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The magnetization dynamics of ferromagnets are often formulated in terms of the Landau-Lifshitz-
Gilbert (LLG) equation. The reactive part of this equation describes the response of the magnetiza-
tion in terms of effective fields, whereas the dissipative part is parameterized by the Gilbert damping
tensor. We formulate a scattering theory for the magnetization dynamics and map this description
on the linearized LLG equation by attaching electric contacts to the ferromagnet. The reactive part
can then be expressed in terms of the static scattering matrix. The dissipative contribution to the
low-frequency magnetization dynamics can be described as an adiabatic energy pumping process
to the electronic subsystem by the time-dependent magnetization. The Gilbert damping tensor
depends on the time derivative of the scattering matrix as a function of the magnetization direction.
By the fluctuation-dissipation theorem, the fluctuations of the effective fields can also be formulated
in terms of the quasistatic scattering matrix. The theory is formulated for general magnetization
textures and worked out for monodomain precessions and domain wall motions. We prove that the
Gilbert damping from scattering theory is identical to the result obtained by the Kubo formalism.

PACS numbers: 75.40.Gb,76.60.Es,72.25.Mk

I. INTRODUCTION

Ferromagnets develop a spontaneous magnetization below the Curie temperature. The long-wavelength modulations
of the magnetization direction consist of spin waves, the low-lying elementary excitations (Goldstone modes) of the
ordered state. When the thermal energy is much smaller than the microscopic exchange energy, the magnetization
dynamics can be phenomenologically expressed in a generalized Landau-Lifshitz-Gilbert (LLG) form:

ṁ(r, t) = −γm(r, t)× [Heff(r, t) + h(r, t)] +

m(r, t)×
∫

dr′ [α̃ [m] (r, r′)ṁ(r′, t)] , (1)

where the magnetization texture is described bym(r, t), the unit vector along the magnetization direction at position r

and time t, ṁ(r, t) = ∂m(r, t)/∂t, γ = gµB/~ is the gyromagnetic ratio in terms of the g-factor (≈ 2 for free electrons)
and the Bohr magneton µB. The Gilbert damping α̃ is a nonlocal symmetric 3× 3 tensor that is a functional of m.
The Gilbert damping tensor is commonly approximated to be diagonal and isotropic (i), local (l), and independent
of the magnetization m, with diagonal elements

αil(r, r
′) = αδ(r − r

′). (2)

The linearized version of the LLG equation for small-amplitude excitations has been derived microscopically.1 It has
been used very successfully to describe the measured response of ferromagnetic bulk materials and thin films in terms
of a small number of adjustable, material-specific parameters. The experiment of choice is ferromagnetic resonance
(FMR), which probes the small-amplitude coherent precession of the magnet.2 The Gilbert damping model in the
local and time-independent approximation has important ramifications, such as a linear dependence of the FMR line
width on resonance frequency, that have been frequently found to be correct. The damping constant is technologically
important since it governs the switching rate of ferromagnets driven by external magnetic fields or electric currents.3

In spatially dependent magnetization textures, the nonlocal character of the damping can be significant as well.4–6

Motivated by the belief that the Gilbert damping constant is an important material property, we set out here to
understand its physical origins from first principles. We focus on the well studied and technologically important
itinerant ferromagnets, although the formalism can be used in principle for any magnetic system.
The reactive dynamics within the LLG Eq. (1) is described by the thermodynamic potential Ω[M] as a functional of

the magnetization. The effective magnetic field Heff [M](r) ≡ −δΩ/δM(r) is the functional derivative with respect to
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FIG. 1: Schematic picture of a ferromagnet (F) in contact with a thermal bath (reservoirs) via metallic normal metal leads
(N).

the local magnetization M(r) = Msm(r), including the external magnetic field Hext, the magnetic dipolar field Hd,
the texture-dependent exchange energy, and crystal field anisotropies. Ms is the saturation magnetization density.
Thermal fluctuations can be included by a stochastic magnetic field h(r, t) with zero time average, 〈h〉 = 0, and
white-noise correlation:7

〈hi(r, t)hj(r′, t′)〉 =
2kBT

γMs
α̃ij [m] (r, r′)δ(t− t′), (3)

where Ms is the magnetization, i and j are the Cartesian indices, and T is the temperature. This relation is a
consequence of the fluctuation-dissipation theorem (FDT) in the classical (Maxwell-Boltzmann) limit.
The scattering (S-) matrix is defined in the space of the transport channels that connect a scattering region (the

sample) to real or fictitious thermodynamic (left and right) reservoirs by electric contacts with leads that are modeled
as ideal wave guides. Scattering matrices are known to describe transport properties, such as the giant magnetoresis-
tance, spin pumping, and current-induced magnetization dynamics in layered normal-metal (N)|ferromagnet (F).8–10

When the ferromagnet is part of an open system as in Fig. 1, also Ω can be expressed in terms of the scattering
matrix, which has been used to express the non-local exchange coupling between ferromagnetic layers through con-
ducting spacers.11 We will show here that the scattering matrix description of the effective magnetic fields is valid even
when the system is closed, provided the dominant contribution comes from the electronic band structure, scattering
potential disorder, and spin-orbit interaction.
Scattering theory can also be used to compute the Gilbert damping tensor α̃ for magnetization dynamics.12 The

energy loss rate of the scattering region can be expressed in terms of the time-dependent S-matrix. To this end, the
theory of adiabatic quantum pumping has to be generalized to describe dissipation in a metallic ferromagnet. The
Gilbert damping tensor is found by evaluating the energy pumping out of the ferromagnet and relating it to the energy
loss that is dictated by the LLG equation. In this way, it is proven that the Gilbert phenomenology is valid beyond
the linear response regime of small magnetization amplitudes. The key approximation that is necessary to derive
Eq. (1) including α̃ is the (adiabatic) assumption that the ferromagnetic resonance frequency ωFMR that characterizes
the magnetization dynamics is small compared to internal energy scale set by the exchange splitting ∆ and spin-flip
relaxation rates τs. The LLG phenomenology works well for ferromagnets for which ωFMR ≪ ∆/~, which is certainly
the case for transition metal ferromagnets such as Fe and Co.
Gilbert damping in transition-metal ferromagnets is generally believed to stem from the transfer of energy from the

magnetic order parameter to the itinerant quasiparticle continuum. This requires either magnetic disorder or spin-
orbit interactions in combination with impurity/phonon scattering.2 Since the heat capacitance of the ferromagnet is
dominated by the lattice, the energy transferred to the quasiparticles will be dissipated to the lattice as heat. Here we
focus on the limit in which elastic scattering dominates, such that the details of the heat transfer to the lattice does
not affect our results. Our approach formally breaks down in sufficiently clean samples at high temperatures in which
inelastic electron-phonon scattering dominates. Nevertheless, quantitative insight can be gained by our method even
in that limit by modelling phonons by frozen deformations.13

