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Ba3Mn2O8 is a hexagonally coordinated Mn5+ S=1 spin dimer system with small uniaxial single-
ion anisotropy. 135,137Ba NMR spectroscopy is used to measure the longitudinal (Mℓ) magnetization
in the vicinity of the critical field at Hc1 for the onset of magnetic order for H ‖ cand H ⊥
c. Mℓ‖(T,Hc1), Mℓ⊥(T,Hc1) are reproduced by solving a low-energy model for a dilute gas of
interacting bosons.
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Recent investigations of field-induced phases in S=1/2 magnetic insulators typify the opportunities for studying the
problem of Bose Einstein condensates (BEC’s) specifically1, and quantum criticality more generally. In spin-dimer,
and other spin-gapped systems, the ground state is a singlet while the lowest energy excited states are triplets2,3.
The magnetic field tunes the chemical potential for triplets through zero at the critical field Hc1, that either condense
or crystallize into a superlattice depending on the balance between kinetic and potential energies4,5. In some special
cases, a coexistence of these two phases is also possible6,7. The Hamiltonian has U(1) rotational symmetry for an
idealized case, and this symmetry is spontaneously broken in the condensed phase with the development of a finite
transverse magnetization Mt.
From what is known about the spin-dimer system Ba3Mn2O8

8, these conditions hold for H ‖ c9, although, the
evolution of the phases in a magnetic field is known to deviate from the simplest S=1/2 isotropic case in a number of
ways9–11. Two magnetization plateaus with 〈Sz〉=1 (per dimer) and 〈Sz〉=2 are a consequence of the S=1 state of the
Mn5+ ions10,12. In addition, a small single-ion uniaxial anisotropy is understood to produce new boundaries in the
ordered phases for H tilted from the c-axis. While this anisotropy is not relevant for H ‖ c, its influence is evident for
H ⊥ c, producing an additional phase II stabilized only near Hc1⊥ and the other critical fields. Further, the hexagonal
coordination of the layers leads to geometric frustration. The near-neighbor transverse spin components would be
rotated by α=120◦ in an isolated triangular layer13,14. The stacking of the layers for the trigonal crystal is abc (Fig.
1), and interlayer coupling changes the value of α to α = 120◦ + ǫ with ǫ ∼ 9◦), i.e., it induces an incommensurate
spin ordering to partially relieve the interlayer frustration.
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FIG. 1. (color online) a) Ionic arrangement of Ba3Mn2O8showing location of Ba sites relative to the Mn ions; oxygen ions are
not shown. The exchange couplings are indicated by solid (J0, J3) and dashed/dotted (J1, J2) lines. J4 is the next-near-neighbor
interlayer coupling (not shown)

Presented here are results of 135,137Ba NMR spectroscopy studies in the high symmetry phase near Hc1for orienta-
tions H ‖ c and H ⊥ c. The NMR shifts give the magnetization as a function of temperature at H =Hc1. The focus
here is on the non-universal regime, but note that otherwise the results are not inconsistent with the expectations
for a BEC-QCP for H ‖ c, i.e., M(T → 0, Hc1) ∼ T 3/2. Both the universal and the non-universal (T >100mK)
regimes are well-described by using an effective low-energy theory for a dilute gas of bosons, and we expect this result
is applicable to other systems. Quantitative differences are observed for H ⊥ c, in agreement with the expectation
for an Ising-like (Z2) broken symmetry (phase II). Key to our successful description of the magnetization data is the
inclusion of the bare off-site repulsions between triplets, in addition to the hard-core repulsion. As we show below,
these contributions to the effective triplet-triplet repulsion are crucial to derive a quantitatively correct low-energy
effective theory in the dilute limit. This is an important conclusion that applies to any other quantum magnet in the
proximity of a BEC-QCP.
The measurements were performed on a single crystal of Ba3Mn2O8 placed inside the mixing chamber of a dilution

refrigerator for cooling to T ≥30mK. )For reference, the maximum temperature of the ordered phases is Tm ≡0.9K10.)
135,137Ba (135,137I=3/2) NMR spectroscopy was performed in magnetic fields H ≤120kOe using a top-tuned configu-
ration. The platform holding the sample and coil is rotated by an Attocube piezoelectric motor, whereas the crystal
orientation was determined by the spectroscopic rotation patterns and verified using Hall sensors. At the higher fields
available at the NHMFL, we used a bottom-tuned 3He system. The diagonal hyperfine couplings were determined
by comparing high temperature measurements of the shift (T ≥20K) to susceptibility measurements10, with the ex-
ception of the Ba(I) site in the H ‖ c configuration; for that case, the coupling was inferred from field-induced shifts
recorded at T=100mK. Orbital and quadrupolar couplings were determined from the shifts measured at the lowest
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FIG. 2. The temperature dependence of the shifts are compared to the dc susceptibility presented in Ref.12 for the purpose
of extracting the diagonal hyperfine couplings for Ba(II) sites. The solid red lines are Eq. 1 (see text), using parameters
J0=19.0K, J ′ = 7.5K.

