel junction with t(h) = t(e) = 0.01. Right
panel: A diffusive junction with a representative sample of 200
channels with transmission eigenvalues distributed according

to Eq. (5) with a mean 〈t
(h)
n 〉 = 〈t

(e)
n 〉 = 0.84.

and kB = 1) does not significantly change the critical
temperature Tc or the SC OPs ∆e,h on electron and hole
pockets of s±–wave superconductors. We show, however,
that even weak interband scattering significantly modi-
fies excitation spectrum near the FSs and reduces a res-
onance peak in the differential conductance at bias near
the SC gap.

This mechanism of broadening of the differential con-
ductance peaks for s±–wave superconductors does not
involve a phenomenological parameter for electron life–
time. The same model [25] was applied to the explana-
tion of the temperature dependence of the London pene-
tration depth [8, 9]. The magnetic penetration depth at
low temperatures exhibits a weak non–exponential de-
pendence on temperature in electron–doped BaFe2As2
materials, consistent with the theoretical temperature
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dependence for extended s± SC state in the presence
of interband impurity scattering. Interband impurity
scattering also results in a power–law dependence of
the spin relaxation rate in nuclear magnetic field res-
onance [24, 26]. Therefore, one can evaluate SC OPs
and interband scattering rates from independent experi-
ments.
Model. We consider a simplified two–band model [24]

of iron–based pnictide superconductors with a single elec-
tron and hole FSs. Generalization of this model to a
larger number of electron and hole FSs does not qualita-
tively change our results. We assume that the SC state
has an extended s±–wave symmetry and is characterized
by isotropic OP ∆α on electron, α = e, or hole, α = h,
Fermi surfaces, with ∆h∆e < 0. Scattering off disorder
can be separated into two categories: intraband scatter-
ing when electron band index stays the same and inter-
band scattering when electrons change their band index.
We note that the intraband scattering does not affect
the SC state with isotropic OP. The interband scatter-
ing mixes electron states with opposite OP in s±–wave
SC and results in the depairing of the Cooper pairs sup-
pressing superconductivity. In this case, the inter–band
scattering rate Γπ characterizes SC properties in a similar
way to the spin–scattering rate in conventional supercon-
ductors with magnetic impurities [29].
For a weak enough current through the point con-

tact, the superconducting state is nearly homogeneous
in space. We disregard the proximity effect in a metallic
probe [27] and apply the circuit theory [28] to evaluate
the differential conductance G(V ) = dI/dV :

G(V ) =
∑

±,α

∫ ∞

−∞

Cα(2Tu± eV )

2 cosh2 u
du. (1)

Here

Cα(ε) = Re(ξα Zα(ξα))

−
ImZα(ξα)

Imξα
(Reaα)

2
(

(Reξα + 1)2 + (Imξα)
2
) (2)

has a meaning of spectral current density and is written
in terms of functions aα(ε) and ξα(ε) = [1 − a2α(ε)]/[1 +
a2α(ε)] of quasiparticle energy ε. The function Zα(x) is

defined in terms of the transmission eigenvalues t
(α)
n of a

point contact between states in normal tip and electronic
states on Fermi surface α:

Zα(x) =
e2

π

∑

n

t
(α)
n

2 + t
(α)
n (x− 1)

. (3)

The functions aα(ε) are solutions of a system of two
forth–order algebraic equations

∆e(1 − a2e) + 2iεae =
2Γπ(ae − ah)(1 + ahae)

1 + a2h
, (4a)

∆h(1− a2h) + 2iεah =
2Γπ(ah − ae)(1 + aeah)

1 + a2e
. (4b)

FIG. 2. (Color online). A fit to the experimental data of
Ref. [19, Fig. 3] with ∆h = −∆e = ∆ = 6.3meV and
Γπ = 0.59meV used as fitting parameters. Only experimental
points for V > 0 were utilized for the fit. The distribution of
transmission eigenvalues, Eq. (5), was adjusted to match the
experimental zero–bias conductance G(0). The temperature
was fixed at the reported value T = 2K.

A proper solution of Eq. (4) is chosen from the condi-
tion that aα behaves like i∆α/[2(ε+ iΓπ)] at |ε| ≫ |∆α|
and Eqs. (1)–(3) recover the normal conductance GN =
(

e2/2π
)
∑

α,n t
(α)
n at bias eV ≫ |∆e,h|. We note that for

Γπ = 0, Eq. (4) describes the BCS-type superconductor
and Eq. (1) recovers the BTK result.

Results. We first analyze the differential conduc-
tance for a superconductor with equal in magnitude OPs,
|∆e,h| = ∆. The left panel in Fig. 1 shows the differen-
tial conductance for a single–channel junction with very
weak tunnel probability t(α) ≪ 1 between the normal tip
and the superconductor.