In the present formulation, the heat generated by the magnetization dynamics can escape only via the contacts to the
electronic reservoirs. By computing this heat current through the contacts we access the total dissipation rate. Part of
the heat and spin current that escapes the sample is due to spin pumping that causes energy and momentum loss even
for otherwise dissipation less magnetization dynamics. This process is now well understood.10,14,15 For sufficiently
large samples, the spin pumping contribution is overwhelmed by the dissipation in the bulk of the ferromagnet. Both
contributions can be separated by studying the heat generation as a function of the length of a wire. In principle, a
voltage can be added to study dissipation in the presence of electric currents as in Refs. 16,17, but we concentrate here
on a common and constant chemical potential in both reservoirs. The spin-orbit interaction or the interaction with
magnetic impurities (or with scalar impurities in the presence of crystalline exchange field inhomogeneities) enters our
formalism via the scattering matrices. When these spin interactions are set to zero, the application of our formulation
will only give magnetization dissipation caused by spin-pumping, in accordance with the conservation of the total
spin angular momentum in a closed system (which is valid when neglecting all relativistic corrections, both at the
atomistic and band-structure levels).
Although it is not a necessity, results can be simplified by expanding the S-matrix to lowest order in the amplitude
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of the magnetization dynamics. In this limit scattering theory and the Kubo linear response formalism for the
dissipation can be directly compared. We will demonstrate explicitly that both approaches lead to identical results,
which increases our confidence in our method. The coupling to the reservoirs of large samples is identified to play the
same role as the infinitesimals in the Kubo approach that guarantee causality.
Our formalism was introduced first in Ref. 12 limited to the macrospin model and zero temperature. An extension

to the friction associated with domain wall motion was given in Ref. 16. Here we show how to handle general
magnetization textures and finite temperatures. Furthermore, we offer an alternative route to derive the Gilbert
damping in terms of the scattering matrix from the thermal fluctuations of the effective field. We also explain in more
detail the relation of the present theory to spin and charge pumping by magnetization textures.
The Gilbert damping has been microscopically derived from the Kubo formalism.1 This formulation has been

implemented by first-principles electronic band structures.18 However, the simplest ab-initio implementation of the
Kubo approach requires additional approximations such as the relaxation time approximation and the neglect of
disorder vertex corrections. An advantage of the scattering theory of Gilbert damping is its suitability for modern ab
initio techniques of spin transport that do not suffer from these drawbacks12,19. The scattering theory of magnetization
dissipation can also be equivalently formulated in a Kubo-Greenwood Green’s function form that can be evaluated.12,20.
Our paper is organized in the following way. In Section II, we introduce our microscopic model for the ferromagnet.

In Section III, dissipation in the Landau-Lifshitz-Gilbert equation is exposed. The scattering theory of magnetization
dynamics is developed in Sec. IV. We discuss the Kubo formalism for the time-dependent magnetizations in Sec. V,
before concluding our article in Sec. VI. The Appendices provide technical derivations of spin, charge, and energy
pumping in terms of the scattering matrix of the system.

II. MODEL

Our approach rests on density-functional theory (DFT), which is widely and successfully used to describe the
electronic structure and magnetism in many ferromagnets, including transition-metal ferromagnets and ferromagnetic
semiconductors.21 In the Kohn-Sham implementation of DFT, noninteracting hypothetical particles experience an
effective exchange-correlation potential that leads to the same ground-state density as the interacting many-electron
system.22 A simple yet successful scheme is the local-density approximation to the effective potential. DFT theory
can also handle time-dependent phenomena. We adopt here the adiabatic local-density approximation (ALDA), i.e.
an exchange-correlation potential that is time-dependent, but local in time and space.23,24 As the name expresses,
the ALDA is valid when the parametric time-dependence of the problem is adiabatic with respect to the electron
time constants. Here we consider a magnetization direction that varies slowly in both space and time. The ALDA
should be suited to treat magnetization dynamics, since the typical time scale (tFMR ∼ 1/ (10 GHz) ∼ 10−10s) is
long compared to the that associated with the Fermi and exchange energies, 1 − 10 eV leading to ~/∆ ∼ 10−13s in
transition metal ferromagnets.
In the ALDA, the system is described by the time-dependent effective Schrödinger equation

ĤALDAΨ(r, t) = i~
∂

∂t
Ψ(r, t), (4)

where Ψ(r, t) is the quasiparticle wave function at position r and time t. We consider a generic mean-field electronic

Hamiltonian that depends on the magnetization direction ĤALDA [m] and includes the periodic Hartree, exchange
and correlation potentials and relativistic corrections such as the spin-orbit interaction. Impurity scattering including
magnetic disorder is also represented by ĤALDA. The magnetization m is allowed to vary in time and space. The
total Hamiltonian depends additionally on the Zeeman energy of the magnetization in external Hext and dipolar Hd

magnetic fields:

Ĥ = ĤALDA[m]−Ms

∫

drm · (Hext +Hd) . (5)

For this general Hamiltonian (5), our task is to deduce an expression for the Gilbert damping tensor α̃. To this
end, from the form of the Landau-Lifshitz-Gilbert equation (3), it is clear that we should seek an expansion in terms
of the slow variations of the magnetizations in time. Such an expansion is valid provided the adiabatic magnetization
precession frequency is much less than the exchange splitting ∆ or the spin-orbit energy which governs spin relaxation
of electrons. We discuss first dissipation in the LLG equation and subsequently compare it with the expressions from
scattering theory of electron transport. This leads to a recipe to describe dissipation by first principles. Finally, we
discuss the connection to the Kubo linear response formalism and prove that the two formulations are identical in
linear response.
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III. DISSIPATION AND LANDAU-LIFSHITZ-GILBERT EQUATION

The energy dissipation can be obtained from the solution of the LLG Eq. (1) as

Ė = −Ms

∫

dr [ṁ(r, t) ·Heff(r, t)] (6)

= −Ms

γ

∫

dr

∫

dr′ṁ(r) · α̃ [m] (r, r′) · ṁ(r
′
). (7)

The scattering theory of magnetization dissipation can be formulated for arbitrary spatiotemporal magnetization
textures. Much insight can be gained for certain special cases. In small particles or high magnetic fields the collective
magnetization motion is approximately constant in space and the “macrospin” model is valid in which all spatial
dependences are disregarded. We will also consider special magnetization textures with a dynamics characterized by
a number of dynamic (soft) collective coordinates ξa(t) counted by a:25,26

m(r, t) = mst(r; {ξa(t)}), (8)

where mst is the profile at t → −∞. This representation has proven to be very effective in handling magnetization
dynamics of domain walls in ferromagnetic wires. The description is approximate, but (for few variables) it becomes
exact in special limits, such as a transverse domain wall in wires below the Walker breakdown (see below); it becomes
arbitrarily accurate by increasing the number of collective variables. The energy dissipation to lowest (quadratic)

order in the rate of change ξ̇a of the collective coordinates is

Ė = −
∑

ab

Γ̃abξ̇aξ̇b, (9)

The (symmetric) dissipation tensor Γ̃ab reads

Γ̃ab =
Ms

γ

∫

dr

∫

dr′
∂mst(r)

∂ξa
α [m] (r, r′) · ∂mst(r

′
)

∂ξb
. (10)

The equation of motion of the collective coordinates under a force

F = −∂Ω
∂ξ

(11)

are25,26

η̃ξ̇ + [F+ f(t)]− Γ̃ξ̇ = 0, (12)

introducing the antisymmetric and time-independent gyrotropic tensor:

η̃ab =
Ms

γ

∫

drmst(r) ·
[

∂mst(r)

∂ξa
× ∂mst(r)

∂ξb

]

. (13)

We show below that F and Γ̃ can be expressed in terms of the scattering matrix. For our subsequent discussions it
is necessary to include a fluctuating force f(t) (with 〈f(t)〉 = 0), which has not been considered in Refs. 25,26. From
Eq. (3) if follows the time correlation of f is white and obeys the fluctuation-dissipation theorem:

〈fa(t)fb(t′)〉 = 2kBT Γ̃abδ(t− t′). (14)

In the following we illustrate the collective coordinate description of magnetization textures for the macrospin model
and the Walker model for a transverse domain wall. The treatment is easily extended to other rigid textures such as
magnetic vortices.