temperatures for H < Hc1, and the site identification was established from the intensity ratio for the Ba(II) site
relative to the Ba(I) site (i.e., 2:1). χ is modelled by using the mean-field expression12

χ =
χ0

1 + γχ0

, (1)

where χ0 is the single dimer susceptibility

χ0 =
2Nβg2µ2

B(1 + 5e−4βJ0)

3 + e2βJ0 + 5e−4βJ0

, (2)

γ = 3J ′/Ng2µ2
B, J0=19.0K, J ′ = J1 + J4 + 2(J2 + J3)=7.4K, g=1.989,15. These results appear in Fig. 2, and the

relevant NMR parameters are summarized in Table I. In extending the analysis to higher magnetic fields, Eq. (1) is
expected to be valid for T ≥20K in the field range that we used (e.g., 70kOe, as in Fig. 2).
The established minimal spin Hamiltonian for arbitrarily oriented field direction in Ba3Mn2O8 is:

H =
∑

i,j,µ,ν

Jiµjν
2

Siµ · Sjν +D
∑

i,µ

(

Sz
iµ cos θ − Sx

iµ sin θ
)2

−µBH
∑

iµαβ

(

g̃zzS
z
iµ + g̃xzS

x
iµ

)

, (3)

where g̃zz = gaa sin
2 θ+gcc cos

2 θ, g̃xz = (gcc−gaa) sin θ cos θ, gαβ is the diagonal gyromagnetic tensor with components
gcc, gaa = gbb, and θ is the angle between the applied field and the c-axis. The quantization z axis is set along the
field direction. Here i, j designate the dimer coordinates, α, β = {x, y, z}, µ, ν = {1, 2} denote each of the two S=1
spins in each dimer. The various exchange constants are shown in Fig. 1(a) and are defined as follows: the exchange
within a dimer is J0 = Ji,1,i,2; the dominant out-of-plane exchange is J1 = Ji,2,j,1 for i, j nearest neighbor dimers
between planes; the dominant in-plane exchanges between dimers is J2 = Ji,µ,j,µ and J3 = Ji,µ,j,ν for i, j in plane
nearest neighbor dimers and µ 6= ν; and finally the second largest out-of-plane exchange is J4 = Ji,2,j,1 for i, j next
nearest neighbor dimers between planes.
Since the dominant exchange interaction is the intra-dimer coupling J0, it is more convenient to express H in a

basis that diagonalizes the single dimer Hamiltonian. The single dimer spectrum consists of the singlet ground state,

Aaa Acc
137νQ (MHz)

Ba(1) 26(1) 35(2) 54.7(2)

Ba(2) 18(1) 11(1) 10.8(2)

TABLE I. Diagonal NMR hyperfine coupling parameters and quadrupole frequencies for the Ba(I,II) sites shown in Fig. 1.
νQ ≡ e2qQ/4, with 135Q (137Q)=0.18 (0.28) ×10−24 cm2. The hyperfine coupling constants are reported in kG/µB-Mn5+.

I
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a triplet with energy gap J0 and a quintuplet of states with energy 3J0 relative to the singlet. Since the inter-dimer
exchange is much smaller than J0 and we are only interested in describing the field region around Hc1, to lowest order
in perturbation theory, we can eliminate the high energy quintuplets and restrict H to the subspace generated by the
singlet and the triplets. We note that the energy of the Sz = 2 quintuplet at H = Hc1 is of order J0 higher than the
energy of the singlet and the Sz = 1 triplet. Moreover, the Sz = 2 quintuplet states are induced by the inter-dimer
exchange terms only when two Sz = 1 triplets occupy nearest-neighbor dimers: the pair of triplets is transformed into
a singlet and an Sz = 2 quintuplet (a pair of quintuplets with opposite values of Sz can be generated from a pair of
nearest-neighbor singlets but the energy cost of that process is of order 6J0). Therefore, since the density of Sz = 1
triplet states is very low near Hc1, we can safely neglect the Sz = 2 quintuplets in this region of magnetic field.