In this case the Andreev reflection is suppressed as

(t
(α)
n )2 and the differential conductance is proportional

to the electron density of states (DoS) in a superconduc-
tor, except at the very top of Andreev resonance peaks
at bias e V = |∆e,h|. As the ratio Γπ/∆ increases, we
observe an evolution of the DoS from a BCS–type DoS
with gap equal to ∆ and a very high peak above the
gap to a smaller gap and reduced height of the peak. In
particular, a relatively small Γπ/∆ = 0.01 already dras-
tically reduces the height of the peak. At Γπ/∆ ≃ 0.5,
the gap completely disappears, as expected [29]. We also
note that the position of the maximum of the differen-
tial conductance moves slowly to higher bias as Γπ/∆
increases.

Larger contacts have many conduction channels with

transmission eigenvalues t
(α)
n between 0 and 1. Assuming

that the contact is diffusive, we model the statistics of
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FIG. 3. (Color online). Zero–temperature normalized differ-
ential conductance curves in the case Γπ/∆ = 0.01 for differ-
ent values of the ratio |∆e/∆h| = 1.0, 1.2, 1.6 (∆h = ∆).
(a) A single–channel tunnel junction with the sign of the
OP opposite on different FSs. (inset) A diffusive junction
with a representative sample of 200 channels with transmis-
sion eigenvalues distributed according to Eq. (5) with a mean

〈t
(h)
n 〉 = 〈t

(e)
n 〉 = 0.84. The sign of the OP is opposite on

different FSs. (b) A single–channel tunnel junction with the
sign of the OP equal on different FSs.

t
(α)
n by the Dorokhov distribution [30]:

P (t(α)n ) =
1

2qαt
(α)
n

√

1− t
(α)
n

, sech2qα ≤ t(α)n < 1 (5)

with a relatively high cutoff qα ∼ 1. The parameter

qα determines the average 〈t
(α)
n 〉 = tanh qα/qα and the

total number of channels can be chosen to match the
junction conductance in normal state GN . We present
the differential conductance for such diffusive contacts in
case ∆h = −∆e = ∆ for several ratios of Γπ/∆ in the
right panel of Fig. 1. Unlike G(V ) of tunnel junctions,
G(V ) of diffusive contacts may exceed GN due to the
contribution to the current from the Andreev reflection
that doubles the conductance of nearly open channels

with t
(α)
n ≃ 1. As interband scattering rate Γπ increases

and suppresses superconductivity, G(V ) curves smoothen
and approach GN . In the gapless regime, Γπ/∆ & 0.5,
the differential conductance exhibits a zero–bias peak.
In Fig. 2 we present fitting of recent experimental data

for diffusive point contacts [19] using our model of s± su-
perconductor with equal OPs on the two FSs. Overall
large conductance indicates that there are many chan-
nels across the contact between the metallic tip and the
(Ba0.6K0.4)Fe2As2 superconductor (Tc ∼ 37K). For an
s± superconductor with equal OPs, |∆e,h| = ∆, the zero–
bias conductance G(0)/GN is independent from ∆ and
Γπ and depends only on the average value of transmis-

sion eigenvalues, chosen as 〈t
(h)
n 〉 = 〈t

(e)
n 〉 = 0.84 to match

the data. Then we found a good fit to experimental

FIG. 4. (Color online). Temperature dependence (the varying
parameter is T/Tc = 0, 0.1, 0.5, 0.9) of the normalized differ-
ential conductance curves in the case ∆h = −∆e = ∆(T ) for
a choice of the parameters such that Γπ/2πTc = 0.029. Left
panel: A single–channel tunnel junction. Right panel: A dif-
fusive junction with a representative sample of 200 channels
with transmission eigenvalues distributed according to Eq. (5)

with a mean 〈t
(h)
n 〉 = 〈t

(e)
n 〉 = 0.84.

data by taking the SC OP ∆ = |∆e,h| = 6.3meV and
Γπ = 0.59meV, see Fig. 2. The OP ∆ is somewhat
greater than that found in Ref. [19] based on a model
with a phenomenological electron lifetime [22]. We esti-
mate 2∆(0)/Tc ≈ 3.95, which is close to the BCS value
3.53 and consistent with enhancement of 2∆/Tc due to
interband scattering in s± superconductors [25]. For the
above parameters, we find Γπ/2πTc,0 ≃ 0.023 and the
critical temperature is only moderately suppressed as
Tc = 0.77Tc,0 due to the interband scattering when com-
pared to idealistic Tc,0 in the absence of scattering. We
would like to emphasize that the value of Γπ can be es-
timated for the same sample from independent measure-
ments of magnetic penetration depth or spin relaxation
time.