A. Macrospin excitations

When high magnetic fields are applied or when the system dimensions are small the exchange stiffness dominates.
In both limits the magnetization direction and its low energy excitations lie on the unit sphere and its magnetization
dynamics is described by the polar angles θ(t) and ϕ(t):

m = (sin θ cosϕ, sin θ sinϕ, cos θ) . (15)
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The diagonal components of the gyrotropic tensor vanish by (anti)symmetry η̃θθ = 0, η̃ϕϕ = 0. Its off-diagonal
components are

ηθϕ =
MsV

γ
sin θ = −ηϕθ. (16)

V is the particle volume and MsV the total magnetic moment. We now have two coupled equations of motion

MsV

γ
ϕ̇ sin θ − ∂Ω

∂θ
−
(

Γ̃θθθ̇ + Γ̃θϕϕ̇
)

= 0, (17)

−MsV

γ
θ̇ sin θ − ∂Ω

∂ϕ
−
(

Γ̃ϕθθ̇ + Γ̃ϕϕϕ̇
)

= 0.

The thermodynamic potential Ω determines the ballistic trajectories of the magnetization. The Gilbert damping
tensor Γ̃ab will be computed below, but when isotropic and local,

Γ̃ = 1̃δ(r− r
′)Msα/γ, (18)

where 1̃ is a unit matrix in the Cartesian basis and α is the dimensionless Gilbert constant, Γθθ = MsV α/γ, Γθϕ =

0 = Γϕθ, and Γϕϕ = sin2 θMsV α/γ.

B. Domain Wall Motion

We focus on a one-dimensional model, in which the magnetization gradient, magnetic easy axis, and external
magnetic field point along the wire (z) axis. The magnetic energy of such a wire with transverse cross section S can
be written as27

Ω =MsS

∫

dzφ(z), (19)

in terms of the one-dimensional energy density

φ =
A

2

∣

∣

∣

∣

∂m

∂z

∣

∣

∣

∣

2

−Hamz +
K1

2

(

1−m2
z

)

+
K2

2
m2

x, (20)

where Ha is the applied field and A is the exchange stiffness. Here the easy-axis anisotropy is parametrized by an
anisotropy constant K1. In the case of a thin film wire, there is also a smaller anisotropy energy associated with the
magnetization transverse to the wire governed by K2. In a cylindrical wire from a material without crystal anisotropy
(such as permalloy) K2 = 0.
When the shape of such a domain wall is preserved in the dynamics, three collective coordinates characterize the

magnetization texture: the domain wall position ξ1(t) = rw(t), the polar angle ξ2(t) = ϕw(t), and the domain wall
width λw(t). We consider a head-to-head transverse domain wall (a tail-to-tail wall can be treated analogously).
m(z) = (sin θw cosϕw, sin θw sinϕw, cos θw), where

cos θw = tanh
rw − z

λw
(21)

or, represented as

csc θw = cosh
rw − z

λw
(22)

minimizes the energy (20) under the constraint that the magnetization to the far left and right points towards the
domain wall. The off-diagonal elements are then η̃rl = 0 = η̃lr and η̃rϕ = −2Ms/γ = −η̃ϕr. The energy (20) reduces
to

Ω =MsS
[

A/λw − 2Har +K1λw +K2λw cos2 ϕw

]

. (23)

Disregarding fluctuations, the equation of motion Eq. (12) can be expanded as:

2ṙw + αϕϕϕ̇+ αϕrṙw + αϕλλ̇w = γK2λw sin 2ϕw, (24)

−2ϕ̇+ αrrṙw + αrϕϕ̇+ αrλλ̇w = 2γHa, (25)

A/λ2w + αλr ṙw + αλϕϕ̇+ αλλλ̇w = K1 +K2 cos
2 ϕw, (26)
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where αab = γΓab/MsS.

When the Gilbert damping tensor is isotropic and local in the basis of the Cartesian coordinates, Γ̃ = 1̃δ(r −
r
′)Msα/γ

αrr =
2α

λw
; αϕϕ = 2αλw; αλλ =

π2α

6λw
. (27)

whereas all off-diagonal elements vanish.
Most experiments are carried out on thin film ferromagnetic wires for which K2 is finite. Dissipation is especially

simple below the Walker threshold, the regime in which the wall moves with a constant drift velocity, ϕ̇w = 0 and28

ṙw = −2γHa/αrr. (28)

The Gilbert damping coefficient αrr can be obtained directly from the scattering matrix by the parametric dependence
of the scattering matrix on the center coordinate position rw. When the Gilbert damping tensor is isotropic and
local, we find ṙw = λwγHa/α. The domain wall width λw =

√

A/(K1 +K2 cos2 ϕw) and the out-of-plane angle
ϕw = 1

2 arcsin 2γHa/αK2. At the Walker-breakdown field (Ha)WB = αK2/ (2γ) the sliding domain wall becomes
unstable.
In a cylindrical wire without anisotropy, K2 = 0, ϕw is time-dependent and satisfies

ϕ̇w = − (2 + αϕr)

αϕϕ
ṙw (29)

while

ṙw =
2γHa

2
(

2+αϕr

αϕϕ

)

+ αrr

. (30)

For isotropic and local Gilbert damping coefficients,27

ṙw
λw

=
αγHa

1 + α2
. (31)

In the next section, we formulate how the Gilbert scattering tensor can be computed from time-dependent scattering
theory.

IV. SCATTERING THEORY OF MESOSCOPIC MAGNETIZATION DYNAMICS

Scattering theory of transport phenomena29 has proven its worth in the context of magnetoelectronics. It has
been used advantageously to evaluate the nonlocal exchange interactions multilayers or spin valves,11 the giant
magnetoresistance,30 spin-transfer torque,9 and spin pumping.10 We first review the scattering theory of equilibrium
magnetic properties and anisotropy fields and then will turn to non-equilibrium transport.

A. Conservative forces

Considering only the electronic degrees of freedom in our model, the thermodynamic (grand) potential is defined
as

Ω = −kBT lnTre−(ĤALDA−µN̂), (32)

while µ is the chemical potential, and N̂ is the number operator. The conservative force

F = −∂Ω
∂ξ

. (33)

can be computed for an open systems by defining a scattering region that is connected by ideal leads to reservoirs at
common equilibrium. For a two-terminal device, the flow of charge, spin, and energy between the reservoirs can then
be described in terms of the S-matrix:

S =

(

r t′

t r′

)

, (34)
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where r is the matrix of probability amplitudes of states impinging from and reflected into the left reservoir, while
t denotes the probability amplitudes of states incoming from the left and transmitted to the right. Similarly, r′ and
t′ describes the probability amplitudes for states that originate from the right reservoir. r, r′, t, and t′ are matrices
in the space spanned by eigenstates in the leads. We are interested in the free magnetic energy modulation by the
magnetic configuration that allows evaluation of the forces Eq. (33). The free energy change reads

∆Ω = −kBT
∫

dǫ∆n(ǫ) ln
[

1 + e(ǫ−µ)/kBT
]

, (35)

where ∆n(ǫ)dǫ is the change in the number of states at energy ǫ and interval dǫ, which can be expressed in terms of
the scattering matrix31

∆n(ǫ) = − 1

2πi

∂

∂ǫ
Tr lnS(ǫ). (36)

Carrying out the derivative, we arrive at the force

F = − 1

2πi

∫

dǫf(ǫ)Tr

(

S† ∂S

∂ξ

)

, (37)

where f(ǫ) is the Fermi-Dirac distribution function with chemical potential µ. This established result will be repro-
duced and generalized to the description of dissipation and fluctuations below.