Based on the previous observations, it is convenient to express the low-energy Hamiltonian in terms of bosonic bond

operators that create the singlet (s†i ) and each of the three triplets (t†i↑, t
†
i0 and t†i↓) on the bond i:

1√
3
(| ↑↓〉i − |00〉i + | ↓↑〉i) = s†i |∅〉,

1√
2
(| ↑ 0〉i − |0 ↑〉i) = t†i↑|∅〉,

1√
2
(| ↑↓〉i − | ↓↑〉i) = t†i0|∅〉,

1√
2
(| ↓ 0〉i − |0 ↓〉i) = t†i↓|∅〉, (4)

The sates |szi1szi2〉i on the left hand side are direct products of eigenstates of Sz
i1 and Sz

i2, while szi1 and szi2 are the
corresponding eigenvalues. ↑ (↓) corresponds to szi = 1 (szi = −1). Since the four states on the left hand side form a
basis for the low energy Hilbert space of the dimer i, the bond operators satisfy the local constraint:

s†jsj +
∑

ν

t†jνtjν = 1, (5)

where ν = {↓, 0, ↑}.
The singlets are condensed for H ≤ Hc1. Therefore, the corresponding creation an annihilation operators can be

approximated by using the Holstein-Primakoff approximation:

s†j =

√

1−
∑

ν

t†jνtjν , (6)

where we have used the constraint Eq.(5). The “spin-wave” Hamiltonian is obtained by replacing this expression for

s†j and sj in H and keeping only the terms that are quadratic in the triplet operators. By introducing the triplet
operators in momentum space,

t†qν =
1

N

∑

j

eiq·rj t†jν , (7)

where N is the total number of dimers, we obtain the following spin-wave Hamiltonian for H parallel (θ = 0) or
perpendicular to the c− axis (θ = π/2):

H̃sw =
∑

q,µ,ν

ǫµν(q)t
†
qµt

†
qν +

γµν(q)

2
(t†qµt

†
−qν + t−qνtqµ), (8)
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where µ, ν = {↓, 0, ↑}, and

ǫµν(q) = [J0 +D(1 − 3a2ν/2)[(cos θ)
2 − 1/3] +

4

3
Jq

− gααµBHaν ]δµ,ν +
D

2
(sin θ)2δ|µ−ν|,2,

γµν(q) =
4

3
Jqδaµ+aν ,0

Jq = 2(J2 − J3)γ
2
q +

J1
2
γ1
q +

J4
2
γ3
q

γ1
q = cos q3 + cos (q3 − q1) + cos (q3 − q2),

γ2
q = cos q1 + cos q2 + cos (q1 − q2),

γ3
q = cos (q3 − q2 + q1) + cos (q3 − q1 + q2)

+ cos (q3 − q1 − q2). (9)

Here α = c (α = a) for H parallel (perpendicular) to the c axis, a↑ = 1, a↓ = −1 and a0 = 0. We note that the

expression (8) is not valid for intermediate values of θ, i.e., for 0 < θ < π/216. The diagonal form of H̃sw,

Hsw =
∑

qµ

[ωqµ(b
†
qµbqµ +

1

2
)− ǫµµ

2
], (10)

is obtained by means of a standard Bogolyubov transformation. The z component of the magnetization is a good
quantum number for θ = 0 because H is invariant under a uniform spin rotation along the z axis. Therefore, the
three branches of Bogolyubov quasiparticles have the same label ν = {↑, 0, ↓} of the triplet bond operators. In this
case, the three dispersion relations are given by:

ω0
qν =

√

∆2
ν +

8

3
∆νJ (q) + gccµBHaν , (11)

where ∆ν = J0 +
2D
3

−Da2ν . Eq.(11) shows that the ν = 0 branch does not change in presence of the field, while the
full ν =↑ (ν =↓) branch increases (decreases) linearly in field without changing its shape. This is a direct consequence
of the invariance of H under a uniform spin rotation along the z axis. The low temperature properties close to Hc1

are determined by the lowest energy branch ν =↑ that becomes gapless at the critical point

Hc1(θ = 0) =

√

(J0 −
D

3
)2 +

8

3
(J0 −

D

3
)J (Q)/gccµB .

Q = (αm,−αm, 0) is the wave vector that minimizes ω0
q↑ with αm determined by

cosαm =
J1 − 2(J2 − J3)

4(J2 − J3 − J4)
. (12)

Since the shape of ω0
qν does not change with field, ω0

q↑ increases quadratically in |q−Q|.
The situation is qualitatively different for θ = π/2 because the magnetization along the field axis is no longer

conserved. The continuous U(1) symmetry group of rotations around the z axis is replaced by a Z2 symmetry.
Consequently, the field induced critical point is Ising like instead of the BEC-QCP obtained for θ = 0. Another
consequence of this reduction in the symmetry of H is that the index ν of the Bogoliubov quasiparticles does not
correspond to a well defined magnetization. To write down the dispersion relations associated with the three branches
of Bogoliubov quasi-particles, it is convenient to introduce the following functions:

Fq = ǫ2↑↑(q) + ǫ2↓↓(q) + 2(D2/4− 16J 2
q/9)