We also consider the differential conductance for an
s± state with different magnitudes of OP on the FSs,
∆e/∆h 6= −1. For tunnel junctions with t(α) ≪ 1, the
differential conductance acquires a double peak feature
once the OPs on the two FSs are different, see panel (a)
in Fig. 3. We note that once the SC energy gaps on
the FSs have different magnitudes, the resonance peak
at smaller bias becomes sharper than that in the case of
equal OPs. The sharp first peak is a consequence of sup-
pression of the interband scattering of electrons, when
one FS is still gapped while the other FS has quasipar-
ticles. This behavior is consistent with the observed dif-
ferential conductance of tunnel contacts in Ref. [16]. As
a comparison, Fig. 3b presents the case of an s++ state
characterized by equal signs of the OPs on the two FSs.
Although the smearing of the peaks is present even in
this case (see also Ref. [31] for DoS in an s++ state),
they are much sharper when compared to the s± state
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for |∆e/∆h| close to unity. When this ratio is away from
unity, G(V ) curves for s± and s++ states become similar,
cf. plots for |∆e/∆h| = 1.2 and |∆e/∆h| = 1.6.

In the inset in panel (a) of Fig. 3 we present the dif-
ferential conductance of a diffusive point contact. We
note that the low bias coherence peak does not change
much when the OPs are taken with different magnitudes,
since this peak is already broadened by a simultaneous
contribution of the tunneling current above the gap and
Andreev reflection within the gap. But the double peak
feature of the plot still remains and the overall differen-
tial conductance peak appears to be broader than that
for a model with equal magnitude gaps.

To investigate temperature dependence of G(V ), we
consider ∆h = −∆e = ∆(T ). In this case the self–
consistency equation for the OP reduces to

ln
T

Tc

+Ψ

(

1

2
+

Γπ

πT

)

−Ψ

(

1

2
+

Γπ

πTc

)

= 2πT
∑

εm>0

(

ym

∆(T )
√

y2m + 1
−

1

εm + 2Γπ

)

,

(6a)

with an auxiliary variable ym that satisfies

[∆(T )− ymεm]
√

y2m + 1 = 2Γπym (6b)

and Ψ(x) being the digamma function. The transition
temperature Tc is suppressed by the impurity interband
scattering with respect to the clean critical temperature
Tc,0 according to ln(Tc/Tc,0) = Ψ(1/2)−Ψ(1/2+Γπ/πTc)
and Tc vanishes completely at Γπ & 0.07(2πTc,0). At
Γπ ≃ 0.064(2πTc,0) a SC state becomes gapless and has
the critical temperature Tc ≃ 0.22Tc,0 [29].

In Fig. 4 we plot G(V ) for a tunnel junction and a dif-
fusive point contact using Tc = 37K at Γπ = 0.59meV,
found for the fit of experimental data in [19] with ∆(0) =
6.3meV. We observe that in tunnel junctions, the posi-
tions of the conductance peaks are nearly independent
of temperature, but their heights decrease. The value
of the zero bias conductance grows monotonically with
temperature until the curve flattens out at the critical
temperature. In diffusive contact, the coherence peaks
are rounded relatively quickly and move to zero bias as
temperature increases. At T ≃ 0.5Tc the peak settles at
V = 0 and further increase in temperature leads to the
suppression of this zero–bias peak near T = Tc.

In conclusion, we presented a theoretical description
of the differential conductance of a point contact be-
tween an iron–based superconductor and a metallic tip.
We demonstrated that interband impurity scattering of
quasiparticles between Fermi surfaces significantly mod-
ifies differential conductance and provides a microscopic
depairing mechanism in s±–wave superconducting state.
This behavior stems from the sign–changing supercon-
ducting order parameter between Fermi surfaces and is

an indirect indicator of s± superconductivity in iron–
based superconductors. The broadening of the differ-
ential conductance curves was observed in large con-
tacts [18, 19]. Measurements of the differential conduc-
tance of tunnel contacts [15, 16] also show a significant
suppression of the coherence peaks in conductance at bias
near the superconducting gap. These experimental ob-
servations required an incorporation of a non–vanishing
value of the depairing rate, which has a simple micro-
scopic origin in our model.
Electronic band structure and disorder in real materi-

als are likely more complicated than that analyzed here.
However, we expect that the relations between thermo-
dynamic and transport characteristics of iron–based su-
perconductors do not crucially depend on details of band
structure and disorder and a single parameter, such as
the interband scattering rate Γπ, describes them. Such
parameter can be evaluated from various independent ex-
periments, such as PCAS and temperature dependence
of the magnetic penetration depth that was also fitted in
terms of Γπ [25]. Since impurity scattering rates often
depend on conditions of material preparation, a more
conclusive analysis would require comparison of results
of PCAS and magnetic penetration depth measurements
performed on the samples produced in similar condi-
tions, as was the case in recent studies of electron doped
BaFe2As2 films [14, 18].
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