B. Gilbert damping as energy pumping

Here we interpret Gilbert damping as an energy pumping process by equating the results for energy dissipation from
the microscopic adiabatic pumping formalism with the LLG phenomenology in terms of collective coordinates, Eq.
(9). The adiabatic energy loss rate of a scattering region in terms of scattering matrix at zero temperature has been
derived in Refs. 32,33. In the appendices, we present an alternative way to obtain this result at finite temperatures:34

Ė =
~

4π

∫

dǫ

(

−∂f
∂ǫ

)

Tr

[

∂S(ǫ, t)

∂t

∂S†(ǫ, t)

∂t

]

. (38)

Since we employ the adiabatic approximation, S(ǫ, t) is the energy-dependent scattering matrix for an instantaneous
(“frozen”) scattering potential at time t. In a magnetic system, the time dependence arises from its magnetization
dynamics, S(ǫ, t) = S[m(t)](ǫ). In terms of the collective coordinates ξ(t), S(ǫ, t) = S(ǫ, {ξ(t)})

∂S[m(t)]

∂t
≈
∑

a

∂S

∂ξa
ξ̇a , (39)

where the approximate sign has been discussed in the previous section. We can now identify the dissipation tensor
(10) in terms of the scattering matrix

Γab =
~

4π

∫

dǫ

(

−∂f
∂ǫ

)

Tr

[

∂S(ǫ)

∂ξa

∂S†(ǫ)

∂ξb

]

. (40)

In the macrospin model the Gilbert damping tensor can then be expressed as

α̃ij =
γ~

4πMs

∫

dǫ

(

−∂f
∂ǫ

)

Tr

[

∂S(ǫ)

∂mi

∂S†(ǫ)

∂mj

]

, (41)

where mi is a Cartesian component of the magnetization direction..

C. Gilbert damping and fluctuation-dissipation theorem

At finite temperatures the forces acting on the magnetization contain thermal fluctuations that are related to the
Gilbert dissipation by the fluctuation-dissipation theorem, Eq. (14). The dissipation tensor is therefore accessible via
the stochastic forces in thermal equilibrium.



8

The time dependence of the force operators

F̂(t) = −∂ĤALDA(m)

∂ξ
(42)

is caused by the thermal fluctuations of the magnetization. It is convenient to rearrange the Hamiltonian ĤALDA into
an unperturbed part that does not depend on the magnetization and a scattering potential ĤALDA(m) = Ĥ0+ V̂ (m).
In the basis of scattering wave functions of the leads, the force operator reads

F̂ = −
∫

dǫ

∫

dǫ′〈ǫα|∂V̂
∂ξ

|ǫ′β〉â†α(ǫ)âβ(ǫ′)ei(ǫ−ǫ′)t/~, (43)

where âβ annihilates an electron incident on the scattering region, β labels the lead (left or right) and quantum
numbers of the wave guide mode, and |ǫ′β〉 is an associated scattering eigenstate at energy ǫ′. We take again the left
and right reservoirs to be in thermal equilibrium with the same chemical potentials, such that the expectation values

〈

â†α(ǫ)âβ(ǫ
′)
〉

= δαβδ(ǫ − ǫ′)f(ǫ). (44)

The relation between the matrix element of the scattering potential and the S-matrix
[

S†(ǫ)
∂S(ǫ)

∂ξ

]

αβ

= −2πi〈ǫα|∂V̂
∂ξ

|ǫβ〉 (45)

follows from the relation derived in Eq. (61) below as well as unitarity of the S-matrix, S†S = 1. Taking these

relations into account, the expectation value of F̂ is found to be Eq. (37). We now consider the fluctuations in the

force f̂(t) = F̂(t)− 〈F̂(t)〉, which involves expectation values
〈

â†α1
(ǫ1)âβ1(ǫ

′
1)â

†
α2
(ǫ2)âβ2(ǫ

′
2)
〉

−
〈

â†α1
(ǫ1)âβ1(ǫ

′
1)
〉 〈

â†α2
(ǫ2)âβ2(ǫ

′
2)
〉

= δα1β2δ (ǫ1 − ǫ′2) δβ1α2δ (ǫ
′
1 − ǫ2) f(ǫ1) [1− f(ǫ2)] , (46)

where we invoked Wick’s theorem. Putting everything together, we finally find

〈fa(t)fb(t′)〉 = 2kBTδ(t− t′)Γab, (47)

where Γab has been defined in Eq. (40). Comparing with Eq. (14), we conclude that the dissipation tensor Γab

governing the fluctuations is identical to the one obtained from the energy pumping, Eq. (40), thereby confirming the
fluctuation-dissipation theorem. In small ferromagnets, magnetization dissipation is dominated by spin-pumping to
adjacent conductors10 and a one-to-one correspondence between the spin-pumping enhanced dissipation and the spin
current fluctuations can be found that obeys the fluctuation- dissipation theorem of Eq. 14.35

V. KUBO FORMULA

Adiabatic magnetization dynamics perturbs the system weakly, thus allowing for a linear response treatment of the
instantaneous dissipation. In the present Section we demonstrate that the damping obtained from linear response
(Kubo) theory agrees36 with that of the scattering theory of magnetization dissipation in this limit. At sufficiently low
temperatures or strong elastic disorder scattering the coupling to phonons may be disregarded and is not discussed
here.
The energy dissipation can be written as

Ė =

〈

dĤ

dt

〉

, (48)

where 〈〉 denotes the expectation value for the non-equilibrium state. We are interested in the adiabatic response
of the system to a time-dependent perturbation. In the adiabatic (slow) regime, we can at any time expand the
Hamiltonian around a static configuration at the reference time t = 0,

Ĥ = Ĥst +
∑

a

δξa(t)

(

∂Ĥ

∂ξa

)

m(r)→mst(r)

. (49)
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The static part, Ĥst, is the Hamiltonian for a magnetization for a fixed and arbitrary initial texture mst, as, without
loss of generality, described by the collective coordinates ξa. Since we assume that the variation of the magnetization
in time is small, a linear expansion in terms of the small deviations of the collective coordinate δξi(t) is valid for
sufficiently short time intervals. We can then employ the Kubo formalism and express the energy dissipation as

Ė =
∑

a

δξ̇a(t)

(

∂Ĥ

∂ξa

)

m(r)→mst(r)

, (50)

where the expectation value of the out-of-equilibrium conservative force
(

∂Ĥ

∂ξa

)

m(r)→mst(r)

≡ ∂aĤ (51)

consists of an equilibrium contribution and a term linear in the perturbed magnetization direction:

〈

∂aĤ
〉

(t) =
〈

∂aĤ
〉

st
+
∑

b

∫ ∞

−∞

dt′χab(t− t′)δξb(t
′) . (52)

Here, we introduced the retarded susceptibility

χab(t− t′) = − i

~
θ(t− t′)

〈[

∂aĤ(t), ∂bĤ(t′)
]〉

st
, (53)

where 〈〉st is the expectation value for the wave functions of the static configuration. Focussing on slow modulations
we can further simplify the expression by expanding

δξa(t
′) ≈ δξa(t) + (t′ − t) δξ̇a(t), (54)

so that

〈

∂aĤ
〉

=
〈

∂aĤ
〉

st
+

∫ ∞

−∞

dt′χab(t− t′)δξb(t)+

∫ ∞

−∞

dt′χab(t− t′) (t′ − t) δξ̇b(t). (55)