Gq = [ǫ2↑↑(q)− ǫ2↓↓(q)]
2/4

− 2ǫ↑↑(q)ǫ↓↓(q)(D
2/4 + 16J 2

q/9)

+ [ǫ2↑↑(q) + ǫ2↓↓(q)](D
2/4− 16J 2

q/9) (13)
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where the functions ǫµν(q) are evaluated at θ = π/2. The resulting expressions for the three dispersion relations are:

ω
π/2
q↑ =

√

Fq −
√

Gq

ω
π/2
q0 =

√

ǫ200(q)− 16J 2
q/9

ω
π/2
q↓ =

√

Fq +
√

Gq (14)

The lowest energy branch, ω
π/2
q↑ , becomes gapless at the critical field:

[gaaµBHc1(θ = π/2)]2 = (J0 +
D

6
)2 +

8

3
(J0 +

D

6
)J (Q)

− D2

4
− 4

3
|D||J (Q)|. (15)

The minimum is still at q = Q but, in contrast to the θ = 0 case, ω
π/2
q↑ increases linearly in |q −Q| for H = Hc1.

This is the expected behavior for an Ising-like quantum critical point (the dynamical exponent is z = 1).
To compute the low temperature properties close to Hc1 we will only keep the lowest energy branch ωη

q↑ (η = 0, π/2)
of bosonic quasiparticles. Therefore, close to Hc1 the problem is reduced to a dilute gas of interacting bosons with
dispersion relation ωη

q↑. Since gααµBHc1 is much bigger than any of the inter-dimer exchange couplings, the Bogoliubov
quasiparticles do not differ significantly from the triplet bond operators. Therefore, we will approximate the interaction

between Bogoliubov quasiparticles by the interaction between triplets. The triplet particles t†j↑ are hard-core bosons
that in addition have an off-site repulsion produced by the Ising component of the inter-dimer exchange. The exchange
constants15 and the g-factors are J1 = 0.118meV, J2 − J3 = 0.114meV, J4 = 0.037meV, gcc = 1.98 and gaa = 1.97.
The effective repulsive interaction v0 = Γ0(Q,Q) results for summing the ladder diagrams for the bare interaction
vertex Vq

17:

Γq(k,k
′) = Vq −

∫ π

−π

d3p

8π3
Vq−p

Γp(k,k
′)

ω0
k+p + ω0

k′−p

(16)

For Ba3Mn2O8, we have Vq = U+(J2+J3)γ
2
q+

J1
2
γ1
q+

J4
2
γ3
q, where U → ∞ comes from the hard-core repulsion, while

the rest of the terms correspond to the off-site repulsive interactions. By solving Eq.(16), we obtain v0 = 0.9meV for
J2 + J3 = 2.82K, obtained by fitting Hc2 ≃ 27T for H ‖ c.
The longitudinal magnetization for H ‖ c is shown in Fig. 3a for several fields near Hc1. The curve measured

at H = Hc1 = 89.3kOe is consistent with the expectation Mℓ‖∼ T 3/2 for T → 0, even if the range of temperatures
is too limited to demonstrate the universal exponent. The red line is the result of a Hartree-Fock decoupling of
the interacting v0 term whose only effect in the disordered phase is a renormalization of the chemical potential
µeff = µ−2v0ρ (ρ is the density of bosons)2. Calculations for field values differing from Hc1, H = Hc1−1.3kOe (blue)
and H = Hc1 + 1.5kOe (green), also match the NMR shift data well. We note that there is a 20% disagreement if
only the hard-core repulsion is included in Eq. (16).
When the applied field is rotated to the ab plane, the ordered phase II bordering the paramagnet is believed to be

Ising-like, with transverse spins confined to the c direction. The measured magnetization shown in Fig. 3b is also
in very good agreement with the magnetization curve obtained from the dilute gas approach. The anisotropy term
also has the effect of lowering the critical field Hc1. In confining the transverse spins to the c-axis, the energy gain
associated with the broken symmetry is reduced slightly, and consequently Mℓ⊥<Mℓ‖. The outcome is consistent

with the anisotropy parameter D=32µeV as established by electron paramagnetic resonance18.
The 135,137Ba spectroscopy reported here summarize the behavior near to the critical field at H = Hc1 for two

directions of applied magnetic field. For the longitudinal magnetization, the data is well described by including
interdimer (near-neighbor) repulsions in the ladder calculation.
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FIG. 3. (color online) (a) Ml‖ vs. T for selected magnetic fields close to Hc1‖. The inset shows a sequence of spectra for the
Ba(2) site recorded at different temperatures. The solid curve is from ladder diagram calculations (see text). (b) The same as
(a), for H ⊥ c.
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