The first two terms in this expression, 〈∂aĤ〉st +
∫∞

−∞
dt′χab(t − t′)δξb(t), correspond to the energy variation with

respect to a change in the static magnetization. These terms do not contribute to the dissipation since the magnetic
excitations are transverse, ṁ ·m = 0. Only the last term in Eq. (55) gives rise to dissipation. Hence, the energy loss
reduces to37

Ė = i
∑

ij

δξ̇aδξ̇b
∂χS

ab

∂ω

∣

∣

∣

∣

ω=0

, (56)

where χS
ab(ω) =

∫∞

−∞
dt [χab(t) + χba(t)] e

iωt/2. The symmetrized susceptibility can be expanded as

χS
ab =

∑

nm

(fn − fm)

2

〈n|∂aĤ |m〉〈m|∂bĤ |n〉+ (a ↔ b)

~ω + iη − (ǫn − ǫm)
, (57)

where |n〉 is an eigenstate of the Hamiltonian Ĥst with eigenvalue ǫn, fn ≡ f(ǫn), f(ǫ) is the Fermi-Dirac distribution
function at energy ǫ, and η is a positive infinitesimal constant. Therefore,

i

(

∂χS
ab

∂ω

)

ω=0

= π
∑

nm

(

−∂fn
∂ǫ

)

〈n|∂aĤ |m〉〈m|∂bĤ |n〉δ(ǫn − ǫm), (58)

and the dissipation tensor

Γab = π
∑

nm

(

−∂fn
∂ǫ

)

〈n|∂aĤ|m〉〈m|∂bĤ |n〉δ(ǫn − ǫm). (59)
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We now demonstrate that the dissipation tensor obtained from the Kubo linear response formula, Eq. (59), is
identical to the expression from scattering theory, Eq. (40), following the Fisher and Lee proof of the equivalence of
linear response and scattering theory for the conductance.38

The static Hamiltonian Ĥst(ξ) = Ĥ0 + V̂ (ξ) can be decomposed into a free-electron part Ĥ0 = −~
2∇2/2m and a

scattering potential V̂ (ξ). The eigenstates of Ĥ0 are denoted |ϕs,q(ǫ)〉 , with eigenenergies ǫ, where s = ± denotes
the longitudinal propagation direction along the system (say, to the left or to the right), and q a transverse quantum

number determined by the lateral confinement. The potential V̂ (ξ) scatters the particles between the propagating
states forward or backward. The outgoing (+) and incoming (−) scattering eigenstates of the static Hamiltonian

Ĥst are written as
∣

∣

∣
ψ
(±)
s,q (ǫ)

〉

, which form another complete basis with orthogonality relations
〈

ψ
(±)
s,q (ǫ)

∣

∣

∣
ψ
(±)
s′,q′(ǫ

′)
〉

=

δs,s′δq,q′δ(ǫ− ǫ′).39 These wave functions can be expressed as
∣

∣

∣
ψ
(±)
s,q (ǫ)

〉

= [1 + Ĝ
(±)
st V̂ ] |ϕs,q〉, where the retarded (+)

and advanced (−) Green’s functions read Ĝ
(±)
st (ǫ) = (ǫ± iη− Ĥst)

−1. By expanding Γab in the basis of outgoing wave

functions, |ψ(+)
s,q 〉 , the energy dissipation (59) becomes

Γab = π
∑

sq,s′q′

∫

dǫ

(

−∂fs,q
∂ǫ

)

〈

ψ(+)
s,q

∣

∣

∣
∂aĤ

∣

∣

∣
ψ
(+)
s′,q′

〉〈

ψ
(+)
s′,q′

∣

∣

∣
∂bĤ

∣

∣

∣
ψ(+)
s,q

〉

, (60)

where wave functions should be evaluated at the energy ǫ.
Let us now compare this result, Eq. (60), to the direct scattering matrix expression for the energy dissipation,

Eq. (40). The S-matrix operator can be written in terms of the T -matrix as Ŝ(ǫ; ξ) = 1 − 2πiT̂ (ǫ; ξ), where the

T -matrix is defined recursively by T̂ = V̂ [1 + Ĝ
(+)
st T̂ ]. We then find

∂T̂

∂ξa
=
[

1 + V̂ Ĝ
(+)
st

]

∂aĤ
[

1 + Ĝ
(+)
st V̂

]

.

The change in the scattering matrix appearing in Eq. (40) is then

∂Ss′q′,sq

∂ξa
= −2πi 〈ϕs,q|

[

1 + V̂ Ĝ
(+)
st

]

∂aĤ
[

1 + Ĝ
(+)
st V̂

]

|ϕs′,q′〉 = −2πi
〈

ψ
(−)
s′,q′

∣

∣

∣
∂aĤ

∣

∣

∣
ψ
(+)
s′,q′

〉

. (61)

Since
〈

ψ(−)
s,q (ǫ)

∣

∣

∣
=
∑

s′q′

Ssq,s′q′

〈

ψ
(+)
s′q′(ǫ)

∣

∣

∣
(62)

and SS† = 1, we can write the linear response result, Eq. (60), as energy pumping (40). This completes our proof of
the equivalence between adiabatic energy pumping in terms of the S-matrix and the Kubo linear response theory.

VI. CONCLUSIONS

We have shown that most aspects of magnetization dynamics in ferromagnets can be understood in terms of the
boundary conditions to normal metal contacts, i.e. a scattering matrix. By using the established numerical methods
to compute electron transport based on scattering theory, this opens the way to compute dissipation in ferromagnets
from first-principles. In particular, our formalism should work well for systems with strong elastic scattering due
to a high density of large impurity potentials or in disordered alloys, including Ni1−xFex (x = 0.2 represents the
technologically important “permalloy”).
The dimensionless Gilbert damping tensors (41) for macrospin excitations, which can be measured directly in terms

of the broadening of the ferromagnetic resonance, have been evaluated for Ni1−xFex alloys by ab initio methods.19

Permalloy is substitutionally disordered and damping is dominated by the spin-orbit interaction in combination
with disorder scattering. Without adjustable parameters good agreement has been obtained with the available low
temperature experimental data, which is a strong indication of the practical value of our approach.
In clean samples and at high temperatures, the electron-phonon scattering importantly affects damping. Phonons

are not explicitly included here, but the scattering theory of Gilbert damping can still be used for a frozen configuration
of thermally displaced atoms, neglecting the inelastic aspect of scattering.13

While the energy pumping by scattering theory has been applied to described magnetization damping,12 it can be
used to compute other dissipation phenomena. This has recently been demonstrated for the case of current-induced
mechanical forces and damping,40 with a formalism analogous to that for current-induced magnetization torques.16,17
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Appendix A: Adiabatic Pumping

Adiabatic pumping is the current response to a time-dependent scattering potential to first order in the time-
variation or “pumping” frequency when all reservoirs are at the same electro-chemical potential.41 A compact formu-
lation of the pumping charge current in terms of the instantaneous scattering matrix was derived in Ref. 44. In the
same spirit, the energy current pumped out of the scattering region has been formulated (at zero temperature) in Ref.
33. Some time ago, we extended the charge pumping concept to include the spin degree of freedom and ascertained its
importance in magnetoelectronic circuits.10 More recently, we demonstrated that the energy emitted by a ferromagnet
with time-dependent magnetizations into adjacent conductors is not only caused by interface spin pumping, but also
reflects the energy loss by spin-flip processes inside the ferromagnet12 and therefore Gilbert damping. Here we derive
the energy pumping expressions at finite temperatures beyond the zero temperature results derived in Ref. 33 and
used in Ref. 12. Our results differ from an earlier extension to finite temperature derived in Ref. 42 and we point out
the origin of the discrepancies, but agrees with the result in Eq. 103 in Ref. 34. The magnetization dynamics must
satisfy the fluctuation-dissipation theorem, which is indeed the case in our formulation and in Ref. 34.
We proceed by deriving the charge, spin, and energy currents in terms of the time dependence of the scattering

matrix of a two-terminal device. The transport direction is x and the transverse coordinates are ̺ = (y, z). An
arbitrary single-particle Hamiltonian can be decomposed as

H(r) = − ~
2

2m

∂2

∂x2
+H⊥(x,̺), (A1)

where the transverse part is

H⊥(x,̺) = − ~
2

2m

∂2

∂̺2
+ V (x,̺) . (A2)

V (̺) is an elastic scattering potential in 2× 2 Pauli spin space that includes the lattice, impurity, and self-consistent
exchange-correlation potentials, including spin-orbit interaction and magnetic disorder. The scattering region is
attached to perfect non-magnetic electron wave guides (left α = L and right α = R) with constant potential and

without spin-orbit interaction. In lead α, the transverse part of the 2 × 2 spinor wave function ϕ
(n)
α (x,̺) and its

corresponding transverse energy ǫ
(n)
α obey the Schrödinger equation

H⊥(̺)ϕ
(n)
α (̺) = ǫ(n)α ϕ(n)

α (̺), (A3)

where n is the spin and orbit quantum number. These transverse wave guide modes form the basis for the expansion
of the time-dependent scattering states in lead α = L,R:43

Ψ̂α =

∫ ∞

0

dk√
2π

∑

nσ

ϕ(n)
α (̺)eiσkxe−iǫ(nk)

α t/~ĉ(nkσ)α , (A4)

where ĉ
(nkσ)
α annihilates an electron in mode n incident (σ = +) or outgoing (σ = −) in lead α. The field operators

satisfy the anticommutation relation

{

ĉ(nkσ)α , ĉ
†(n′k′σ′)
β

}

= δαβδnn′δσσ′δ(k − k′).

The total energy is ǫ
(nk)
α = ~

2k2/2m + ǫ
(n)
α . In the leads the particle, spins, and energy currents in the transport
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direction are

Î(p) =
~

2mi

∫

d̺Trs

(

Ψ̂† ∂Ψ̂

∂x
− ∂Ψ̂†

∂x
Ψ̂

)

, (A5a)

Î
(s)

=
~

2mi

∫

d̺Trs

(

Ψ̂†σ
∂Ψ̂

∂x
− ∂Ψ̂†

∂x
σΨ̂

)

, (A5b)

Î(e) =
~

4mi

∫

d̺Trs

(

Ψ̂†H
∂Ψ̂

∂x
− ∂Ψ̂†

∂x
HΨ̂

)

+H.c., (A5c)

where we suppressed the time t and lead index α, σ = (σx, σy, σz) is a vector of Pauli matrices, and Trs denotes the
trace in spin space. Note that the spin current Is flows in the x-direction with polarization vector Is/Is. To avoid

dependence on an arbitrary global potential shift, it is convenient to work with heat Î(q) rather than energy currents
Î(ǫ) :

Î(q)(t) = Î(ǫ)(t)− µÎ(p)(t) , (A6)

where µ is the chemical potential. Inserting the waveguide representation (A4) into (A5), the particle current reads43

Î(p)α =
~

4πm

∫ ∞

0

dkdk′
∑

nσσ′

(σk + σ′k′)×

ei(σk−σ′k′)xe
−i

[

ǫ(nk)
α −ǫ(nk′)

α

]

t/~
ĉ†(nk

′σ′)
α ĉ(nkσ)α . (A7)

We are interested in the low-frequency limit of the Fourier transforms I
(x)
α (ω) =

∫∞

−∞
dteiωtI

(x)
α (t). Following Ref.

43 we assume long wavelengths such that only the intervals with k ≈ k′ and σ = σ′ contribute. In the adiabatic
limit ω → 0 this approach is correct to leading order in ~ω/ǫF , where ǫF is the Fermi energy. By introducing the
(current-normalized) operator

ĉ(nσ)α (ǫ(nk)α ) =
1

√

dǫ
(nkσ)
α

dk

ĉ(nkσ)α , (A8)

which obey the anticommutation relations

{

ĉ(nσ)α (ǫα), ĉ
†(n′σ′)
β (ǫβ)

}

= δαβδnn′δσσ′δ(ǫα − ǫβ). (A9)

The charge current can be written as

Î(c)α (t) =
1

2π~

∫ ∞

ǫ
(n)
α

dǫdǫ′
∑

nσ

σe−i(ǫ−ǫ′)t/~ĉ†(nσ)α (ǫ′)ĉ(nσ)α (ǫ). (A10)

We operate in the linear response regime in which applied voltages and temperature differences as well as the externally
induced dynamics disturb the system only weakly. Transport is then governed by states close to the Fermi energy.

We may therefore extend the limits of the energy integration in Eq. (A10) from (ǫ
(n)
α ,∞) to (−∞ to ∞). We relabel

the annihilation operators so that â
(nk)
α = ĉ

(nk)
α+ denotes particles incident on the scattering region from lead α and

b̂
(nk)
α = ĉ

(nk)
α− denotes particles leaving the scattering region by lead α. Using the Fourier transforms

ĉ(nσ)α (ǫ) =

∫ ∞

−∞

dtĉ(nσ)α (t)eiǫt/~, (A11)

ĉ(nσ)α (t) =
1

2π~

∫ ∞

−∞

dǫĉ(nσ)α (ǫ)e−iǫt/~, (A12)

we obtain in the low-frequency limit43

Î(p)α (t) = 2π~
[

â†α(t)âα(t)− b̂†α(t)b̂α(t)
]

, (A13)
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where b̂α is a column vector of the creation operators for all wave-guide modes {b̂(n)α }. Analogous calculations lead to
the spin current

Î
(s)

α = 2π~
(

â†ασâα − b̂†ασb̂α

)

(A14)

and the energy current

Î(e)α = iπ~2

(

â†α
∂âα
∂t

− b̂†α
∂b̂α
∂t

)

+H.c.. (A15)

Next, we express the outgoing operators b̂(t) in terms of the incoming operators â(t) via the time-dependent scattering
matrix (in the space spanned by all waveguide modes, including spin and orbit quantum number):

b̂α(t) =
∑

β

∫

dt′Sαβ(t, t
′)âβ(t

′). (A16)

When the scattering region is stationary, Sαβ(t, t
′) only depends on the relative time difference t− t′, and its Fourier

transform with respect to the relative time is energy independent, i.e. transport is elastic and can be computed for
each energy separately. For time-dependent problems, Sαβ(t, t

′) also depends on the total time t+ t′ and there is an
inelastic contribution to transport as well. An electron can originate from a lead with energy ǫ, pick up energy in the
scattering region and end up in the same or the other lead with different energy ǫ′.
The reservoirs are in equilibrium with controlled local chemical potentials and temperatures. We insert the S-

matrix (A16) into the expressions for the currents, Eqs. (A13), (A14), (A15), and use the expectation value at
thermal equilibrium

〈

â†(n)α (t2)â
(m)
β (t1)

〉

eq
= δnmδαβfα(t1 − t2)/2πℏ, (A17)

where fβ(t1 − t2) = (2π~)−1
∫

dǫ−iǫ(t1−t2)/~fα(ǫ) and fα(ǫ) is the Fermi-Dirac distribution of electrons with energy ǫ
in the α-th reservoir. We then find

2π~
〈

b̂†α(t)b̂α(t)
〉

eq
=
∑

β

∫

dt1dt2S
∗
αβ(t, t2)Sαβ(t, t1)fβ(t1 − t2), (A18)

2π~
〈

b̂†α(t)σb̂α(t)
〉

eq
=
∑

β

∫

dt1dt2S
∗
αβ(t, t2)σSαβ(t, t1)fβ(t1 − t2), (A19)

2π~
〈

~∂tb̂
†
α(t)b̂α(t)

〉

eq
=
∑

β

∫

dt1dt2
[

~∂tS
∗
αβ(t, t2)

]

Sαβ(t, t1)fβ(t1 − t2). (A20)

Next, we use the Wigner representation (B1):

S(t, t′) =
1

2π~

∫ ∞

−∞

dǫS

(

t+ t′

2
, ǫ

)

e−iǫ(t−t′)/~, (A21)

and by Taylor expanding the Wigner represented S-matrix S((t + t′)/2, ǫ) around S(t, ǫ), S((t + t′)/2, ǫ) =
∑∞

n=0 ∂
n
t S(t, ǫ)(t

′ − t)n/(2nn!), we find

S(t, t′) =
1

2π~

∫ ∞

−∞

dǫe−iǫ(t−t′)/~ei~∂ǫ∂t/2S(t, ǫ) (A22)

and

~∂tS(t, t
′) =

1

2π~

∫ ∞

−∞

dǫe−iǫ(t−t′)/~ei~∂ǫ∂t/2

(

1

2
~∂t − iǫ

)

S(t, ǫ). (A23)
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The factor 1/2 scaling the term ~∂tS(t, ǫ) arises from commuting ǫ with ei~∂ǫ∂t/2. The currents can now be evaluated
as

I(c)α (t) =− 1

2π~

∑

β

∫ ∞

−∞

dǫ
[(

e−i∂ǫ∂t~/2S†
βα(ǫ, t)

)(

ei∂ǫ∂t/2~Sαβ(ǫ, t)
)

fβ(ǫ)− fα(ǫ)
]

(A24a)

I
(s)
α (t) =− 1

2π~

∑

β

∫ ∞

−∞

dǫ
[(

e−i∂ǫ∂t~/2S†
βα(ǫ, t)

)

σ
(

ei∂ǫ∂t/2~Sαβ(ǫ, t)
)

fβ(ǫ)
]

(A24b)

I(ǫ)α (t) =− 1

4π~

∑

β

∫ ∞

−∞

dǫ
[(

e−i∂ǫ∂t/2~(−i~∂t/2 + ǫ)S†
βα(ǫ, t)

)(

e+i∂ǫ∂t/2~Sαβ(ǫ, t)
)

fβ(ǫ)− ǫfα(ǫ)
]

− 1

4π~

∫ ∞

−∞

dǫ
[(

e−i∂ǫ∂t/2~S†
βα(ǫ, t)

)(

ei∂ǫ∂t/2~(i~∂t/2 + ǫ)Sαβ(ǫ, t)
)

fβ(ǫ)− ǫfα(ǫ)
]

, (A24c)

where the adjoint of the S-matrix has elements S
†(n′,n)
βα = S

∗(n,n′)
αβ .

We are interested in the average (DC) currents, where simplified expressions can be found by partial integration
over energy and time intervals. We will consider the total DC currents out of the scattering region, I(out) = −∑α Iα,
when the electrochemical potentials in the reservoirs are equal, fα(ǫ) = f(ǫ) for all α. The averaged pumped spin and
energy currents out of the system in a time interval τ can be written compactly as

I
(c)
out =

1

2π~τ

∫ τ

0

dt

∫

dǫTr

{[

f

(

ǫ− i~

2

∂

∂t

)

S

]

S† − f(ǫ)

}

, (A25a)

I
(s)
out =

1

2π~τ

∫ τ

0

dt

∫

dǫTr

{

σ

[

f

(

ǫ − i~

2

∂

∂t

)

S

]

S†

}

, (A25b)

I
(ǫ)
out =

1

2π~τ

∫ τ

0

dt

∫

dǫTr

{[(

ǫ− i~

2

∂

∂t

)

f

(

ǫ− i~

2

∂

∂t

)

S

]

S† − ǫf(ǫ)

}

+
1

2π~τ

∫ τ

0

dt

∫

dǫTr

{[

f

(

ǫ− i~

2

∂

∂t

)

S

](

−i~∂S
†

∂t

)}

, (A25c)

where Tr is the trace over all waveguide modes (spin and orbital quantum numbers). As shown in Appendix C the
charge pumped into the reservoirs vanishes for a scattering matrix with a periodic time dependence when,integrated
over one cycle:

I
(p)
out = 0. (A26)

This reflects particle conservation; the number of electrons cannot build up in the scattering region for periodic
variations of the system. We can show that a similar contribution to the energy current, i.e. the first line in
Eq. (A25c), vanishes, leading to to the simple expression

I
(e)
out = − i

2π

∫ τ

0

dt

τ

∫

dǫTr

{[

f

(

ǫ − i~

2

∂

∂t

)

S

]

∂S†

∂t

}

. (A27)

Expanded to lowest order in the pumping frequency the pumped spin current (A25b) becomes

I
(s)
out =

1

2π~

∫ τ

0

dt

τ

∫

dǫTr

{(

SS†f − i~

2

∂S

∂t
S†∂ǫf

)

σ

}

(A28)

This formula is not the most convenient form to compute the current to specified order. SS† also contains contributions
that are linear and quadratic in the precession frequency since S(t, ǫ) is the S-matrix for a time-dependent problem.
Instead, we would like to express the current in terms of the frozen scattering matrix Sfr(t, ǫ). The latter is computed
for an instantaneous, static electronic potential. In our case this is determined by a magnetization configuration that
depends parametrically on time: Sfr(t, ǫ) = S[m(t), ǫ]. Using unitarity of the time-dependent S-matrix (as elaborated
in Appendix C), expand it to lowest order in the pumping frequency, and insert it into (A28) leads to44

I
(s)
out =

i

2π

∑

β

∫ τ

0

dt

τ

∫

dǫ

(

−∂f
∂ǫ

)

Tr

{

∂Sfr

∂t
S†
frσ

}

. (A29)
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We evaluate the energy pumping by expanding (A27) to second order in the pumping frequency:

I
(e)
out =

~

4π

∫ τ

0

dt

τ

∫

dǫTr

{

−ifS ∂S
†

∂t
− (∂ǫf)

1

2

∂S

∂t

∂S†

∂t

}

. (A30)

As a consequence of unitarity of the S-matrix (see Appendix C), the first term vanishes to second order in the
precession frequency:34

I
(e)
out =

~

4π

∫ τ

0

dt

τ

∫

dǫ

(

−∂f
∂ǫ

)

Tr

{

∂Sfr

∂t

∂S†
fr

∂t

}

, (A31)

where, at this point, we may insert the frozen scattering matrix since the current expression is already proportional
to the square of the pumping frequency. Furthermore, since there is no net pumped charge current in one cycle (and
we are assuming reservoirs in a common equilibrium), the pumped heat current is identical to the pumped energy

current, I
(q)
out = I

(e)
out.

Our expression for the pumped energy current (A31) agrees with that derived in Ref. 33 at zero temperature and
the one derived in Ref. 34 at finite temperatures. Our result (A31) differs from Ref. 42 at finite temperatures. The
discrepancy can be explained as follows. Integration by parts over time t in Eq. (A27), using

[

f

(

ǫ− i~

2

∂

∂t

)

i~
∂S

∂t

]

S† = 2

[

ǫf

(

ǫ− i~

2

∂

∂t

)

S

]

S† − 2

[(

ǫ− i~

2

∂

∂t

)

f

(

ǫ− i~

2

∂

∂t

)

S

]

S†, (A32)

and the unitarity condition from Appendix C,

∫ τ

0

dt

τ

∫

dǫ

[(

ǫ− i~

2

∂

∂t

)

f

(

ǫ− i~

2

∂

∂t

)

S

]

S† =

∫ τ

0

dt

τ

∫

dǫǫf(ǫ), (A33)

the DC pumped energy current can be rewritten as

I
(ǫ)
out =

1

π~

∫ τ

0

dt

τ

∫

dǫTr

{[

ǫf

(

ǫ − i~

2

∂

∂t

)

S

]

S† − ǫf(ǫ)

}

. (A34)

Next, we expand this to the second order in the pumping frequency and find

I
(ǫ)
out =

1

π~

∫ τ

0

dt

τ

∫

dǫTr

{

ǫf(ǫ)
(

SS† − 1
)

− ǫ(∂ǫf)
i~

2

∂S

∂t
S† − ǫ(∂2ǫ f)

~
2

8

∂2S

∂t2
S†

}

. (A35)

This form of the pumped energy current, Eq. (A35), agrees with Eq. (10) in Ref. 42 if one (incorrectly) assumes

SS† = 1. Although for the frozen scattering matrix, SfrS
†
fr = 1, unitarity does not hold for the Wigner representation

of the scattering matrix to the second order in the pumping frequency. (SS† − 1) therefore does not vanish but
contributes to leading order in the frequency to the pumped current, which may not be neglected at finite temperatures.
Only when this term is included our new result Eq. (A31) is recovered.

Appendix B: Fourier transform and Wigner representation

There is a long tradition in quantum theory to transform the two-time dependence of two-operator correlation
functions such as scattering matrices by a mixed (Wigner) representation consisting of a Fourier transform over the
time difference and an average time, which has distinct advantages when the scattering potential varies slowly in
time.45 In order to establish conventions and notations, we present here a short exposure how this works in our case.
The Fourier transform of the time dependent annihilation operators are defined in Eqs. (A11) and (A12). Consider

a function A that depends on two times t1 and t2, A = A(t1, t2). The Wigner representation with t = (t1 + t2)/2 and
t′ = t1 − t2 is defined as:

A(t1, t2) =
1

2π~

∫ ∞

−∞

dǫA (t, ǫ) e−iǫ(t1−t2)/~, (B1)

A(t, ǫ) =

∫ ∞

−∞

dt′A

(

t+
t′

2
, t− t′

2

)

eiǫt
′/~. (B2)
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We also need the Wigner representation of convolutions,

(A⊗ B)(t1, t2) =

∫ ∞

−∞

dt′A(t1, t
′)B(t′, t2). (B3)

By a series expansion, this can be expressed as45

(A⊗B)(t, ǫ) = e−i(∂A
t ∂B

ǫ −∂B
t ∂A

ǫ )/2A(t, ǫ)B(t, ǫ) (B4)

which we use in the following section.

Appendix C: Properties of S-matrix

Here we discuss some general properties of the two-point time-dependent scattering matrix. Current conservation
is reflected by the unitarity of the S-matrix which can be expressed as

∑

βn′s′

∫

dt′S
(α1β)
n1s1,n′s′(t1, t

′)S
(α2β)∗
n2s2,n′s′(t

′, t2) = δn1n2δs1s2δα1α2δ(t1 − t2). (C1)

Physically, this means that a particle entering the scattering region from a lead α at some time t is bound to exit the
scattering region in some lead β at another (later) time t′. Using Wigner representation (B1) and integrating over
the local time variable, this implies (using Eq. (B4))

1 =
(

S ⊗ S†
)

(t, ǫ) = e
−i

(

∂S
t ∂S†

ǫ −∂S†

t ∂S
ǫ

)

/2
S(t, ǫ)S†(t, ǫ), (C2)

where 1 is a unit matrix in the space spanned by the wave guide modes (labelled by spin s and orbital quantum
number n). Similary, we find

1 =
(

S† ⊗ S
)

(t, ǫ) = e
+i

(

∂S
t ∂S†

ǫ −∂S†

t ∂S
ǫ

)

/2
S†(t, ǫ)S(t, ǫ). (C3)

To second order in the precession frequency, by respectively subtracting and summing Eqs. (C2) and (C3) give

Tr

{

∂S

∂t

∂S†

∂ǫ
− ∂S

∂ǫ

∂S†

∂t

}

= 0 (C4)

and

Tr
{

SS† − 1
}

= Tr

{

∂2S

∂t2
∂2S†

∂ǫ2
− 2

∂2S

∂t∂ǫ

∂2S†

∂t∂ǫ
+
∂2S

∂ǫ2
∂2S†

∂t2

}

. (C5)

Furthermore, for any energy dependent function Z(ǫ) and arbitrary matrix in the space spanned by spin and transverse
waveguide modes Y , Eq. (C2) implies

1

τ

∫ τ

0

dt

∫

dǫZ(ǫ)Tr

{[

e
−i

(

∂S
t ∂S†

ǫ −∂S†

t ∂S
ǫ

)

/2
S(t, ǫ)S†(t, ǫ)− 1

]

Y

}

= 0. (C6)

Integration by parts with respect to t and ǫ gives

1

τ

∫ τ

0

dt

∫

dǫTr

{[

e
−i

(

∂S
t ∂S†

ǫ −∂S
t ∂ZS†

ǫ

)

/2
S(t, ǫ)Z(ǫ)S†(t, ǫ)− Z(ǫ)

]

Y

}

= 0, (C7)

which can be simplified to

1

τ

∫ τ

0

dt

∫

dǫTr

{([

Z

(

ǫ+
i

2

∂

∂t

)

S(t, ǫ)

]

S†(t, ǫ)− Z(ǫ)

)

Y

}

= 0. (C8)

Similarly from (C3), we find

1

τ

∫ τ

0

dt

∫

dǫTr

{(

S†(t, ǫ)

[

Z

(

ǫ− i

2

∂

∂t

)

S(t, ǫ)

]

− 1

)

Y

}

= 0. (C9)
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Using this result for Y = 1 and Z(ǫ) = f(ǫ) in the expression for the DC particle current (A25a), we see that unitarity

indeed implies particle current conservation,
∑

α I
(c)
α = 0 for a time-periodic potential. However, such a relation does

not hold for spins. Choosing Y = σ, we cannot rewrite Eq. (C9) in the form (A25b), unless the S-matrix and the
Pauli matrices commute. Unless the S-matrix is time or spin independent, a net spin current can be pumped out of
the system, simultaneously exerting a torque on the scattering region.
Furthermore, choosing Z(ǫ) =

∫ ǫ

0 dǫ
′f(ǫ′), Y = 1 and expanding the difference between (C9) and (C8) to second

order in frequency gives

1

τ

∫ τ

0

dt

∫

dǫTr

{

f(ǫ)
∂S(t, ǫ)

∂t
S†(t, ǫ)

}

= 0,

which we use to eliminate the first term in the expression for the energy pumping, Eq. (A30).
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